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Abstract

We present a general framework for obtaining efficient algorithms for computing minimum

spanning trees. We use this framework to derive the classical algorithms of Prim, Kruskal and

Bor̊uvka. We then describe the randomized linear-time algorithm of Karger, Klein and Tarjan.

The algorithm of Karger, Klein and Tarjan uses deterministic linear-time implementations of

a verification algorithm of Komlós.

1 Minimum Spanning Trees

Let G = (V,E,w) be a weighted undirected graph, where w : E → R is a weight (or cost) function

defined on its edges. A subgraph T = (V,ET ) of G which is a tree is said to be a spanning tree

of G. The weight of a spanning tree T = (V,ET ) of G is defined to be w(T ) =
∑

e∈ET
w(e). In the

Minimum Spanning Tree (MST) problem we are asked to find a spanning tree of minimum weight

of a given connected input graph G = (V,E).

2 Preliminaries

Definition 2.1 (Cuts) A cut (S, S̄) of a graph G = (V,E) is a partition of the vertex set into two

nonempty parts S ⊆ V and S̄ = V − S. An edge e ∈ E crosses the cut if and only if |e ∩ S| = 1,

i.e., if one endpoint of e is in S and the other in S̄. We let E(S, S̄) = {e ∈ E | |e ∩ S| = 1} be the

set of edges that cross the cut (S, S̄) and refer to the as the edges of the cut.

Definition 2.2 (Cycles) A (simple) cycle C in a graph G = (V,E) is a sequence of distinct

vertices C = 〈v1, v2, . . . , vk〉 such that k ≥ 3 and E(C) = {(v1, v2), . . . , (vk−1, vk), (vk, v1)} ⊆ E.
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The following lemma, whose proof is immediate, states that the intersection between any cut and

any cycle contains an even number of edges.

Lemma 2.3 Let G = (V,E) be an undirected graph. If (S, S̄) is a cut of G and C is a cycle in G

then |E(C) ∩ E(S, S̄)| is even.

3 A greedy framework for finding MSTs

Following Tarjan [Tar83], we describe a general greedy framework that can be used to derive essen-

tially all known MST algorithms.

Let G = (V,E,w) be a weighted undirected graph. We assume in this section that G is connected.

Initially, all the edges of G are uncolored. We describe below two rules that can be used to color

certain edges of the graph either blue or red. Any sequence of applications of these rules would

maintain the following invariant:

Invariant: There is a minimum spanning tree of G that contains all blue edges and

none of the red edges.

We shall see below that as long as there are still uncolored edges in the graph, at least one new

edge can be colored using one of the rules. When all the edges are colored, the invariant says that

the set of blue edges forms a minimum spanning tree of G.

The two coloring rules are:

Blue rule (cut rule): Select a cut that contains no blue edges. Among the uncolored

edges of the cut, select one of minimum weight and color it blue.

Red rule (cycle rule): Select a simple cycle containing no red edges. Among the

uncolored edges on the cycle, select one of maximum weight and color it red.

Theorem 3.1 Any coloring obtained by repeated applications of the cut and cycle rules satisfies the

invariant above. If some edges are uncolored, then at least one of the two rules can be applied.

Proof: We start by proving that any coloring obtained by applying the two rules satisfies the

invariant. We do that by induction on the number of applications. Suppose that c is a coloring that

satisfies the invariant, and that c′ is a coloring obtained from c by coloring an edge e blue using the

cut rule, or red using the cycle rule. Let B be the set of edges colored blue by c, and let R be the

set of edges colored red by c. By the induction hypothesis, there exists a minimum spanning tree T

of G such that B ⊆ T and T ∩R = φ.

Case 1: e is colored blue. If e ∈ T , we are done. Suppose, therefore, that e 6∈ T . Let (S, S̄) be

the cut to which the cut rule was applied to justify coloring e blue. Then, before the application
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of the rule none of the edges in the cut (S, S̄) are blue, and among the uncolored edges of the

cut e has minimum weight. Consider T ∪ {e}. Adding e to T closes a cycle. This cycle must

contain at least one edge e′ 6= e that also crosses the cut (S, S̄). This edge e′ must be uncolored.

(It cannot be colored blue, as (S, S̄) contains no blue edges, and it cannot be colored red, as it

belongs to T .) We also have w(e) ≤ w(e′). Now, T ′ = T ∪ {e} − {e′} is a spanning tree of T and

w(T ′) = w(T ) + w(e) − w(e′) ≤ w(T ). Thus, T ′ is also a minimum spanning tree. (We also have

w(e) = w(e′).) Now, B ∪ {e} ⊆ T ′ and T ′ ∩R = φ, as required.

Case 2: e is colored red. If e 6∈ T , we are done. Suppose, therefore, that e ∈ T . Let C be the cycle

to which the cycle rule was applied to justify coloring e red. Let S and S̄ be the two connected

components of T − {e}. By Lemma 2.3, the cut (S, S̄) must contain at least one other edge e′ 6= e

that also belongs to C. The edge e′ is not colored red and w(e′) ≤ w(e). Now T ′ = T − {e} ∪ {e′}
is again a spanning tree. As w(T ′) ≤ w(T ), it is a minimum spanning tree. (It follows, in fact, that

w(e) = w(e′).) Now, B ⊆ T ′ and T ′ ∩ (R ∪ {e}) = φ, as required.

Finally, suppose that at least one edge of G is still uncolored. The set B of blue edges must form a

forest. (By the invariant, there is a tree T that contains B, and hence B cannot contain a cycle.) If

this blue forest is not yet a spanning tree, then consider the cut defined by one of the blue trees in

this forest. This cut contains no blue edges and not all edges in the cut can be colored red. The cut

rule can therefore applied to this cut. If the blue edges form a spanning tree, then any remaining

uncolored edge e closes a cycle all whose other edges are colored blue. By applying the cycle rule

to this cycle we can color e red. 2

Coloring an edge blue selects it for inclusion in the constructed minimum spanning trees. If at some

stage the set of blue edges forms a spanning tree of the graph then, by the invariant, this spanning

tree must be a minimum spanning tree. Coloring an edge red is equivalent to removing it from the

graph, and hence not including it in the constructed minimum spanning tree.

4 Three classical algorithms

In this section we describe three classical MST algorithms. Interestingly, they are all rely solely on

the blue rule. The linear expected time MST algorithm that we present in Section 7, on the other

hand, relies on both the blue and red rules.

4.1 Kruskal’s algorithm

Kruskal’s algorithm [Kru56] is very simple.

Kruskal’s algorithm: Let e1, e2, . . . , em be the edges of a connected graph G = (V,E)

sorted according to weight, i.e., w(e1) ≤ w(e2) ≤ · · · ≤ w(em). For i = 1, 2, . . . ,m,

color ei blue if the two endpoints of ei are not in the same blue tree.
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Theorem 4.1 Kruskal’s algorithm finds a minimum spanning tree

Proof: We prove the correctness of the algorithm in two steps. We first show that all the colorings

done by the algorithm can be justified by applications of the blue rule. We then show that at the

end of the algorithm the blue edges form a tree, which must then be a minimum spanning tree.

Suppose that ei is colored blue by the algorithm. Let S be the set of vertices in one of two blue trees

that ei touches. Then, ei belongs to the cut (S, S̄). The cut contains no other blue edges. We next

claim that ei is an edge of minimum weight in this cut, hence coloring ei blue is justified. Suppose,

for the sake of contradiction, that the cut (S, S̄) also contains an edge ej such that w(ej) < w(ei).

As the edges are sorted according to weight, we get that j < i, and hence ej is examined by the

algorithm before ei is. As the two endpoints of ej are not in the same blue tree now, they were

certainly not in the same blue tree when the edge ej was examined, and hence ej should have been

colored blue, a contradiction.

Next suppose, again for the sake of contradiction, that after all edges were examined, the set of

blue edges is not a spanning tree. Let S be the set of vertices in one of the trees in the blue forest.

As the graph is connected, the cut (S, S̄) is non-empty and all its edges are uncolored. Let ei be an

edge of minimum weight in this cut. Then, ei should have been colored blue when it was examined,

a contradiction. 2

We next consider the implementation of Kruskal’s algorithm. The edge weights can be sorted in

O(m log n) time. (If the edge weights are small integers, or if the word RAM model of computation

is assumed, then a faster sorting time can be obtained.)

That leaves us with the problem of determining, for every edge ei, whether its two endpoints belong

to the same blue tree or not. This can be easily done using a data structure for maintains a collection

of disjoint sets that supports the following three operations:

makeset(x): Create a new set containing the single element x, previously in no set.

find(x): Return an identifier of the set currently containing element x.

union(x, y): Form a new set that is the union of the two sets currently containing

elements x and y, destroying the two old sets.

Using such a union-find data structure, Kruskal’s algorithm can be easily implemented as shown in

Figure 1.

A simple implementation of a union-find data structure that uses two simple heuristics, union by

rank, and path compression, was shown by Tarjan [Tar75] to require only O(α(m,n)) amortized

time per operation, where α(m,n) is an extremely slowly growing functional inverse of Ackermann’s

function. In particular α(m,n) � log n. Unfortunately, the running time of the mandane sorting

stage of Kruskal’s algorithm dominates the running time of the more interesting second stage, and

the total running time of Kruskal’s algorithm, when the edge weights cannot be quickly sorted, is

O(m log n).
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Function Kruskal(G = (V,E,w))

Sort the edges so that w(e1) ≤ w(e2) ≤ · · · ≤ w(em)

foreach v ∈ V do
makeset(v)

T ← ∅
for i← 1 to m do

(u, v)← ei
if find(u) 6= find(v) then

T ← T ∪ {ei}
union(u, v)

Figure 1: Kruskal’s algorithm

4.2 Prims’s algorithm

Kruskal’s algorithm starts with a blue forest in which each vertex forms a tree. In each iteration,

two blue trees are joined by a blue edge and merge. When the blue forest is a tree, it is a minimum

spanning tree. Prim’s algorithm [Pri57], on the other hand, grows a single blue tree. In each

iteration one new vertex is added to the tree. When all vertices are added to the tree, the tree is,

of course, a minimum spanning tree.

Prim’s algorithm starts with some vertex s ∈ V . In each iteration it finds a lightest edge connecting

a vertex in the blue tree to a vertex not in the blue tree and adds it to the tree. (In other words,

it applies the blue rule to the cut defined by the blue tree.)

Prim’s algorithm can be efficiently implemented using a priority queue. Such an implementation is

given in Figure 2. The priority-queue P maintained by the algorithm contains all vertices not yet

added to the tree. The key d[v] of a vertex v in P is the weight of the lightest edge joining v to the

tree. If no edge connecting v to the tree was found yet, then d[v] = ∞. If d[v] < ∞, then (p[v], v)

is an edge of weight d[v].

In each iteration the algorithm extracts a vertex u with minimum key from P . It adds the edge

(p[u], u) to the tree. It then examines all the edges incident to u. For each such edge (u, v) such

that v is in P it checks whether w[u, v] < d[v]. If so, a lighter edge connecting v to the tree was

found, d[v] and p[v] are updated, and the key of v in P is decreased to d[v].

Theorem 4.2 Prim’s algorithm finds a minimum spanning tree. It running time is O(m+n log n).

Proof: Correctness follows immediately from the blue rule. To obtain a running time of O(m +

n log n) we use a priority-queue data structure that supports decrease-key operations in O(1)

amortized time, and all other operations in O(log n) amortized time, such as Fibonacci heaps

[FT87]. 2
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Function Prim(G = (V,E,w), s)

P ← priority-queue()

foreach v ∈ V \ {s} do

p[v]← null

d[v]←∞
insert(P, v, d[v])

d[s]← 0

insert(Q, s, d[s])

T ← ∅
while P 6= ∅ do

u← extract-min(P )

T ← T ∪ {(p[u], u)}
foreach (u, v) ∈ E do

if v ∈ P and w[u, v] < d[v] then

p[v]← u

d[v]← w[u, v]

decrease-key(P, v, d[v])

Figure 2: Prim’s algorithm

4.3 Bor̊uvka’s algorithm

In this section, and several subsequent sections, we assume that all edge weights are distinct. This

is not a serious restriction as any comparison-based algorithm for finding minimum spanning trees

that works under this assumption can be easily converted into an algorithm that allows ties by

consistently breaking ties, if they occur. (See Exercise 2.) It is also not difficult to show that when

all edge weights are distinct, the minimum spanning forest is unique. (See Exercise 1.)

Bor̊uvka’s algorithm [Bor26] is also easy to describe:

Bor̊uvka’s algorithm: Repeat the following until the set of blue edges forms a tree:

For each blue tree, in parallel, select the lightest edge leaving it and color it blue.

Bor̊uvka’s algorithm is in fact a parallel algorithm. (We are only interested here, however, in

sequential implementations of it.) Bor̊uvka’s algorithm applies the blue rule simultaneously to

several cuts. This needs to be justified, as the blue and red rules, as presented in Section 3, were

meant to be used sequentially. Actually, Bor̊uvka’s algorithm is correct only if all edge weights are

distinct, which is why we made this assumption at the beginning of the section.
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Theorem 4.3 If all edge weights are distinct, then Bor̊uvka’s algorithm finds a minimum spanning

tree.

Lemma 4.4 Each iteration of Bor̊uvka’s algorithm reduces the number of blue trees by a factor of

at least 2.

Theorem 4.5 Bor̊uvka’s algorithm can be implemented to run in O(m log n) time.

In the next section we consider the implementation of MST algorithms using contraction. This

leads, in particular, to two additional implementation of Bor̊uvka’s algorithm, one running in O(n2)

time, and another running in O(m log(n2/m)).

5 Finding Minimum spanning trees using contractions

We begin with a formal definition of contraction.

Definition 5.1 (Contracting an edge) Let G = (V,E) be an undirected graph and let e =

(u, v) ∈ E. The graph G/e is obtained from G by merging the two endpoints of e into a single

vertex. The vertex set of G/e is V \ {u, v} ∪ {uv}, where uv is the vertex obtained by merging u

and v. The edge set of G/e is E \ {e}. Edges that touched u and v are now considered to touch the

new vertex uv.

Definition 5.2 (Contracting a set of edges) Let G = (V,E) be an undirected graph and let

B ⊆ E. The graph G/B is obtained from G by contracting all the edges of B. (It is not difficult to

check that the order of contractions does not matter.) Alternatively, G/B is a graph whose vertex

set are the connected components of the subgraph (V,B). The edges of G/B are edges that connect

different connected components of (V,B).

Contraction is an important operation that would be used extensively throughout the course. There

are two approaches to implementing graph algorithms using contractions. The first is to carry out

the contractions explicitly. In an explicit representation of a contracted graph, the adjacency lists

of vertices that were merged together are catenated, and endpoint of edges are updated. This can

be expensive in general. An alternative approach is to maintain a contracted graph implicitly. This

usually involves the use of a union-find data structure. In fact, the implementation of Kruskal’s

algorithm given in Section 4.1 may be viewed as an implementation using implicit contractions.

The greedy approach of Section 3 and the contraction framework can be easily combined to obtain

the following theorem:

Theorem 5.3 Let G = (V,E,w) be a weighted undirected graph and let B ⊆ E be the set of edges

colored blue and let R ⊆ E be the set of edges colored red using a sequence of applications of the

red and cut rules. Let T ′ be a minimum spanning tree of (G− R)/B. Then, B ∪ T ′ is a minimum

spanning tree of G.
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We mention, for the last time, the slight abuse of notation used when referring to the set B ∪ T ′

above. Here T ′ is used both as a set of edges, forming a minimum spanning tree, in (G − R)/B,

and also as the set of edges in the original graph.

6 Minimum spanning tree verification

In this short section we consider the easier problem of checking whether a given spanning tree T is

a minimum spanning tree of a weighted graph G = (V,E,w). We begin with the following useful

definition.

Definition 6.1 (wT (e)) Let G = (V,E,w) be a weighted undirected graph and let T be a spanning

tree of G. For an edge e = (u, v) ∈ E let wT (e) be the weight of the heaviest edge on the unique

path in T connecting u and v. (Note that if e ∈ T , then wT (e) = w(e).)

The following lemma follows easily from the cycle rule:

Lemma 6.2 A spanning tree T of G = (V,E,w) is a minimum spanning tree if and only if for

every e 6∈ T we have w(e) ≥ wT (e).

Komlós [Kom85], Dixon, Rauch and Tarjan [DRT92], King [Kin97], and Hagerup [Hag09] proved

the following theorem:

Theorem 6.3 There is a deterministic linear time algorithm that given a weighted undirected graph

G = (V,E,w) and a spanning tree T of G computes wT (e) for every e ∈ E.

Corollary 6.4 There is a deterministic linear time algorithm that given a weighted undirected graph

G = (V,E) and a spanning tree G checks whether T is a minimum spanning tree of G.

7 A randomized linear time algorithm

In this section we describe a randomized minimum spanning tree algorithm of Karger, Klein and

Tarjan [KKT95] that has an expected linear running time. The algorithm uses the linear time

minimum spanning tree verification algorithm mentioned in the previous section. We assume again

in this section that all edge weights are distinct.

The randomized algorithm is recursive. The graphs on which the recursive calls are applied may not

be connected, even if the original graph is. We therefore describe the algorithm as an algorithm for

finding a minimum spanning forest (MSF) of a not necessarily connected graph. A spanning forest

of a graph G = (V,E) is a subgraph composed of a spanning tree of each connected component of G.
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A minimum spanning forest is a spanning forest of minimum total weight. The greedy framework

of Section 3 can clearly be used for finding a minimum spanning forest.

A subforest of G = (V,E) is a subgraph of G which is a forest, i.e., contains no cycle. A subforest

is not required to be spanning. Let G = (V,E,w) be a weighted undirected graph and let F be a

subforest of G. Extending the notation of the previous section, we define wF (e), for e ∈ E, to be

the weight of the heaviest edge on the unique path in F between e’s endpoints, if the endpoints of e

are in the same tree of F , and wF (e) = +∞, otherwise.

Definition 7.1 (F -heavy and F -light edges) Let G = (V,E,w) be a weighted undirected graph

and let F be a subforest of G. An edge e ∈ E is said to be F -heavy if and only if w(e) > wF (e),

and F -light otherwise. (In particular, if e is in F or connects two different trees of F , then e is

F -light.)

Lemma 7.2 Let G = (V,E,w) be a weighted undirected graph and let F be an arbitrary subforest

of G. Then, there the minimum spanning tree of G does not include any F -heavy edges.

Proof: All F -heavy edges can be colored red using the red rule. 2

The algorithm of Karger, Klein and Tarjan [KKT95] relies on the following sampling lemma.

Lemma 7.3 Let G = (V,E,w) be a weighted undirected graph and let 0 < p < 1. Let G′ =

(V,E ′, w) be a random subgraph of G obtained by choosing every edge, independently, with proba-

bility p. Let F be a minimum spanning forest of G′. Then, the expected number of edges of G that

are F -light is at most n
p
, where n = |V |.

An interesting thing to note in the statement of the lemma is that the bound on the expected

number of F -light edges depends only on n, the number of vertices, and not on m, the number of

edges in the original graph.

Proof: Algorithm SamplingLemmaProof of Figure 3 generates a random subset of edges E ′ ⊆ E to

which each edge is added independently with probability p. It uses Kruskal’s algorithm to construct

a minimum spanning forest F of the subgraph G′ = (V,E ′). In the process it also constructs the

set L ⊆ E of edges of G = (V,E) that are F -light. Note that algorithm SamplingLemmaProof is

only used in the proof of the Lemma. We are not interested here in efficient implementations of it.

Algorithm SamplingLemmaProof starts by sorting the edges of G in increasing order of weight. It

then simultaneously chooses the subset E ′, constructs the minimum spanning forest of G′ = (V,E ′),

and constructs the set L of F -light edges. Initially, E ′, F and L are empty. As in Kruskal’s algorithm,

the algorithm examines the edges in increasing order of weight. Each edge ei is added to E ′ with

probability p. If ei connects two different trees of F , then ei is an F -light edge and is added to L.

Note that this is true whether or not ei was added to E ′. At the time of its examination, ei connects

two different trees in F . The weight of e is greater than the weight of all edges currently in F . If

the two trees ei is currently connecting would not merge into a single tree in the final minimum
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Function SamplingLemmaProof(G = (V,E,w))

Sort the edges so that w(e1) ≤ w(e2) < · · · < w(em)

E ′, F, L← φ

for i← 1 to m do

With prob. p: E ′ ← E ′ ∪ {ei}
if ei connects two different trees of F then

L← L ∪ {ei}
if ei ∈ E ′ then F ← F ∪ {ei}

Figure 3: Algorithm for generating a random subgraph, its minimum spanning forest F , and the

set of original edges that are F -light. Used in the proof of Lemma 7.3

spanning forest F , then ei would of course be an F -light edge. If these two trees merge as the result

of adding ei to E ′ and hence to F , then ei would be a forest edge, and thus F -light. Finally, if ei
is not added to F but two trees eventually merge, then the edge joining them would be heavier

than ei, thus ei would again be an F -light edge. Also note that if the two endpoints of ei are in

the same tree of F when ei is examined, then ei is F -heavy, as all edges currently in F are lighter

than ei.

As SamplingLemmaProof is randomized, |L| and |F | are random variables. Whenever an edge e

is added to L, it is also added to F with probability p. Thus E[|F |] = pE[|L|]. However, as F

is a spanning forest of G′ = (V,E ′), we get that |F | ≤ n − 1 and clearly E[|F |] ≤ n − 1. Thus

E[|L|] ≤ n−1
p
≤ n

p
, as claimed. 2

For an alternative proof, due to Chan [Cha98], of a version of the sampling lemma in which the

random edge set E ′ contains exactly p|E| edges, see Exercise 9.

We are now ready to describe the algorithm of Karger, Klein and Tarjan [KKT95]. The algorithm,

described in Figure 4 works as follows. If the edge set E of the input graph is empty, then the

minimum spanning forest is also empty. Otherwise, the algorithm starts by performing two steps

of Bor̊uvka algorithm. We assume here that these steps contract the graph and remove isolated

vertices. We let F ′ and F ′′ be the edge sets chosen for inclusion in the minimum spanning forest

during these two steps, and let G′′ be the graph returned. The algorithm now chooses a random

subgraph G1 = (V,E1) of G′′ to which each edge is added, independently, with probability 1/2. A

first recursive call is then made on the random subgraph G1 to find the minimum spanning forest F1

of G1. Next, a linear time algorithm is used to find the set of edges E2 of G′′ which are F1-light.

All other edges may be removed using the cycle rule. Finally a second recursive call is made on the

subgraph G2 = (V,E2) of G′′ to find a minimum spanning forest F2 of G2. It then follows easily

that F ′ ∪ F ′′ ∪ F2 is the minimum spanning forest of the input graph G = (V,E).

Theorem 7.4 Algorithm RandMSF returns a minimum spanning forest of the input graph. Its
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Function RandMSF(G = (V,E,w))

if E = φ then return φ

(G′, F ′)← BoruvkaStep(G)

(G′′, F ′′)← BoruvkaStep(G)

G1 ← RandSubgraph(G′′, 1
2
)

F1 ← RandMSF(G1)

E2 ← LightEdges(G′′, F1)

G2 ← (V [G′′], E2, w)

F2 ← RandMSF(G2)

return F ′ ∪ F ′′ ∪ F2

Figure 4: A randomized linear time algorithm for finding minimum spanning forests.

expected running time is O(m+ n).

Proof: The correctness of the algorithm follows easily from the cut and cycle rules. All edges

of F ′ and F ′′ chosen by the two Bor̊uvka steps can be colored blue by the cut rule and hence belong

to the minimum spanning forest. All F1-heavy edges, removed from G2 before the second recursive

call, can be colored red by the cycle rule and hence do not belong to the minimum spanning forest.

The rest of the proof follows by induction.

It remains to analyze the expected running time of the algorithm. Let G = (V,E) be a (random)

graph. We let m = |E| and n = |V |. As G is random, m and n are random variables. We let

m̄ = E[m] and n̄ = E[n]. Let G1 = (V1, E1) and G2 = (E2, V2) be the two (random) graphs on

which recursive calls are made when RandMSF is applied to G. We let mi = |Ei|, ni = |Vi|, and

m̄i = E[mi], n̄i = E[ni], for i = 1, 2.

As G1 and G2 are both subgraphs of the graph G′′ obtained by performing two Bor̊uvka steps on G,

we get that n1, n2 ≤ n/4, and therefore n̄1, n̄2 ≤ n̄/4. As G1 is obtained by choosing each edge

of G′′, independently, with probability 1/2, we get that m̄1 ≤ m̄/2. Also note that we always have

m1 < m, as some edges were contracted by the two Bor̊uvka steps. Finally by the sampling lemma

(Lemma 7.3) we get that m̄2 ≤ (n̄/4)/(1/2) = n̄/2.

Let T (G) be the running time of the algorithm on a (random) graph G. Then

T (G) = a(m+ n) + T (G1) + T (G2) ,

where a > 1 is a large enough constant so that a(m+ n) covers the linear cost of the two Bor̊uvka

steps and the call LightEdges(G′′, F1). We prove by induction on m and n that if G is a random

graph with at most m edges and at most n edges, then

E[T (G)] ≤ 2a(m̄+ 2n̄) .
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If the two Bor̊uvka steps always find a minimum spanning forest of G, the claim is obvious. This

forms the basis of the induction. Suppose now that the claim holds for all values smaller than m

and n and let G be a (random) graph with at most m edges and n vertices. As the induction

hypothesis can be applies to G1 and G2, we get that,

E[T (G)] = a(m̄+ n̄) + E[T (G1)] + E[T (G2)]

≤ a(m+ n) + 2a(m̄1 + 2n̄1] + 2a(m̄2 + 2n̄2]

≤ a(m+ n) + 2a( m̄
2

+ 2 · n̄
4
) + 2a( n̄

2
+ 2 · n̄

4
)

= 2a(m̄+ 2n̄) .

2

Exercises

Exercise 1 Let G = (V,E,w) be a connected weighted graph. (a) The graph G may have many

minimum spanning trees. Show, however, that all these minimum spanning trees have the same

(multi-)set of edge weights. (b) Show that if all the edge weights in G are distinct, then the minimum

spanning tree is unique.

Exercise 2 Let ALG be an algorithm for computing minimum spanning trees that is guaranteed

to work only if all edges weights in the input graph are distinct. Suppose that the only operation

performed by ALG on edge weights are comparisons. Show how to convert ALG into an algo-

rithm ALG′, with the same asymptotic running time, that works even if some of the edge weights

are equal.

Exercise 3 (c) Show that a minimum spanning tree of G is also a spanning tree of G whose

maximal edge weight is minimal.

Exercise 4 Describe a deterministic linear time algorithm for finding a spanning tree whose

maximal weight is minimal. (Hint: Start by computing the median of the edge weights.)

Exercise 5 Describe a simple implementation of Boruvka’s algorithm that runs in O(n2) time,

and another simple implementation that runs in O(m log n) time. Show next that these two im-

plementations can be combined to yield an implementation whose complexity is O(m log n2

m
) time.

Exercise 6 Show that Prim’s algorithm, which runs in O(m+n log n) time, can be combined with

Boruvka’s algorithm to yield an O(m log log n) algorithm for finding a minimum spanning tree.

Exercise 7 Describe a deterministic linear time algorithm algorithm for finding a minimum span-

ning tree in a planar graph. (Hint: a contraction of a planar graph is planar graph. A planar graph

on n vertices with no parallel edges has at most 3n− 6 edges.)
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Exercise 8 The randomized linear time algorithm of Karger, Klein and Tarjan for finding a

minimum spanning tree uses sampling steps in which each edge of the graph is chosen, independently,

with probability 1/2. What would be the expected running time of the algorithm if this sampling

probability were changed to p, where 0 ≤ p ≤ 1?

Exercise 9 In this exercise we obtain an alternative proof, due to Chan, of the following variant

of the sampling lemma used to obtain the randomized linear MST algorithm:

Let G = (V,E) be a weighted graph with distinct edge weights. Let G′ = (V,R) be a

random subgraph of G containing exactly r edges. Let F be a minimum spanning forest

of G′. Then, the expected number of edges of G that are F -light is at most nm/r.

(a) Show that e ∈ E is F -light if and only if e ∈ MSF(R ∪ {e}), where MSF(R ∪ {e}) is the

minimum spanning forest of the subgraph (V,R ∪ {e}).

(b) Show that if e is a random edge of G and R is a random subset of exactly r edges of G then

P[e ∈ MSF(R ∪ {e})] < n/r. (Hint: note that e is a random element of R ∪ {e}, a random

set of size r or r + 1. How many edges from this set are in MSF(R ∪ {e})?)

(c) Finish of the proof of the lemma.
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