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Abstract. This paper surveys results that establish formal connections
and distinctions between SAT-based invariant inference and exact con-
cept learning with queries, showing that learning techniques and algo-
rithms can clarify foundational questions, illuminate existing algorithms,
and suggest new directions for efficient invariant inference.

1 Introduction

SAT-based invariant inference algorithms such as IC3/PDR [8, 4] and Interpo-
lation [25] have proven to be extremely successful in practice and have attracted
tremendous interest in recent years. However, the essence of their practical suc-
cess and their performance guarantees are far less understood. In a series of
papers [10, 11, 12, 13] we set out to investigate these topics and provide new
insights into the principles and complexity of SAT-based invariant inference.
This paper surveys one of the key avenues pursued in these works, which focuses
on the similarities and discrepancies between SAT-based invariant inference and
exact concept learning from queries for propositional formulas, both as a way to
explain and analyze existing inference algorithms, and as way to develop new
algorithms.

Exact learning with queries [2] is one of the fundamental fields of theoretical
machine learning. There, a learner (an algorithm) needs to learn an unknown
concept, e.g., a formula from some class of formulas, with the help of a teacher
who can answer certain queries about the concept. Typical queries include mem-
bership queries: “is a certain example a member of the desired concept?”, and
equivalence queries: “is a certain candidate the desired concept?”. The theory of
exact concept learning is well developed and provides ample efficient algorithms
for learning different classes of concepts with different kinds of queries.

The goal of SAT-based invariant inference is also to learn a formula—an
inductive invariant. Further, the way an inference algorithm uses a SAT solver to
check inductiveness and bounded reachability w.r.t. the transition relation in the
process of constructing candidate inductive invariants bears strong resemblance
to how a learning algorithm uses the teacher to check equivalence or membership
in concept learning.

The first step towards understanding invariant inference from the perspective
of learning is to distill this connection and study it in a rigorous way that enables
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a transfer of ideas between the fields. To this end, we introduce a model of invari-
ant inference with queries [10]. In this model, the transition relation of the system
is only known to an oracle (implemented by a SAT solver), and an inference al-
gorithm can only “query” it by posing queries to the oracle. Through a sequence
of queries, the algorithm should gain enough information about the transition
relation to be able to find an appropriate invariant. We consider queries that are
common in existing invariant inference algorithms: inductiveness queries, where
the solver is given a candidate invariant α and checks if it is inductive, and their
generalization into Hoare queries, where the solver is given a precondition for-
mula α, a postcondition formula β and a bound k, and checks if (some state in)
β is reachable from (some state in) α in at most k steps (inductiveness queries
correspond to Hoare queries with α = β and k = 1). Hoare queries naturally
capture how many invariant inference algorithms use a SAT solver, including
major versions of PDR and Interpolation, and so results about the Hoare-query
model apply to these algorithms.

A previous learning-based model for invariant inference, ICE learning [15],
corresponds to algorithms that use inductiveness queries only. In practice, many
algorithms (that historically precede the ICE learning model) use more general
Hoare queries to facilitate an incremental construction of invariants in complex
syntactic forms. For example, PDR [4, 8] incrementally learns clauses in differ-
ent frames via relative inductiveness checks, and Interpolation learns at each
iteration a term of the invariant from an interpolant [25]. We show that this is
in fact a significant difference: the Hoare-query model is strictly stronger than
inference based solely on presenting whole candidate inductive invariants as in
the inductiveness-query model. To this end, in [10], we identify a class of systems
where a Hoare query algorithm, which is essentially a simplified version of PDR
(and a dual version of Interpolation), can efficiently infer invariants, whereas ev-
ery inference algorithm in the inductiveness query model requires an exponential
number of queries in the worst case. This confirms the intuition from [39] that
PDR cannot be implemented within the ICE model.

Having laid the foundations, we set out to compare invariant inference with
queries to exact concept learning. We prove that neither membership queries
nor equivalence queries to an unknown invariant can be implemented by Hoare
queries in general [10]. In particular, even though inductiveness queries can de-
termine if a formula is an inductive invariant, they are still unable to simulate
equivalence queries since they can only return a counterexample to induction—a
pair of states such that if the first state is part of the invariant then so should be
the second. The non-implementability result implies that neither inductiveness
nor Hoare queries are sufficient for identifying a (positive or negative) exam-
ple that definitively differentiates the formula from an inductive invariant. This
provides a formal justification to the introduction of implication examples in
the ICE model [15] for learning from examples, as an addition to positive and
negative examples.

The inability to implement exact learning queries is unfortunate, as it pre-
vents porting the rich literature of exact learning algorithms and theory to invari-
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ant inference. However, we identify a condition, called the fence condition [11],
that rectifies the situation and makes it possible to simulate certain kinds of
exact learning queries in the Hoare-query model. The fence condition requires
that the states in the boundary of the invariant—states outside of the invariant
with a Hamming distance of 1 from states inside the invariant—can reach a bad
state in a bounded number of steps. We show in [11] that when the membership
and equivalence queries performed by an exact learning algorithm satisfy certain
restrictions, it is possible to translate the learning algorithm into an invariant
inference algorithm in the Hoare-query model that is always sound (i.e., never
returns an incorrect inductive invariant), and enjoys the same complexity if the
fence condition holds.

These translations are not just theoretical. In [11] we show that a model-
based version due to Chockler et al. and Bjørner et al. [7, 3] of McMillan’s
Interpolation algorithm [25] can be obtained by such a translation from an exact
learning algorithm for learning DNF formulas [1], which is efficient for monotone
formulas [1, 2]. Not only is it fascinating that an inference algorithm turns out
to be an incarnation of an earlier algorithm from a different discipline, but
the translation also gives rise to a new efficiency result for the interpolation-
based algorithm for monotone invariants when the fence condition holds. To the
best of our knowledge this is the first result of its kind. The translation is also
applicable to an exact learning algorithm for almost-monotone invariants (and
its complexity) [5], which leads to the introduction of a new invariant inference
algorithm with provable polynomial complexity guarantees for almost-monotone
invariants when the fence condition holds.

The aforementioned simulation of exact learning algorithms is only possi-
ble when the queries are restricted in a certain way. Some algorithms, such as
Bshouty’s algorithm [5] for learning CDNF formulas—formulas that have a short
CNF representation as well as a short DNF representation—do not meet these
restrictions. Nonetheless, we present in [11] another translation that is applica-
ble to any exact learning algorithm from membership and equivalence queries,
and maintains the complexity of the algorithm if a stronger, two-sided fence
condition holds.

The question whether it is possible to simulate Bshouty’s CDNF algorithm
under a (one-sided) fence condition remains open. However, inspired by the
CDNF algorithm, and utilizing insights about properties of the boundary of an
invariant, in [13], we develop a novel invariant inference algorithm from Hoare
queries that is efficient for CDNF invariants under the assumption of a (one-
sided) fence condition. Interestingly, this algorithm cannot be viewed as a con-
cept learning algorithm, hinting that invariant inference can not only benefit
from exact learning, but can also exceed it.

Not included in this survey is our investigation of PDR in [12] using the
monotone theory [5] developed for concept learning. This work does not investi-
gate PDR as a concept learning algorithm, but relates it to key principles used
in learning monotone and almost-monotone invariants.
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Outline. The rest of the paper is organized as follows. After a brief background in
§2, we define the model of invariant inference from queries and show an exponen-
tial gap between inductiveness queries and Hoare queries in §3 (based on [10]).
We contrast invariant inference with exact concept learning from queries in §4
(based on [10]), and present cases where the gap can be bridged through the
fence condition in §5 (based on [11, 13]). We conclude in §6.

2 Preliminaries

Transition systems. We consider transition systems defined using proposi-
tional logic. Given a propositional vocabulary Σ, a state is a valuation to Σ.
We denote by F(Σ) the set of well-formed formulas over Σ. A transition sys-
tem is a triple TS = (Init, δ,Bad) such that Init,Bad ∈ F(Σ) define the initial
states and the bad states, respectively, and δ ∈ F(Σ ⊎Σ′) defines the transition
relation, where Σ′ = {x′ | x ∈ Σ} is a copy of the vocabulary used to describe
the post-state of a transition. Given a φ ∈ F(Σ), we denote by φ′ the formula
obtained from φ by replacing each variable with its counterpart in Σ′.

Safety and inductive invariants. A transition system TS is safe if all the
states that are reachable from the initial states via steps of δ satisfy ¬Bad.
An inductive invariant for TS is a formula I ∈ F(Σ) such that (i) Init =⇒ I,
(ii) I∧δ =⇒ I ′, and (iii) I =⇒ ¬Bad (where =⇒ denotes validity of implication).
A transition system is safe if and only if it has an inductive invariant. When I
is not inductive, a counterexample to induction (cti) is a pair of states σ, σ′ such
that σ, σ′ |= I ∧ δ ∧ ¬I ′ (where the valuation to Σ′ is taken from σ′).

Notation. We use formulas and the sets of states that they represent inter-
changeably. For a state σ, we denote by cube(σ) the conjunction of all literals
(variables or their negations) that hold in σ.

3 Invariant Inference with Queries

An investigation of SAT-based invariant inference and its relation to concept
learning was initiated in [10], by identifying the common SAT queries carried out
by existing algorithms, and introducing corresponding query models. A query-
based approach allows to compare different invariant inference algorithms both
to each other and to concept-learning algorithms that use queries.

In this section we define the invariant inference problem, the basic notions
of queries and query-based inference algorithms, and the query models consid-
ered in this survey: Inductiveness and Hoare, which capture existing SAT-based
invariant inference algorithms.

Invariant inference can be formulated as follows.

Definition 1 (Inductive Invariant Inference from Class of Invariants).
For a class of transition systems P and a class of invariants L, inductive invari-
ant inference is the problem: Given a transition system TS ∈ P over Σ, find an
inductive invariant I ∈ L for TS or determine that none exists.
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When L is omitted, we mean that, for every Σ, it includes all formulas in F(Σ).

3.1 Inference with Queries

In the setting of invariant inference with queries, an algorithm accesses the tran-
sition relation through queries—corresponding to SAT queries performed by ex-
isting algorithms—but cannot read the transition relation directly. This black-box
model reflects the way typical SAT-based invariant inference algorithms use the
transition relation only in their SAT queries, as opposed to white-box algorithms
that analyze the code directly. A black-box model of inference algorithms facili-
tates an analysis of the information of the transition relation the algorithm ac-
quires. The advantage is that such an information-based analysis sidesteps open
computational complexity questions, and therefore results in unconditional lower
bounds on the complexity of SAT-based algorithms captured by the model.

Queries of the transition relation are modeled in the following way. A query
oracle Q is an oracle that accepts a transition relation δ, as well as additional
inputs, and returns some output. The additional inputs and the output, together
also called the interface of the oracle, depend on the query oracle under con-
sideration. A family of query oracles is a set of query oracles with the same
interface.

Definition 2 (Inference algorithm in the query model). An inference
algorithm from queries, denoted AQ(Init,Bad, [δ]), is an algorithm defined w.r.t.
a query oracle Q that solves the invariant inference problem for (Init, δ,Bad),
given:

– access to the query oracle Q,
– the set of initial states (Init) and bad states (Bad);
– the transition relation δ, encapsulated—hence the notation [δ]—meaning that

the algorithm cannot access δ (not even read it) except for extracting its
vocabulary; δ can only be passed as an argument to the query oracle Q.

In the sequel, we consider two different families of query oracles: inductive-
ness and Hoare, representing different ways of obtaining information about the
transition relation.

Time and Query Complexity. Much like a SAT solver, the query oracles
solve NP-complete problems. When analyzing the complexity we consider each
query as a single step, and count the number of queries and also the time of
other steps the algorithm performs. (In lower bounds, we often only report on the
query complexity, which in itself provides a lower bound on the time complexity.)
We analyze the complexity in a worst-case model w.r.t. the possible transition
systems in the class of interest as well as w.r.t. the possible query oracles in the
family (the worst-case analysis is motivated by the property that in SAT-based
algorithms, the oracle is implemented by a SAT solver, which the algorithm does
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not control). For a class of transition systems P, the (time or query) complexity
of A w.r.t. a query oracle family Q is defined as

sup
Q∈Q

sup
(Init,δ,Bad)∈P,

|Σ|=n

Φ(AQ(Init, [δ],Bad))

where Φ(AQ(Init, [δ],Bad)) measures the complexity (either number of steps or
number of queries) of A given oracle Q ∈ Q and input (Init, δ,Bad) ∈ P. (These
numbers might be infinite.)

3.2 The Inductiveness-Query Model

The first query model we consider only allows an algorithm to check inductive-
ness of a candidate invariant:

Definition 3 (Inductiveness-Query Model). An inductiveness-query ora-
cle is a query oracle I such that for every δ and α ∈ F(Σ) satisfying Init =⇒ α
and α =⇒ ¬Bad,

– I(δ, α) = true if α ∧ δ =⇒ α′, and
– I(δ, α) = (σ, σ′) such that (σ, σ′) |= α ∧ δ ∧ ¬α′ otherwise.

An algorithm in the inductiveness-query model, also called an inductiveness-
query algorithm, is an inference from queries algorithm expecting any inductive-
ness query oracle.

Inductiveness-query oracles form a family of oracles since different oracles
can choose different (σ, σ′) for each δ, α.

ICE learning and inductiveness-queries The inductiveness-query model is closely
related to ICE learning [15], except here the learner is provided with full infor-
mation on Init,Bad instead of positive and negative examples (and the algo-
rithm refrains from querying on candidates that do not include Init or do not
exclude Bad). This model captures several interesting algorithms, including in-
clude Houdini [14] and symbolic abstraction [30, 35], as well as designated al-
gorithms [15, 16]. Our complexity definition in the inductiveness-query model
being the worst-case among all possible oracle responses is in line with the anal-
ysis of strong convergence in Garg et al. [15]. Hence, lower bounds on the query
complexity in the inductiveness query model imply lower bounds for the strong
convergence of ICE learning.

3.3 The Hoare-Query Model

The Hoare-query model captures SAT-based invariant inference algorithms query-
ing the reachability of one set of states from a possibly different set of states
through a sequence of at most k-steps of the transition relation, for a fixed k.
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Definition 4 (Hoare-Query Model). A Hoare-query oracle is a query oracle
H such that for every δ, α, β ∈ F(Σ), and k,

– H(k)(δ, α, β) = true if α(Σ0)∧δ(Σ0, Σ1)∧. . .∧δ(Σk−1, Σk) =⇒
∧k

i=1 β(Σ
i),

where Σ0, . . . , Σk are k + 1 distinct copies of the vocabulary, and
– H(k)(δ, α, β) = (σ0, . . . , σk) such that σ0, . . . , σk |= α(Σ0)∧ δ(Σ0, Σ1)∧ . . .∧
δ(Σk−1, Σk) ∧

∨k
i=1 ¬β(Σk), otherwise.

An algorithm in the Hoare-query model, also called a Hoare-query algorithm,
is an inference from queries algorithm expecting any Hoare-query oracle, where
k is bounded by a polynomial in n in all queries.

Hoare-query oracles form a family of oracles since different oracles can choose
different counterexample traces (σ0, . . . , σk) for every δ, α, β, k.

Example: PDR as a Hoare-query algorithm The Hoare-query model captures the
prominent PDR algorithm, facilitating its theoretical analysis. In general, PDR
maintains a sequence of frames F0, F1, . . . such that F0 = Init, Fi =⇒ Fi+1,
Fi∧δ =⇒ F ′i+1 and Fi =⇒ ¬Bad (for every i). These properties ensure that if at
some point Fi+1 =⇒ Fi then Fi is an inductive invariant. To update the frames,
PDR accesses the transition relation via checks of unreachability in one step and
counterexamples to those checks. These operations are captured in the Hoare
query model by checking H(1)(δ, F, α) or H(1)(δ, F ∧ α, α). This is illustrated
using Alg. 1 which roughly corresponds to PDR with just one frame. The only
accesses to δ are in lines 5, 6 and 9, which are all done through the Hoare-query
oracle, showing that Alg. 1 is a Hoare-query algorithm. The (basic) full PDR can
similarly be modeled as a Hoare-query algorithm [10]. Furthermore, the Hoare-
query model is general enough to express a broad range of PDR variants that
differ in the way they use such checks but still access the transition relation only
through such queries.1

Example: Interpolation-based inference as a Hoare-query algorithm Another op-
eration supported by SAT solvers is interpolation. Interpolation has been intro-
duced to invariant inference by McMillan [25], and extended in many works
since [e.g. 37, 26, 22, 18, 38]. Interpolation algorithms infer invariants from
facts obtained from bounded unreachability of the bad states, checked by Hoare
queries of the form H(k)(δ, F,¬Bad). In McMillan’s original paper these facts are
interpolants extracted from a resolution proof computed by the solver. As such,
to account for McMillan’s original interpolation-based inference algorithm [25],
the oracle also needs to return an interpolant when the Hoare query checking un-
reachability of Bad returns true. This model was investigated in [10]. Our focus
here is on model-based interpolation [7, 3], as displayed in Alg. 2, for which such
an extension is not necessary—model-based interpolation computes interpolants

1 A notable exception is ternary simulation [8], which is not a SAT-based operation.
However, the query model can be extended to support it while maintaining our
results.
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as part of the inference procedure (from bounded unreachability and counterex-
amples), rather than inside the solver (from the proof of bounded unreachability
itself). Alg. 2 is a Hoare-query algorithm: the only accesses to δ are in lines 3, 4
and 9, and all invoke the Hoare-query oracle.

3.4 Hoare-Queries vs. Inductiveness-Queries

Inductiveness queries are specific instances of Hoare queries, where the precondi-
tion and postcondition are the same, and reachability is examined along a single
step of the transition relation (k = 1). Therefore, inductiveness-query algorithms
can be simulated by Hoare-query algorithms. This raises the question whether
the seemingly more general Hoare queries are indeed so. In this section we an-
swer this question affirmatively and show that the Hoare query model (Def. 4) is
strictly stronger than the inductiveness query model (Def. 3), even when k = 1.
To this end we show that there exists a class of transition systems for which a
simple Hoare-query algorithm can infer invariants in polynomial time, but every
inductiveness-query algorithm requires an exponential number of queries.

The exponential gap between the Hoare-query model and the inductiveness
query model is summarized by the following theorem:

Theorem 1 ([10]). There exists a class of transition systems ME for which

– invariant inference has polynomial time complexity in the Hoare-query model,
but

– every inference algorithm in the inductiveness-query model requires an ex-
ponential query complexity.

The class ME consists of maximal systems for monotone CNF invariants to-
gether with certain unsafe systems. 2 We refer the reader to [10] for the precise
definition of ME and to the proof of the lower bound in the inductiveness-query
model. Here we only highlight two properties of the safe systems in ME that
facilitate efficient inference in the Hoare-query model: maximality of the system,
defined below, and existence of a polynomial monotone invariant. Beyond estab-
lishing the upper bound in the Hoare-query model, these properties also spur
the research on efficient inference discussed in subsequent sections.

Definition 5 (Monotone Invariants). We denote by Mon-CNFp(n) the class
of CNF formulas where variables appear only positively and where, for a vocab-
ulary Σ with n = |Σ|, the number of clauses in formulas over Σ is bounded by
p(n), for a fixed polynomial p(·).

Definition 6 (Maximal System). Let Init,Bad ̸≡ false and let φ be a formula
such that Init =⇒ φ and φ =⇒ ¬Bad. The maximal transition system for φ is
(Init, δMφ ,Bad) where δMφ = φ→ φ′.

2 In [10], the invariants are antimonotone rather than monotone; the algorithm estab-
lishing the upper bound is efficient also for monotone invariants, and the proof of
the lower bound can also be adapted to monotone invariants.
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A maximal transition system is illustrated as follows:

Note that δMφ goes from any state satisfying φ to any state satisfying φ, and from

any state satisfying ¬φ to all states, good or bad. δMφ is maximal in the sense
that it allows all transitions that do not violate φ being an inductive invariant.

In ME we consider maximal systems for every formula in Mon-CNFp(n),
together with an unsafe transition system whose transition relation is true for
each vocabulary. In particular, this means that every safe transition system in
ME has an inductive invariant in Mon-CNFp(n) (and others have no inductive
invariant). Therefore, solving invariant inference for ME without restricting the
class of invariants coincides with restricting it to L = Mon-CNFp(n); this is
important in §4.1 when comparing the complexity of invariant inference to exact
concept learning.

Upper bound for Hoare-query algorithms for maximal systems w.r.t.
monotone invariants. The upper bound is obtained by a simple algorithm,
called PDR-1, that can find inductive invariants for safe systems in ME with a
polynomial number of Hoare queries. PDR-1, depicted in Alg. 1, is a backward-
reachability algorithm, operating by repeatedly checking for the existence of a
counterexample to induction, and obtaining one when it exists. The invariant
is then strengthened by conjoining the candidate invariant with the negation
of a subset of the cube of the pre-state: starting with cube(σ), which is a con-
junction of literals that holds only on σ, a subset of the literals leaves a smaller
conjunction, which represents a larger set of states, thereby “generalizing” σ.
Generalization is performed by dropping a literal from the cube whenever the
remaining conjunction does not hold for any state reachable in at most one step
from Init. The result is a minimal conjunction whose negation does not exclude
any state reachable in at most one step. This might exclude reachable states
in general transition systems, but not in maximal systems, since maximality
ensures that their diameter is one.

Algorithm 1 PDR-1 in the Hoare-query model

1: procedure PDR-1(Init, [δ], Bad)
2: I ← ¬Bad
3: if H(1)(δ, Init,¬Bad) ̸= true then
4: unsafe
5: while H(1)(δ, I, I) ̸= true do // I not inductive

6: (σ, σ′)← H(1)(δ, I, I) // counterexample to induction of I
7: d← cube(σ)
8: for l ∈ cube(σ) do
9: t← d \ {l}
10: if Init =⇒ ¬t and H(1)(δ, Init,¬t) then // Init =⇒ ¬t ∧ Init ∧ δ =⇒ ¬t′
11: d← t
12: I ← I ∧ ¬d
13: return I
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Maximality therefore allows to determine if a state needs to be part of the
invariant by a simple Hoare-query, examining reachability in 1-step, and ensures
that generalization returns a prime consequence of the invariant (a clause implied
by the invariant which is not strictly weaker than any other clause implied by the
invariant). Efficiency of the algorithm results from the monotonicity of the CNF
invariants, which lets PDR-1 efficiently reconstruct them as the conjunction of
their prime consequences, via a theorem that goes back to Quine [29].

However, our lower bound for the inductinvess-query model for the same
class of transition systems and invariants shows that this incremental process
inherently relies on rich Hoare queries.

3.5 PDR and Interpolation-Based Inference Cannot Be
Implemented with Inductiveness Queries

PDR-1, the Hoare-query algorithm we use to establish the exponential gap, is es-
sentially PDR with a single frame3. Hence, building on the proof of Thm. 1, which
shows that no inductiveness-query algorithm can simulate PDR-1 on the class
ME , we conclude that PDR cannot be efficiently simulated in the inductiveness-
query model:

Theorem 2. There is no inductiveness-query algorithm that solves invariant
inference with a number of inductiveness queries that has at most polynomial
overhead on the number of Hoare queries performed by PDR.

A similar result applies to interpolation-based inference: the exponential
gap between the inductiveness and Hoare query models can also be estab-
lished for maximal systems for Mon-DNFp(n) invariants (defined similarly to
Mon-CNFp(n), as the class of DNF formulas where variables appear only pos-
itively and where the number of terms is bounded by p(n)), in which case
the upper bound is obtained by an algorithm dual to PDR-1, the model-based
interpolation-based algorithm displayed in Alg. 2 with a reachability bound of
k = 1. This shows that Hoare-queries are inherent to both PDR and interpolation-
based inference in the sense that neither can be implemented with inductiveness
queries only, confirming the intuition from [39] regarding PDR. (Profound dif-
ferences between PDR and interpolation manifest when PDR uses more than
one frame and interpolation uses k > 1, a topic we explored in [12].)

4 Invariant Learning & Concept Learning with Queries

Query-based models of invariant inference highlight its similarity to exact con-
cept learning with queries. What are the connections and differences between

3 To be precise, in PDR, counterexamples are states that reach a bad state, whereas
PDR-1 uses counterexamples to induction, but these coincide in maximal systems;
additionally, PDR may use an additional frame to discover the counterexamples and
one more to detect convergence.
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concept-learning formulas in L and learning invariants in L? Can concept learn-
ing algorithms be translated to inference algorithms? These questions have spurred
much research [e.g. 15, 27, 9, 20, 16, 33, 34, 32, 31, 23, 21]. In this section we
study these questions from the perspective of our aforementioned results.

In exact concept learning [2], an algorithm’s task is to identify an unknown
formula4 ψ using queries it poses to a teacher. The most studied queries are:

– Membership: The algorithm chooses a state σ, and the teacher answers
whether σ |= ψ; and

– Equivalence: The algorithm chooses a candidate θ, and the teacher returns
true if θ ≡ ψ or a differentiating counterexample otherwise: a σ s.t. σ ̸|=
θ, σ |= ψ or σ |= θ, σ ̸|= ψ.

In this section, we compare invariant inference to exact concept learning and
show: (1) that classical queries in exact concept learning cannot be efficiently
implemented as queries in order to find an unknown inductive invariant, and
(2) that ICE-learning is provably harder than classical learning: namely, that,
as advocated by Garg et al. [15], learning from counterexamples to induction is
inherently harder than learning from examples labeled positive or negative.

4.1 Complexity Comparison

This section compares the complexity of inferring formulas to concept-learning
the same class of formulas.

Thm. 1 effectively studies the complexity of inferring L = Mon-CNFp(n) in-
variants using Hoare/inductiveness queries for maximal systems. The next the-
orem studies the complexity for general systems:

Theorem 3. Every Hoare-query inference algorithm solving invariant inference
for the class of all propositional transition systems and the class of invariants
L = Mon-CNFp(n) has query complexity of 2Ω(n), where n = |Σ|.

We emphasize that the lower bound considers inference of short, polynomial,
invariants, which ensures that the exponential complexity is not an artifact of
the length of the invariant, but, rather, of the need to infer it. We also point
out that in the more standard setting, when the algorithm is not restricted to
access the transition relation only through Hoare queries, the computational
complexity of inferring invariants of polynomial length is ΣP

2 -complete (NP-
complete with access to a SAT solver as oracle), as shown in [10] (strengthening
a similar hardness result by Lahiri and Qadeer for inferring invariants over a
template [24]).

Table 1 displays these results for invariant inference with a query oracle, and
compares them with known complexity results for exact concept learning. For
the sake of the comparison, the table maps inductiveness queries to equivalence

4 In general, a concept is a set of elements; here we focus on logical concepts.
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Table 1: Concept vs. invariant learning: complexity of learning Mon-CNFp(n)
Invariant Inference Concept Learning

Maximal Systems General Systems

Inductiveness
Exponential
(Thm. 1)

Exponential
(Thm. 3)

Equivalence
Subexponential1 / Polynomial2

[17, 2]

Hoare
Polynomial
(Thm. 1)

Exponential
(Thm. 3)

Equivalence+
Membership

Polynomial
[2]

1 proper learning
2 with exponentially long candidates

queries (as these are similar at first sight) and maps the more powerful set-
ting of Hoare queries to the more powerful setting of equivalence together with
membership queries.

The comparison in the table demonstrates that invariant inference in general
systems is harder than exact learning. The implications of the complexity gaps
are elaborated in §4.2. The complexity gap is eliminated when considering only
maximal systems, which is the source of the upper bound in Thm. 1. However,
that is true only for the Hoare-query model, and gaps remain when considering
only inductiveness queries; this is elaborated in §4.3.

4.2 Invariant Learning Cannot Be Reduced to Concept Learning

This section builds on the above complexity comparison to check which concept
learning queries can be simulated and used in invariant inference.

Table 2: Concept vs. invariant learning: implementability of concept learning queries
Maximal Systems General Systems

Inductiveness Hoare Inductiveness Hoare

Equivalence ✗ ✓ ✗ ✗

Membership ✗ ✓ ✗ ✗

Table 2 summarizes our results for the possibility and impossibility of sim-
ulating concept learning algorithms in invariant learning with queries. This ta-
ble depicts implementability (✓) or unimplementability (✗) of membership and
equivalence queries used in concept learning through inductiveness and Hoare
queries used in learning invariants for maximal systems and for general systems.

Formally, the implementability of a (concept learning) query in a class of tran-
sition systems P means that for every class of invariants L there is an inference
algorithm that, given a transition system TS ∈ P that admits some (unknown)
invariant I ∈ L, correctly answers the query w.r.t. I with a polynomial number
of queries in the respective model.

The proofs of impossibilities are based on the differences in complexity from Ta-
ble 1 for L = Mon-CNFp(n). The only possibility result in the table is of simulat-
ing equivalence and membership queries using Hoare queries over maximal sys-
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tems (for every L); the idea is that a Hoare queryH(1)(δMφ , Init,¬cube(σ))
?

̸= true
implements a membership query on σ, thanks to fact that the inductive in-
variant is exactly the set of states reachable in one step. Such a membership
query (together with an inductiveness query) can also be used to implement an
equivalence query, specifically to convert a counterexample to induction into a
differentiating counterexample as required when answering an equivalence query
negatively: given the counterexample to induction (σ, σ′) = I(δMφ , θ), use a mem-
bership query to determine if σ ̸|= I or σ′ |= I, and return σ or σ′ accordingly.
We pick up on these ideas for implementing membership queries in §5, with more
sophisticated translations that are related to more realistic algorithms.

4.3 Counterexamples in Invariant Learning Are Inherently
Ambiguous

As we have seen, equivalence queries cannot be implemented using inductiveness
queries, even in the simple case of maximal systems. The reason is that when
the query fails—returns “not inductive” or “not equivalent”—then the coun-
terexample provided to the inference algorithm is inherently weaker than the
counterexample for the learning algorithm. In inference, the result is a coun-
terexample to induction (an implication example, in the terminology of Garg et
al. [15]), which is a pair of examples (σ, σ′), where σ is a negative example or
σ′ is a positive example, but there is no indication in the query itself of which
is the case. In contrast, in classical equivalence queries, the counterexample is
a single state σ, and it is in effect labelled—by checking whether the proposed
candidate is satisfied by σ or not the learner can tell whether σ is a positive or
negative example.

This discrepancy can be reformulated in the context of concept learning, as
the difference between classical learning from equivalence queries (using labeled
examples) and ICE learning [15], in which (essentially) the result of an equiv-
alence query is an implication example. We have thus obtained a complexity
result separating the two:

Corollary 1. There exists a class of formulas L that can be learned using a
subexponential number of equivalence queries, but requires an exponential number
of ICE-equivalence queries.

This result quantitatively corroborates the difference between counterexamples
to induction and examples labeled positive or negative, a distinction advocated
by Garg et al. [15].

5 From Exact Learning to Invariant Inference via the
Fence Condition

We have seen that Hoare-queries cannot, in general, simulate equivalence and
membership queries used in exact concept learning, but can do so for maximal
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Fig. 1: The (outer) boundary of an in-
variant I = x∧ y ∧ z, denoting the sin-
gleton set containing the far-top-right
vertex of the 3-dimensional Boolean
hypercube, {(1, 1, 1)}. Its neighbors
are I’s boundary (depicted in red):
{(1, 1, 0), (1, 0, 1), (0, 1, 1)}. The rest of
the vertices are in ¬I but not in the
boundary (depicted in gray). (Illustra-
tion inspired by [28, Fig. 2.1].)

Fig. 2: An illustration of the fence con-
dition. The boundary ∂−(I) of the in-
variant (the states in ¬I nearest to I, in
red) are backwards k-reachable (reach
a bad state in k steps, for example by
the transitions depicted by the arrows),
but not all states in ¬I are backwards
k-reachable (or even backwards reach-
able at all, in the dotted area).

systems. This is somewhat disheartening; it would have been much nicer to ap-
ply an algorithm for learning a class of formulas L to the problem of inferring
invariants from L. In this section we present the fence condition, which was in-
troduced in [11]. This condition relaxes the maximality property, and we show
that it facilitates simulation of certain exact concept learning algorithms. In
particular, we obtain the model-based interpolation-based algorithm of [7, 3]—
as well as a new algorithm extending it—by a translation from exact learning
algorithms that satisfy certain restrictions. The translation also lets us import
complexity upper bounds for the obtained inference algorithms from the learn-
ing algorithms, revealing new results on the efficiency of inference algorithms
provided that the fence condition holds. We further show that when a two-sided
fence condition holds, every algorithm for exact learning from equivalence and
membership queries can be transformed to a Hoare-query inference algorithm.

5.1 The Boundary of Inductive Invariants

The fence condition relates reachability in the transition system and the geo-
metric notion of the boundary of the invariant.

Definition 7 (Boundary). Let I be a set of states. Then the (outer) boundary
of I, denoted ∂−(I), is the set of states σ− ̸|= I s.t. there is a state σ+ that
differs from σ− in exactly one variable, and σ+ |= I.

Definition 8 (Backwards k-Fenced). For a transition system (Init, δ,Bad),
an inductive invariant I is backwards k-fenced for k ∈ N if every state in ∂−(I)
can reach Bad in at most k steps.
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More explicitly, an invariant I is backwards k-fenced if every state in ¬I that
has a Hamming neighbor in I (these are the states in the outer boundary of I)
can reach Bad in at most k steps. For an illustration of the boundary and the
fence condition see Figs. 1 and 2.

Example 1. In a maximal system, the (unique) inductive invariant I is backwards
1-fenced, since every state that is not part of I, in particular a state in the outer
boundary, has a transition to every other state, including Bad.

In every system, this condition holds for at least one inductive invariant and
for some finite k: the weakest inductive invariant, which allows all states but
those that can reach Bad in any number of steps, satisfies the condition with the
co-diameter, the number of steps that takes for all states that can reach Bad to
do so.

Lemma 1. Every safe transition system TS = (Init, δ,Bad) admits an inductive
invariant gfp = {σ | ∀σ′ ∈ Bad. (σ, σ′) ̸∈ δ∗} that is backwards k-fenced for
k that is the co-diameter: the minimal k such that for every state σ:

(
∃σ′ ∈

Bad. (σ, σ′) ∈ δ∗
)
=⇒

(
∃σ′′ ∈ Bad. (σ, σ′′) ∈ δ≤k

)
.

While this lemma shows the existence of a backwards-fenced invariant through
the gfp and co-diameter, the k-fence condition is more liberal: it can hold also
for an invariant when not every state in ¬I reaches Bad in k steps (or at all),
and only the states in ∂−(I) do. An example demonstrating this follows.

Example 2. Consider an example of a (doubly)-linked list traversal, using i to
traverse the list backwards, modeled via predicate abstraction following Itzhaky
et al. [19]. The list starts at h. Initially, i points to some location that may or may
not be part of the list, and in each step the system goes from i to its predecessor,
until that would reach x. We write s⇝ r to denote that r is reachable from s by
following zero or more links. Consider the initial assumption h ⇝ x, but i ̸⇝ x

(it may be that x ⇝ i, or that i is not at all in the list). The bad states are
those where i = h.

An inductive invariant for this system is h ⇝ x ∧ ¬i ⇝ x. In predicate
abstraction, we may take the predicates ph,x = h ⇝ x, pi,x = i ⇝ x, and write
I = ph,x∧¬pi,x, which is a DNF invariant with one term. Hence ¬I ≡ ¬ph,x∨pi,x.
The outer boundary ∂−(I) consists of the states (1) ph,x = false, pi,x = false
and (2) ph,x = true, pi,x = true. Both states are in fact bad states under the
abstraction: both include a state where i = h, from which x is unreachable (in
(1)) or reachable (in (2)). Thus, I is backwards k-fenced for every k ≥ 0.

In contrast, not all the states in ¬I reach bad states (in particular, I is not
the gfp): the state ph,x = false, pi,x = true abstracts only states where h ̸⇝ i,
and this remains true after going to the predecessor of i. This shows that the
fence condition may hold even though I is not the gfp, and not all states in ¬I
reach bad states (in k steps or at all).



16 Yotam M. Y. Feldman and Sharon Shoham

5.2 Inference From One-Sided Fence and Exact Learning With
Restricted Queries

The challenge in harnessing exact learning algorithms for invariant inference
is the need to also implement the teacher, which is problematic because the
inference algorithm does not know any inductive invariant in advance [15], and,
as we have shown in §4.2, is unable to efficiently implement a classical teacher
that answers equivalence and membership queries, even in the more general
Hoare-query model. In this section we overcome this problem using the fence
condition, provided that the learning algorithm satisfies some conditions.

First, for equivalence queries, as discussed in §4.3, inductiveness queries can
determine if a candidate formula is an inductive invariant. However, when it is
not, the difficulty is the ambiguity of counterexamples to induction (σ, σ′), which
makes it difficult to know which of σ or σ′ should be returned to the learner as
an example that differentiates the candidate from the invariant. We circumvent
this problem by simply considering algorithms that query only on candidates
which are underapproximations of the target I:

Lemma 2 (Implementing positive equivalence queries). Let (Init, δ,Bad)
be a transition system and I an inductive invariant. Given θ such that θ =⇒ I,
it is possible to decide whether θ is an inductive invariant or provide a coun-
terexample σ |= I, σ ̸|= θ, by

– checking whether there is a counterexample σ′ |= Init ∧ ¬θ and returning σ′

if one exists; and
– using an inductiveness query I(δ, θ) to check whether there is a counterex-

ample to induction (σ, σ′) |= θ ∧ δ ∧ ¬θ′, and returning σ′ if one exists.

Otherwise, θ is an inductive invariant.

Note that θ ̸≡ I could be an inductive invariant, which does not amount to an
equivalence query per se, but then the algorithm has already found an inductive
invariant and can stop.

To implement membership queries, we rely on the fence condition. Our main
observation here is that if the fence condition holds for I, then it is possible to
efficiently implement restricted versions of membership queries:

Lemma 3 (Implementing positive-adjacent membership queries). Let
(Init, δ,Bad) be a transition system and I an inductive invariant that is back-
wards k-fenced. Given σ s.t. σ |= I or σ ∈ ∂−(I), it is possible to decide whether
σ |= I by a single Hoare query that checks if H(k)(δ, cube(σ),¬Bad) = true and
answers accordingly.

In fact, under similar restrictions, we can implement subset queries, which gen-
eralize membership queries. In a subset query, the learning algorithm chooses
a formula θ, and the teacher answers whether θ =⇒ I, where I is the target
formula. (A membership query for σ is a subset query with θ = {σ}.)
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Lemma 4 (Implementing positive-adjacent subset queries). Let (Init, δ,Bad)
be a transition system and I an inductive invariant that is backwards k-fenced.
Given θ s.t. θ =⇒ I or θ ∧ ∂−(I) ̸≡ ⊥, it is possible to decide whether θ =⇒ I
by a single Hoare query that checks if H(k)(δ, θ,¬Bad) = true and answers ac-
cordingly.

A learning algorithm that only performs such queries induces a Hoare-query
invariant inference algorithm that simulates it by implementing its queries as
above. If the fence condition holds, all queries are answered correctly by the
simulation, perhaps except for an equivalence query on θ returning true although
θ ̸≡ I, but then we have already found an inductive invariant θ and can stop.
An additional inductiveness check is used in the inference algorithm before an
invariant is returned to ensure that the result is a correct inductive invariant
even when the fence condition does not hold. If the latter inductiveness check
fails, the algorithm returns “failure”.

Corollary 2. Let C be a class of formulas. Let A be an exact concept learn-
ing algorithm that can identify every φ ∈ C in at most s1 equivalence queries
and s2 subset queries (including membership queries). Assume further that when
A performs an equivalence query on θ, always θ =⇒ φ, and when A performs
a subset query on θ, always θ =⇒ φ or θ ∧ ∂−(φ) ̸≡ ⊥. Then there exists a
Hoare-query invariant inference algorithm that is sound (returns only correct
invariants), and, furthermore, can find an inductive invariant for every transi-
tion system that admits an inductive invariant I ∈ C that is backwards k-fenced
using at most s1+1 inductiveness and s2 Hoare queries (with argument k), band
time the same as of A up to a constant factor.

The inference algorithm is sound even when the fence condition does not hold,
although in this case successful and efficient convergence is not guaranteed.

Efficient interpolation-based inference of monotone invariants through
exact learning Alg. 2 presents the interpolation-based invariant inference algo-
rithm due to Chockler et al. and Bjørner et al. [7, 3], which uses a model-based
method for interpolant construction, inspired by IC3/PDR [4, 8], rather than
constructing interpolants from proofs as in McMillan’s original algorithm [25].
Alg. 2 starts with the candidate invariant φ = Init, which is gradually increased
to include more states. In each iteration, the algorithm performs an inductiveness
query (lines 3 and 4) and terminates if an inductive invariant has been found. If
a counterexample to induction (σ, σ′) exists, the algorithm generates a term d
which includes the post-state σ′, and disjoins d to φ to obtain the new candidate
(line 11). To obtain d, the algorithm starts with cube(σ′)—the conjunction that
exactly captures σ′—and drops literals as long as no state in d can reach a bad
state in k steps or less (line 9). These checks are done via Hoare queries. If σ′

itself reaches a bad state in k steps, no invariant weaker than φ exists, and the
algorithm restarts with a larger bound k (line 6).

Interestingly, Alg. 2 is essentially the result of the transformation of Corol-
lary 2 applied to the exact learning algorithm for DNF formulas of Aizenstein
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and Pitt [1] as it appears in Alg. 3 (similar to the algorithm by Angluin [2]),
where EQ denotes an equivalence query and SQ denotes a subset query. The
differences are the additional check in line 6 in Alg. 2, meant to detect failure,
and the initialization of φ to Init instead of false, which can be viewed as an
optimization.

Algorithm 2 Interpolation-based inference
by term minimization

1: procedure MB-ITP(Init, [δ], Bad, k)
2: φ← Init
3: while I(δ, φ) ̸= true do
4: (σ, σ′)← I(δ, I)
5: if H(k)(δ, σ′,¬Bad) ̸= true then
6: restart with larger k

7: d ← cube(σ′)
8: for ℓ in d do
9: if H(k)(δ, d \ {ℓ},¬Bad) = true then
10: d ← d \ {ℓ}
11: φ← φ ∨ d

12: return I

Algorithm 3 Exact concept learn-
ing of DNF formulas [36, 2, 1]

1: procedure Learn-DNF
2: φ← false
3: while EQ (φ) is not ⊥ do
4: σ′ ← EQ (φ)
5:
6:
7: d ← cube(σ′)
8: for ℓ in d do
9: if SQ (d \ {ℓ}) = true then
10: d ← d \ {ℓ}
11: φ← φ ∨ d

12: return φ

The queries performed in Alg. 3 satisfy the conditions of the transformation:
the hypothesis φ is always below the true formula, as required for equivalence
queries; the subset queries are always positive adjacent, because if d is a term
s.t. d =⇒ ψ, and d′ ̸=⇒ ψ where d′ = d \ {ℓ}, then taking a state σ− |= d′ ∧ ¬ψ
and flipping the variable in ℓ results in a state σ+ |= d and hence σ+ |= ψ, hence
σ− |= ∂−(ψ) and σ− |= d′, as required. As such, the transformation also yields
an efficiency result for Alg. 2 which is carried over from the efficiency of Alg. 3
for monotone DNF formulas [1, 2]:

Theorem 4. Let (Init, δ,Bad) be a transition system with |Σ| = n and k ∈ N.
If there is an inductive invariant I ∈ Mon-DNFm that is backwards k-fenced,
then MB-ITP(Init, [δ],Bad, k) converges to an inductive invariant in O(m) in-
ductiveness queries, O(mn) Hoare queries (with argument k), and O(mn) time.

Thm. 4 focuses on efficiency of MB-ITP for monotone invariants under the
fence condition; in [11] we also show that if any k-fenced inductive invariant
I exists (not necessarily monotone), then the check in line 5 never fails, hence
convergence with reachability bound k is guaranteed. Together with Lemma 1
this provides an alternative proof of termination for MB-ITP.

Efficient inference of invariants with a known monotone basis through
exact learning Bshouty [5] investigated exact learning of formulas that are not
monotone. To this end, he introduced themonotone theory. The idea is that a for-
mula φ can be reconstructed as the conjunction of its monotonizations, Mb(φ),
w.r.t. elements b in a set B that forms a monotone basis for φ; a set of states B
is a monotone basis for φ if φ ≡

∧
b∈B Mb(φ) (such a set always exists, and is
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related to CNF representations of φ). Bshouty’s Λ-algorithm can efficiently learn
φ, while using equivalence and membership queries, provided that the monotone
basis is known a-priori, and is amenable to the transformation in Corollary 2,
resulting in a Hoare-query algorithm, Λ-Inference, that can efficiently learn ev-
ery formula for which B = {b1, . . . , bt} is a basis when the k-fenced condition
holds:

Theorem 5. Let (Init, δ,Bad) be a transition system with |Σ| = n, and k ∈ N.
If there exists an inductive invariant I that is backwards k-fenced, I ∈ DNFm,
and B = {b1, . . . , bt} is a monotone basis for I, then Λ-Inference(Init, [δ],Bad, k)
converges to an inductive invariant in O(m · t) inductiveness checks, O(m · t ·n2)
k-BMC checks, and O(m · t · n2) time.

Choosing a Monotone Basis Some important classes of formulas admit a known
basis that the algorithm can use. The class of r-almost-monotone DNF is the
class of DNF formulas with at most r terms which include negative literals.
The set of all states with at most r variables assigned true is a basis for this
class [5]. When r = O(1), the size of this basis is polynomial in n = |Σ|. An-
other interesting class with a known base of size polynomial in n is the class of
(arbitrary) DNF formulas with O(log n) terms, although the construction is less
elementary [5].

Applying Thm. 5 with the known basis for r-almost-monotone DNF yields:

Corollary 3. Let (Init, δ,Bad) be a transition system with |Σ| = n, k ∈ N, and
r = O(1). If there exists an inductive invariant I that is backwards k-fenced, and
I is r-almost-monotone DNF with m terms, then Λ-Inference(Init, [δ],Bad, k)
with an appropriate basis converges to an inductive invariant in poly(m · n)
inductiveness checks, poly(m · n) k-BMC checks, and poly(m · n) time.

Dual inference under the dual fence condition Safety problems enjoy a
duality between the initial states and the bad states: a formula I is an inductive
invariant w.r.t. (Init, δ,Bad) iff the dual formula ¬I is an inductive invariant
w.r.t. the dual transition system (Bad, δ−1, Init). This gives rise to dual algo-
rithms that, given as input (Init, δ,Bad), infer an invariant for the dual problem
and return the dual invariant. Dual algorithms allow us to translate complexity
results from the inference of CNF invariants to the inference of DNF invari-
ants and vice versa. Since our results are conditioned upon the backwards-fence
condition, we need to dualize it as well:

Definition 9 (Forward k-Fenced). I is k-forward fenced if every state in
∂+(I) is reachable from Init in at most k steps, where ∂+(I) is the inner boundary
of I, the set of states σ+ |= I s.t. there is a state σ− ̸|= I that differs from σ+

in exactly one variable.

Using duality, we derive efficiency results under the k-forward fence condition
for antimonotone CNF invariants (from Thm. 4), and for r-almost antimonotone
CNF invariants, which are CNF formulas with at most r clauses that include
positive literals (from Corollary 3).
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5.3 Inference From Two-Sided Fence and Exact Learning

The previous section has provided a translation of exact learning algorithms,
but only those that admit certain requirements on their queries. In this section
we simulate arbitrary exact learning algorithms (going beyond the requirements
in Corollary 2) relying on a two-sided fence condition. An important example of
such an exact learning algorithm is the CDNF algorithm by Bshouty [5]. The
conditions of the transformation in §5.2 do not hold because this algorithm per-
forms equivalence queries that can return either positive or negative examples.
We now show how to implement any membership or equivalence query to the
invariant using the two-sided fence condition.

Lemma 5 (Implementing membership queries). Let (Init, δ,Bad) be a
transition system with |Σ| = n and I an (unknown) inductive invariant that is
backwards k1-fenced and forwards k2-fenced. Then membership queries to I can
be implemented in at most n Hoare queries with reachability bound k1 and n
Hoare queries with reachability bound k2.

5

Given a membership query “σ ∈ I?”, the idea is to choose some known state
σ0 ∈ Init, and gradually walk from σ to σ0, that is, in each step change one
variable in σ to match σ0 and return true if H(k1)(δ, Init,¬cube(σ)) ̸= true,
and false if H(k1)(δ, cube(σ),¬Bad) ̸= true (otherwise continue the walk). The
rational is that if σ ∈ I but it is not reachable from Init in k1 steps, the walk
will eventually hit the inner boundary of I, which is guaranteed to be reachable
in k1 steps—as can be detected using a Hoare query with k = k1—so that the
corresponding Hoare query will return such a counterexample trace; similarly, if
σ ̸∈ I the walk will eventually hit the outer boundary which is guaranteed to
reach Bad in k2 steps and the Hoare query will detect it.

An equivalence query can be implemented by an inductiveness query and a
membership query (as was also noted in §4.2):

Lemma 6 (Implementing equivalence queries). Let (Init, δ,Bad) be a
transition system with |Σ| = n, and I an (unknown) inductive invariant that
is forwards k1-fenced and backwards k2-fenced. Then given θ it is possible to
answer whether θ is an inductive invariant, or provide a counterexample σ such
that σ |= θ, σ ̸|= I or σ ̸|= θ, σ |= I, using an inductiveness query, and at most n
Hoare queries with bound k1 and n Hoare queries with bound k2.

We can use these procedures to implement every exact learning algorithm
from (arbitrary) equivalence and membership queries.

Corollary 4. Let C be a class of formulas. Let A be an exact concept learning
algorithm that can identify every φ ∈ C in at most s1 equivalence queries and
s2 membership queries. Then there exists a sound invariant inference algorithm
that can find an inductive invariant for every transition system that admits an

5 The proof of this also implies that an invariant that is both forwards k1-fenced and
backwards k2-fenced is unique, seeing that the implementation of the membership
query for both is the same.
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inductive invariant I ∈ C that is forwards k1-fenced and backwards k2-fenced
using at most s1 + 1 inductiveness queries, n(s1 + s2) Hoare queries with bound
k1, n(s1 + s2) Hoare queries with bound k2, and time O(n(s1 + s2)tA) where tA
is the worst-case time of A learning I and n = |Σ|.

Next, we demonstrate an application of Corollary 4 to the inference of a
larger class of invariants.

Inference Beyond Almost-Monotone Invariants Earlier, we have shown
that almost-monotone DNF invariants are efficiently inferrable when the back-
wards fence condition holds, and similarly for almost-antimonotone CNF when
the forwards fence condition holds. We now apply Corollary 4 to the CDNF algo-
rithm by Bshouty [5] to show that the class of invariants that can be succinctly
expressed both in DNF and in CNF (not necessarily in an almost-monotone way)
can be efficiently inferred when the fence condition holds in both directions:

Theorem 6. There is an algorithm A that for every input transition system
(Init, δ,Bad) with |Σ| = n and k ∈ N, if the system admits an inductive invariant
I such that I ∈ DNFm1

, I ∈ CNFm2
, and I is both backwards- and forwards- k-

fenced, then A(Init, [δ],Bad, k) converges to an inductive invariant in O(m1 ·m2)
inductiveness queries, O(m1 ·m2 · n3) Hoare queries with bound k, and O(m1 ·
m2 · n3) time.

Such a complexity guarantee is significant, because, put differently, it shows
that an invariant can be learned efficiently in terms of its smallest DNF and CNF
representations (provided that the two-sided fence condition holds). Through an
observation by Bshouty [5], this implies that it is possible to efficiently infer an
invariant that admits a succinct representation as a decision tree: a binary tree
in which every internal node is labeled by a variable and a leaf by true/false, and
σ satisfies the formula if the path defined by starting from the root, turning left
when the σ assigns false to the variable labeling the node and right otherwise,
reaches a leaf true. The size of a decision tree is the number of leaves in the tree.

Corollary 5. There is an algorithm A that for every input transition system
(Init, δ,Bad) with |Σ| = n and k ∈ N, if the system admits an inductive invariant
I that can be expressed as a decision tree of size m, and I is both backwards- and
forwards- k-fenced, then A(Init, [δ],Bad, k) converges to an inductive invariant
in O(m2) inductiveness queries, O(m2 · n3) Hoare queries with bound k, and
O(m2 · n3) time.

Similarly, when an r-almost-unate invariant with O(log n) non-unate variables
is fenced both backwards and forwards, it can be inferred by an adaptation of
an algorithm by Bshouty [6].

Inference Beyond Concept Learning: Efficient Inference of CDNF In-
variants from One-Sided Fence Condition The previous section has arrived
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at an extremely almost-satisfying result: that any invariant can be inferred in
time proportional to the size of its smallest representations in DNF and CNF and
the number of variables. The culprit is that the translation from Bshouty’s CDNF
algorithm is possible only under the two-sided fence condition, which is signifi-
cantly stronger than a one-sided fence condition. In [13] we show that the same
result is also attainable under the one-sided fence condition, where the Hoare-
query algorithm we use cannot be understood as a direct translation of an exact
concept learning algorithm—it builds heavily on Bshouty’s CDNF algorithm,
but modifies it in important ways, while still accessing the transition relation
only through Hoare queries. Specifically, the forwards k-fence condition ensures
that the set S of states reachable in at most k steps satisfies ∂+(I) ⊆ S ⊆ I.
The algorithm relies on this property to construct a formula H that contains
I by sampling and generalizing states from S in a certain way that guarantees
that ∂+(I) ⊆ H =⇒ I ⊆ H. In this way, the algorithm relies on the fact that
∂+(I) ⊆ S (thanks to the fence condition) to ensure that after sampling enough
states from S and using them to increase H, once H(k)(δ, Init, H)=true holds
(i.e., S ⊆ H), then it is also guaranteed that I ⊆ H. This process has no analog
in exact concept learning, because, there, we are not given any set S that is
related to the boundary of the target concept.

6 Conclusion

This paper surveyed results that formally established the relation between SAT-
based invariant inference and exact learning with queries, and utilized it to
illuminate some of the fundamental questions about invariant inference. There
is still much to understand about this topic. In particular, it is interesting to
show separation between Hoare queries that use different lengths of executions
k, which could indicate that bounded model checking in principle provides ad-
ditional power. The boundaries of the ability to translate learning algorithms
to invariant inference under the fence condition could be clarified by showing
that general membership queries are impossible to implement even under the
fence condition, justifying the two-sided condition for a general transformation.
Finally, other translations that build on reachability conditions other than the
fence condition could help explain inference algorithms other than model-based
interpolation, and pave the way for new algorithms that are efficient in practice.
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