Structured GANs — Supplementary

1. Generating Tiles

As a second application for manipulating the struc-
ture of GANs, we present methods for creating tiles
that can be arranged repeatedly in 2D in a variety of
predetermined patterns. Just like symmetry, tiling en-
forces a specific structure on the output. For exam-
ple, in the case of simple tiling, where tiles are being
placed in the same orientation on a grid, the top (left)
part of the tile should merge smoothly with the bot-
tom (right) part.

1.1. Previous Work On Texture Synthesis

Gatys [3] demonstrated how to capture texture
properties from a given image and generate new im-
ages with the same texture properties. The descriptor
is based on a pre-trained network, usually VGG [8]. A
GRAM matrix is extracted from feature maps of cer-
tain layers. The objective compares the descriptors of
the target image to those of the source image. [2, 9]
perform style transfer by combining a content loss
from a feature map of a deep layer of VGG. Later on,
works such as [5, 10, 6, 4, 1] and others, showed how
to train generative networks that are able to simulta-
neously generate images with texture properties that
were already embedded in the train process. Works
like [6, 4, 1] do so as a GAN implementation.

In contrast to previous work, we focus on tiles and
not on the textured image. This allows us to develop
GANS that create tiles for complex tiling patterns.

1.2. An Architecture for Generating Tiles

The idea of enforcing structure by constructing a
suitable architecture, as opposed to modifying just
the loss, extends beyond symmetry to the problem of
tiling. The input to the tiling problem is an image I of
some texture. The goal is to synthesize a patch that:

1. Has texture properties that are indistinguishable
from those of patches from the source image I.

2. Has a periodic structure such that when the patch
is concatenated to itself, there is no texture dis-
continuity in the boundary.

The most basic tiling pattern repeats each tile, as is,
in multiple columns and rows. However, as Fig. 1 il-
lustrates, there are many alternative patterns in which
the patterns might be rotated or placed in more com-
plex patterns.

As in symmetry, we employ a modified version of
the generator G of the DC-GAN method [7] in order
to transform a random vector z into a patch image, in
this case of size 64 x 64. Unlike the symmetry encode
case, in which the vector z encodes whether the out-
put image is symmetric or not, for tiling, we expect all
outputs to maintain the two desired properties and z
is completely random.

Since it is the texture properties of the patch that
we are concerned with, we encode the patch using
the gram matrix extracted from the generated image
as well as from all layers of D, right after the convo-
lution, and before adding the bias, performing batch
normalization and applying ReLU. Specifically,

GRAM]; = (F|,F}),

where Ff denotes the i — th feature map of layer I. A
virtual layer of ones is added in order to capture first
order statistics and the size of the GRAM matrix com-
puted for layer [ is, therefore, (k; + 1)?, where k; is the
number of filters in this layer. All gram matrices are
then normalized by the value kll's.

All GRAM fields from all the layers of D are con-
catenated to one descriptor, which is fed to the fully
connected part of D. At each batch, 64 crops out of I
of size 64 x 64 x 3 are used as the “real” samples and
64 generated samples of the same size are used as the
“fake” sample. The architecture of D for capturing
textures is depicted in Fig. 2.

We propose two different tiling GAN methods. The
first employs cyclic deconvolutions and the second
tiles and crops.

Cyclic deconvolution In order to support horizontal
tiling, for example, it is necessary to have the leftmost
part of the patch similar to the rightmost part. This is
enforced by replacing the deconvolution blocks of G
with cyclic deconvolution blocks, in which the convo-
lutions support extend beyond the edges of the feature
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Figure 1: The four forms of tiling presented in this paper. From left to right: (simple rectangular lattice, real
projective plane topology, spherical topology, hexagonal lattice)

map and warp back to the other end of the map. This
is done for all layers of G. Note, that for complex tiling
patterns, the cyclic deconvolution take more complex
forms (see below).

Tile and randomly crop In this method, it is the dis-
criminator that enforces the tiling property. This is
done by taking the generated image, tiling it in the
plane and cropping a 64 x 64 x 3 patch from the re-
sult. This patch is then fed to D. If there are tiling
artifacts in the crop, the discriminator will then pick
up on these. During backpropagation, G is being aug-
mented in a way that reduces the artifacts and learns
the tiling pattern implicitly. See Fig. 3.

1.3. Tiling experiments

We first present, in Fig. 4, the results obtained for
the simple grid tiling. As can be seen, tiling using tiles
generated by the baseline DC-GAN leads to noticeable
artifacts at the boundaries of the tiles, while either one
of the two methods we propose avoids these artifacts.

We further experimented with less conventional
tiling approaches. The results are shown in Fig. 5. The
proposed methods perform well, except that the cyclic
convolution method is not appropriate for the spheri-
cal topology, since it requires the conversion of a row
to a column and vice versa.

A closer look at the various artifacts can be ob-
served in Fig. 6.

2. MSE Plot for Symmetric GANs

We measure the MSE between each image and the
mirror version of it. The results are shown in Fig. 7.

As can be seen, the proposed methods drop to nearly
0 in the middle image, indicating that those images
are symmetric to themselves. We can see that the MSE
of the other methods is relatively constant and does
not drop to zero. The loss-based method, with the
strong symmetric constraints creates images that are
symmetric throughout the range of z’ values. An even
stronger symmetry loss would lead to an MSE close
to zero along the entire curve, with an image that is
barely recognizable as a face.
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Figure 2: The architecture of D for texture synthesis.
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Figure 3: The tile and random crop method as applied to (a) Vanilla tiling on a grid. (b) tiling the spherical

topology.
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Figure 4: A comparison of the tiling methods. (a) real texture. (b) tiling outputs of DC-GAN. (c) the outcome of
tiling with the cyclic deconvolution method. (d) the outcome of tiling with the tile and crop method.
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Figure 5: Row 1 shows tiling of a real texture. Row 2
shows tiling using the circular convolution method.
Row 3 shows tiling of using random crop method.
Column a shows tiling in a hexagonal pattern. Col-
umn b shows tiling in pattern of real projective plane
topology. Column c shows tiling in pattern of spheri-
cal topology.

Figure 6: a collection of three repeatable artifacts ob-
served during tiling experiments. (a) a noise texture
that appears in some cases of tiling using the random
crop method. (b) hexagonal tiling with the tile and
crop method results in a constant tile, here each tile
has a different z and yet all tiles are the same. (c) a
discontinuity phenomenon typical for cyclic deconvo-
lution combined with spherical topology.
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Figure 7: The MSE difference between a generated image G(z) and the mirrored image of G(zy), where zy is the
vector that is supposed to generate the mirrored image, i.e., for the loss based method and the z’ symmetric GAN,
the first five coordinates of z are the negative of the first five coordinates of z’.



