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Abstract—A simple and efficient pipeline for word spotting
in handwritten documents is proposed. The method allows
for extremely rapid querying, while still maintaining high
accuracy. The dataset images that are to be queried are
preprocessed by a simple binarization operation, followed by
the extraction of multiple overlapping candidate targets. Each
binary target, as well as the binarized query, is resized to fit
a fixed-size rectangle and represented by conventional image
descriptors. Then, a cosine similarity operator—followed by
maximum pooling over random groups—is used to represent
each target or query as a concise 250D vector. Retrieval is
performed in a fraction of a second by nearest-neighbor search
within that space, followed by a simple suppression of extra
overlapping candidates.

I. INTRODUCTION

Recent large-scale digitization and preservation efforts
have made huge numbers of images of historical manuscripts
readily available over the internet. Unfortunately, optical
character recognition (OCR) for handwritten documents is
notoriously difficult, making it nigh impossible to search
within those images for something in particular. As an
alternative, one can perform image-based search, a form of
“query by example”. Given a query image of a word, one
seeks all sub-images that contain occurrences of that same
word within the dataset of documents. With multi-writer
collections, where handwriting can differ significantly from
document to document, this task can be quite challenging.

The method we propose for this word-spotting task is both
simple to implement and fast to run. We use very basic
versions of standard operations for binarization, delineat-
ing bounding boxes, resizing, feature extraction, similarity
measurement, and nearest-neighbor retrieval. Yet, this simple
pipeline leads to a remarkably effective (good precision) and
efficient (tenth-of-a-second retrieval time) search engine.

The outline of the process is as follows: In a preparatory
step, all the dataset images that are to be queried are
binarized. Then many candidate target word-like sections
of the images are isolated. These typically include many
overly-large and overlapping target segments. Each binarized
target is resized to fit into a Procrustean bed (that is, a
fixed-size rectangle) and represented by conventional image
descriptors. For accuracy, a concise subset of targets for
comparison is chosen by maximum pooling over random
groups, using standard cosine similarity distances.

For each query, as it is posed, the same binarization,
resizing, feature extraction and comparison are applied to the

query image. Retrieval is accomplished by a simple nearest-
neighbor search within that space. Only the best match of
any set of overlapping candidates is returned.

Resizing makes the method scale invariant, which is
crucial with diverse collections deriving from multiple
documents—often poorly preserved, written by multiple
authors, and perhaps digitized under differing conditions and
containing significant noise. Target patches are not clustered.
And words in the images are not tagged in any way: thus the
method works unsupervised. This makes the method easily
applicable to many manuscript datasets. Nor need queries
derive from the dataset itself. They can even be synthetic
and produced from digital text rendered in an archaic font.

Words need not be pre-segmented, as in many methods,
though accurate word segmentation can help somewhat.
Rather, a generous set of potential targets is constructed,
which over-compensates for lack of segmentation, as it
includes almost all actual word segments and many more.
This popular modern approach also helps makes the method
widely applicable.

The proposed pipeline is quite robust, as it does not
depend on the specific choices of component methods.
Thus, it can easily accommodate more sophisticated bina-
rization techniques (necessary for collections of degraded
manuscripts, such as the Dead Sea Scrolls [1]) or alternate
features (such as SIFT, which does well for unconnected
scripts, for example). Furthermore, it is an easy matter to
add preprocessing (e.g., query jittering [2], [3]) or post-
processing stages (rerank the results, or winnow a quickly-
obtained list of results by a slower—but perhaps more
accurate—method).

The next section briefly surveys some recent approaches
to word spotting. Then, in Section 3, we explain our
method step by step, followed by a section devoted to
experimental results on the standard (two-writer, longhand)
George Washington [4]1 and (typewritten) Lord Byron [5]2

benchmarks. We conclude with a brief discussion of possible
improvements and extensions.

II. BACKGROUND

Much effort has been devoted to research on word spotting
for multi-author multi-style document images; a few recent

1At http://www.iam.unibe.ch/fki/databases/
iam-historical-document-database/washington-database.

2At http://books.google.com/books?id=u6poWVzCIWsC.

http://www.iam.unibe.ch/fki/databases/iam-historical-document-database/washington-database
http://www.iam.unibe.ch/fki/databases/iam-historical-document-database/washington-database
http://books.google.com/books?id=u6poWVzCIWsC


examples are [6], [7], [8], [9]. Other works, with their own
set of problems and less relevant here, deal with words
embedded in outdoor photographs, e.g., [10].

Dynamic time warping (DTW) and hidden Markov mod-
els (HMMs) are two popular training techniques. An exam-
ple of the former is [11] and of the latter is [12]. Many recent
HMM-based systems are supervised and pre-segmented.
Regrettably, these techniques are time consuming.

Two approaches are possible in searching for occurrences
of words in documents: one can first segment the text into
words and then compare each target word with the query,
or one can search for a match to the query using a sliding
window of some sort. There is substantial literature on word
segmentation, including, for example, [13]. An example of
word spotting among segmented images is [14]; among the
works that do not require segmentation are [15] and [2].

As pointed out in [2], one of the main drawbacks of prior
segmentation is that it is error-prone and mistakes negatively
affect the following stages. On the other hand, an exhaustive
comparison of the whole dataset using a sliding window
is unfeasible for costly matching methods like DTW. An
in-between approach is to work with multiple overlapping
target regions, as in [16]. Using multiple candidates, as we
do, for the purpose of reducing the number of false positives
that sliding-windows approaches can engender, is a current
trend in computer vision; see [17], [18] and others.

A second dimension that distinguishes work in this area is
whether training examples are used for learning or whether
the method is unsupervised. Our method is unsupervised.
Similarly, the bag-of-features method of [5] works within
a segmentation-free framework; it samples the space of
patches uniformly, but uses local descriptors.

Our method is inspired by the work of Liao et al. [3].
This face recognition method does not follow the conven-
tional pipeline of detection, followed by alignment, followed
by representation and classification. Instead, it consists of
a feed-forward network aimed at performing recognition
directly from the unsegmented image. The design of that
system relies on a recently theory of visual recognition
proposed by Poggio [19], which provides a computational
model of the ability of biological vision-systems to recog-
nize based on only few training examples. Since in word
spotting there is typically only one example (the query),
and since little is known regarding the location of candidate
words, this framework is extremely appealing for the task.

What is common to our work and that of Liao et al. is
the use of local descriptors across candidate patches and
the use of maximum pooling. However, the domains are
very different and our system is much simpler than that
of [3]. Local jittering is not used here; our hierarchy is flat
and very efficient even without using PCA or hashing; our
training data is unsupervised and pooling is done randomly;
no classifiers are used to learn similarities; and we employ
a mechanism for identifying candidate targets.

III. METHOD DESCRIPTION

A. Design Choices

One of the strengths of the proposed method lies in its
simplicity. The set of candidate targets is extracted by a
straightforward process. Then, the same processing pipeline
is applied to both the candidate targets and the query image.
Identifying matching targets is performed via a nearest
neighbor search.

The process of max-pooling, which is central to the
success of our method, relies on the extraction, in an
unsupervised manner, of target candidates from a set of
training images. In practice, we take the training set to be the
set of dataset images. Since no optimization is performed by
our method, and since the cosine similarity used is bounded
by 1, we expect (and observe) no negative outcomes to this
design choice.

Extracting candidate targets from the dataset images:
We are given a set of dataset images to query. When
following a sliding-window approach there are tens of thou-
sands of possible targets to consider, or more, depending
on the number of scales and the stride length. Such a liberal
approach leads to an increase in the number of false matches
as well as to an increase in the computational demands.
Instead, following a recent trend in object recognition and
a long tradition in document analysis, we extract a set of
candidate targets.

Our target prediction solution is heuristic rather than
learned. The images are first binarized by thresholding the
input image at a value which equals 85% of the mean
pixel intensity.3 Connected components are computed, and
connected components that are either too small (noise) or
too big (stains and page margins) are discarded.

The candidate targets are formed as groups (of arbitrary
size) of connected components that satisfy four criteria:

1) The bounding box containing all the components
within the group is not wider or taller than predeter-
mined thresholds. This bounding box must also have
an area larger than a third threshold.

2) The projection of the pixels of all the components onto
the x-axis does not have a gap larger than a threshold.

3) The projection of the centers of mass of each com-
ponent to the y-axis does not have a gap larger than
another threshold.

4) There is no component outside the group that lies
entirely within the bounding box of the group’s com-
ponents such that its center of mass is not the right-
most, leftmost, topmost or lowest of all centers of mass
associated with the group components.

The suitable groups of connected components are col-
lected, given an image, by iterating over all connected

3Here, and in almost all subsequent design choices we opt for the
simplest solution; a more sophisticated solution can clearly lead to better
performance.
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Figure 1. (a) A page from the George Washington dataset. (b) The
binarized page with candidate targets overlayed. Candidate regions
for one connected component might intersect other connected
components. For example, the numeral 0 produces a candidate
target that cuts the numeral 7 vertically. (c,d) Similarly for the
Lord Byron dataset.

components. Each time, the connected component at hand
is considered to be the top-left component of the group. The
subset of the connected components that fall within the width
and height limits set by the first criterion are considered and
smaller subsets are constructed by scanning from left to right
until a large enough gap is met up with. During this process,
each subset formed is evaluated based on these criteria.

The resulting candidate targets are typically dense and
often overlapping. See Fig. 1. On a typical image from the
George Washington dataset, there are around 7500 candidate
targets, which is about 30 times the number of actual words.
On a typical Lord Byron page, which is typewritten, the
candidate-target to word ratio is only two.

Representing binary image patches: The process of
representing an image patch as a vector is illustrated in
Fig. 2. It is applied to the binarized version of the query and
to each of the binary candidate targets, formed, as detailed
above, as a union of a group of connected components.

From the binary patch, the minimal bounding box contain-
ing all black pixels is extracted and placed within a wider
patch such that there is a margin of a fixed size around
the bounding box. The extended patch is resized (by image
interpolation) to a patch of a fixed size. Using a regular grid,
the fixed sized patch is divided into multiple non-overlapping
cells that are each encoded by the HOG descriptor [20] and
by the LBP descriptor [21]. The HOG descriptors of all cells
are concatenated and the resulting vector is normalized to
an Euclidean norm of 1. The same process is applied to all
LBP descriptors. The two vectors are then concatenated to

(a) (b) (c)

Figure 2. The patch normalization process. A patch (a) and its
binarized version (b). (c) Resized patch with grid overlayed. All
patches of candidate targets and of queries are resized to the same
size regardless of their size and aspect ratio. Note that the binary
patches do not contain pixels from connected components that do
not belong to the candidate target.

form a single vector v ∈ Rd.
A matrix M ∈ Rn×d, which consists of the vector repre-

sentations (same as v) for n random candidate targets from
the dataset, is then considered. The vector v is transformed to
a vector u ∈ Rn by means of a linear projection: u = Mv. In
other words, the normalized descriptor vector is represented
by its similarities to a predetermined set of exemplars.

Then, a max-pooling step takes place. The set of indices
[1..n] is randomly split into groups of size p. Call this
random partition P = {Ci}n/pi=1. It is sampled once, uni-
formly from the space of all partitions, and applied for the
purpose of max-pooling during the encoding of all patches.
Given a vector v, this max-pooling is performed simply by
considering one measurement per Ci that is the maximal
value among all the indices of this subset in the vector v.
Put differently, let u be the vector of length n/p that results
from the max-pooling process as applied to the vector v.
Then ui = maxj∈Ci vj .

Note that in previous work, e.g., [3], max-pooling at the
exemplar level is done on subsets of samples that belong to
the same category or identity and not to a random subset of
the samples. Employing such supervised max-pooling can
boost performance. However, it also results in the loss of
elegance, simplicity and practicality of using a completely
unsupervised system.

Query: Given a query image, it is binarized, cropped
by the minimal bounding box (connected components do
not play a role here), embedded in a larger white patch and
resized as explained above. Then the vector consisting of the
multiple HOG and LBP descriptors is computed, multiplied
by the matrix M and max-pooling is employed using the
partition P . This vector is then compared, by means of L2
distance, to the similar vectors—computed in exactly the
same manner—of all candidate targets.

Note that the set of vectors associated with the candi-
date targets is precomputed, which supports scalability. For



Figure 3. The overlapping target suppression mechanism. The
multiple candidates read “opportunity”, “if any oppo”, “if any opp”,
“y opportunity”, “opp”, “oppo”, “opportu”, and “opportun”. All
share “opp” as biggest connected component. Since “opportunity”
is ranked highest in the query of Fig. 4, the rest are discarded.

very big databases, kdtrees or other data-structures can be
employed to perform rapid sub-linear search. However, for
the scales required in the experiments herein, all samples
are stored in the main memory without difficulty and direct
computation of the distances is already very efficient.

All candidate targets are ranked in accordance with the
computed L2 distance. Recall that there are many over-
lapping candidate targets. In order to eliminate multiple
occurrences of the same target word as it appears in multiple
candidate targets, we employ yet another simple heuristic.
Out of all candidate targets that contain the same connected
component as their largest component, we only consider the
candidate with the highest rank (lowest distance). The rest
of the targets that share the same maximal-area component
are eliminated from the retrieved list. This suppression
mechanism is illustrated in Fig. 3.

B. Implementation Details

There are various parameters used in the system. We
have not yet performed any large-scale experiments to select
these; rather, we chose reasonable values for each separately,
based on observing a few patches. We believe, based on very
limited tests, that the performance is not overly sensitive to
these parameters.

The minimal size for connected components is 30 pixels,
measured by counting the number of pixels in the binary
image of the connected components. The maximal size is
such that all connected component are smaller than 600
pixels in both dimensions. The sizes of the candidate targets
are bounded (criterion 1) by a wide rectangle of 700×160
pixels. The maximal horizontal gap and the maximal vertical
gaps are both set to 25 pixels (criteria 2,3).

The margin used in order to embed the patch’s bounding
box in a larger patch is 8 pixels in all four directions.
This larger patch is resized (up or down) using bi-cubic
interpolation to a patch of 160×56 pixels. Note that the
binary image is transformed to a gray-value image due to
this interpolation. The resized image is divided into a grid
of 20×7 cells, each of 8×8 pixels.

Each HOG descriptor [20] is a vector in R31; each LBP
descriptor is in R58. The length of the vector v, denoted d
above, is therefore 31×20×7+58×20×7 = 12,460. The
number n of exemplars used is set to 3,750. These are chosen

Figure 4. Top ten retrievals from the George Washington dataset
for two sample queries. The query image is identical to the first
result, only segmented manually. (left) The four occurrences of the
word “opportunity” are ranked highest. (right) Three out of ten
results are not from the 15 occurrences of “October”.

at random from the dataset. We use a random partition P
that contains 250 subsets of the indices [1..3750] of size 15,
resulting in patch representation vectors u in R250.

IV. EVALUATION

Our approach is evaluated on two public datasets that we
could find online: The George Washington (GW) dataset [4]
(used in [22], [23]) and the Lord Byron (LB) [5] dataset.
These datasets are comprised of 20 pages each and contain
approximately 5,000 words. They are very different in
nature: GW contains handwritten text while LB contains
typewritten text. However, exactly the same system is used
without any modification, and all parameters are fixed at
the values described in Section III-B. We use the same
evaluation protocol as [2], and so our results are directly
comparable.

There is one query per annotated word image, see Fig-
ures 4, 5 for examples. For each query, all candidate targets
are ranked and then filtered so that no two candidates with
the same largest connected component appear in the list (see
Section III-A). A candidate target is considered a true match
to the query if it overlaps an annotated region of the same
word as the query word by more than 50%. Overlap percent
and success are defined based on the PASCAL detection
criterion, which counts a detection to be correct if the ratio
of intersection over the union of the two bounding boxes is
greater than 0.5.

Following [5], [2], the query image is also considered
to be a true positive. This benchmark design choice is



Figure 5. Top 30 retrievals from the George Washington dataset
for top left “and” and “the”. Short words pose a challenge to word
spotting methods. Moreover, longer words that contain the query
word are considered to be mistakes. Here, 23 results are mistaken
for the top example, and 5 for the bottom one.

reasonable since we are not given ground-truth bounding
boxes, and so the query image could be missing from the
set of candidate targets. Based on reporting standards in
the literature, we report the Mean Average Precision (MAP)
retrieval score.

Table I shows the scores achieved by our method and
several variants of it, as well as by baseline methods [5],
[2] that employ the same benchmark protocol. We present
results for our complete pipeline, the complete pipeline
applied to segmented words (an easier task, especially for the
handwritten GW), and to two variants that do not use max-
pooling: one in which the same 3,750 random exemplars are
used, and one in which a random subset of 250 exemplars
is used. Our method, even without max-pooling, performs
extremely well on the Lord Byron benchmark. In fact,
max-pooling, while making the representation much more
concise, hurts performance on this dataset. On the George
Washington benchmark, however, max-pooling increases the

Table I
MEAN AVERAGE PRECISION FOR VARIOUS METHODS.

Method GW LB
Efficient exemplar word spotting [2] 54.5% 85.5%
Segmentation-free word spotting [5] 30.5% 42.8%
Complete pipeline 50.1% 90.7%
Same applied to segmented words 66.3% 92.9%
Without max-pooling (v ∈ R3750) 48.8% 90.8%
Without max-pooling (v ∈ R250) 47.6% 90.7%

Table II
RUN TIME STATISTICS

Method/component GW LB
Number of queries 4,860 4,988
[2] all queries 5,058sec 4,159sec
[2] average per query 1.04sec 0.83sec
Our, all queries 158sec 46sec
Our, average per query 0.033sec 0.009sec
Our, single query 0.08sec 0.03sec
Preprocessing one page (ours) 46sec 3sec
Average memory per page (ours) 1,875KB 136KB

accuracy significantly. In both cases, max-pooling produces
a compact representation and helps reduce both the run time
and the memory footprint.

As noted in [2], a direct comparison with the methods
of [22], [24] is not possible, as different protocols are used
and the results are not comparable. In addition to the lack
of agreed upon train/test splits, [24] does not include the
query in the retrieved set. With regard to the exact task
performed, neither of [22], [24] is segmentation-free. The
reported results on the GW dataset are between 52% and
65% in [22], depending on the fold used for evaluation,
while [24] reports 54%. Based on these statistics, the value
of the DTW and HMM based methods is clear, and in the
future we would like to employ our method as a quick short-
list generating method that enables the rapid use of such
methods as these two.

The running time of our method, using a straightforward
matlab implementation based on VLFeat [25], is reported in
Table II. It is compared to the runtime we obtained using
the code of [2], which is shorter than that reported by the
authors two years ago. Still, our method is two orders of
magnitude faster. Note that multiple queries in our method
are more efficient, on average, than a single query due
to efficient matrix multiplication routines. The process of
finding candidate targets dominates the preprocessing step.
While not very efficient, it is run only once per dataset. As
is evident, preprocessing is much more challenging for the
George Washington dataset.

V. CONCLUSION

Currently, as quality OCR technologies are still lacking
when dealing with handwritten documents, and especially



with historical manuscripts, word-spotting technologies pro-
vide a useful substitute. In this work, we present an ex-
tremely efficient word-spotting method. Though this may
not be the most accurate spotting technology in existence,
it is certainly the simplest method providing a level of
accuracy within reach of state-of-the-art ones. Specifically,
no optimization is performed during preprocessing or during
querying, and the representation is easily stored in conven-
tional data structures. This is in contrast to methods that
employ techniques such as DTW, HMM, or SVM.

Our method is also “trendy”, as it relies on a module that
generates many target proposals and employs max-pooling.
Both techniques are employed very plainly: the candidates
are extracted heuristically and not using learning techniques,
and max-pooling is employed in a completely unsupervised
manner and only once, in contrast to the deep convolutional
networks that are now becoming ever so popular.

Our plans include experiments with the 350,000 pages of
the Cairo Genizah and the 15,000 fragments of the Dead Sea
Scroll collections. These documents are poorly preserved
and were written in multiple hands and in multiple languages
and styles.

The flexibility and extensibility of our method imply that
it has the potential of becoming very useful in practice—
either as is, or with some modifications, such as replacing
the descriptors used or incorporating supervision, or as a
plug-in method that can provide a short-list of candidates to
be refined and verified by more demanding techniques.
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