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Abstract. We extend the word2vec framework to capture meaning
across languages. The input consists of a source text and a word-aligned
parallel text in a second language. The joint word2vec tool then repre-
sents words in both languages within a common “semantic” vector space.
The result can be used to enrich lexicons of under-resourced languages,
to identify ambiguities, and to perform clustering and classification.
Experiments were conducted on a parallel English-Arabic corpus, as well
as on English and Hebrew Biblical texts.

1 Introduction

Semantic models of languages map words, or word senses, in the language under
study to some space in which semantic relationships between them can be ob-
served and measured. Within such models, one would expect synonymous words
to appear “near” one another. If the model incorporates more than one language,
then the translation of a word should also reside nearby.

Word2vec [16] is a recently developed technique for building a neural network
that maps words to real-number vectors, with the desideratum that words with
similar meanings will map to similar vectors. One problem with a straightforward
learning scheme from words and their context is polysemy, since the resultant
vector will be an average of the different senses of the word.

Some languages are more ambiguous than others. There are many homo-
graphs in English, fewer in Spanish (a more phonetic language than English),
and many more in (unvocalized) Hebrew. Sometimes homographs are also ho-
mophones, being pronounced the same (e.g., “bank”); other times they are het-
eronyms that are distinguished in speech (e.g., “dove”). We show how to leverage
word-aligned parallel texts to improve the quality of the inferred model.

In the next section, we provide some background on the use of bilingual mod-
els for single-language tasks and to aid in machine translation. Section 3 contains
an explanation of our bilingual extension to the word2vec model builder. It is
followed by a section on experimental results for word-aligned English-Arabic
and English-Hebrew corpora and then a brief discussion of the implications.

2 Background

Word sense disambiguation [13] is a difficult problem, partly because of the
paucity of sense-tagged training data in most languages. Languages like Ara-



bic and Hebrew pose a bigger challenge because of their unvowelized and un-
diacritized writing. In English and other European languages, senses are rep-
resented, in particular, by WordNet [18]. Although similar WordNet reposito-
ries exist for Arabic [5] and Hebrew [21], they are quite limited in scope. The
only available sense-tagged corpus in Hebrew is the Bible. For Arabic, there is
OntoNotes [12], a relatively large corpus of various genres, tagged for syntax and
shallow semantic attributes, including word senses.

It is well known that there is little agreement between dictionaries as to
the division of words into their senses. Some distinctions are subtle and often
cross language boundaries, so may not be considered distinct senses by other
lexicographers; others are substantive and are unlikely to share the same words
in multiple languages. Accordingly, it has been argued (e.g., [6,9,8]) that sense
distinctions can be derived from co-occurrence statistics across languages. To
quote [13]: “Homograph distinctions do not require a lexicographer to locate
them, since they are basically those that can be found easily in parallel texts in
different languages”.

In [17], the authors showed how one can train word2vec independently in two
languages, then use some anchor points between the two languages (a limited
number of corresponding words in the two languages) to find an affine mapping
from one language model to the other. The hope was that the resultant spaces
can be used to enrich the dictionary by looking in the model of the second
language for the word closest to the position of a word from the first language.

3 word2vec

Word2vec belongs to the class of methods called “neural language models”. Using
a scheme that is much simpler than previous work in this domain, where neural
networks with many hidden units and several non-linear layers were normally
constructed (e.g., [3]), word2vec [16] constructs a simple log-linear classifica-
tion network [19]. Two such networks are proposed: the Skip-gram architecture
and the Continuous Bag-of-words (CBOW) architecture. While the Skip-gram
architecture is sometimes preferable, in our experience – probably due to the rel-
atively small corpora we use, the CBOW architecture outperforms it. Therefore,
we limit our exposition to the latter architecture.

3.1 Continuous Bag-of-Words Architecture

In the CBOW variant of word2vec, the network predicts each word based on
its neighborhood – the five words preceding and the five words following that
word. An input layer denotes the bag of words representation of the surrounding
words, and contains one input element per glossary word. It is projected linearly
to the hidden encoding layer. The hidden layer is then mapped to an output
Huffman code representation of the given word. Once the network is trained,
the projections from each input unit to the middle encoding layer are used to
represent the associated glossary word. Interestingly, the resulting encoding not
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only captures meaningful word representations, where (unambiguous) words of
similar meaning have nearby representations, but also captures, in a surprising
manner, pairwise relations through simple arithmetic operations [16].

Next, we formalize the CBOW architecture and introduce the notation used
throughout the paper. Word2vec models are learned from an input corpus. Every
word that occurs at least three times in the corpus becomes part of the glossary.
Let D be the size of the glossary. The goal of the word2vec procedure is to
associate each of the D glossary words with a vector representation in RL. In all
of our experiments, L is fixed at a value of 200.

Each training example i is an occurrence of a glossary word w(i) in the corpus.
During the learning phase, the CBOW network is trained to map (through a
hidden projection layer of size L) binary input vectors Bin

i of length D, to the
matching output vectors Bout

i of length lgD. The input vectors contain one
element corresponding to each glossary entry, which denotes the existence of each
glossary entry within the small neighborhood of size 2N surrounding example i
in the text. In our experiments the window-size parameter N is fixed to be 5.

The binary output vector Bout
i = Hw(i) is the Huffman code of the associated

glossary entry. The Huffman codes Hj , j = 1 . . D of length lgD are constructed
by considering the frequency of each glossary entry j. The use of Huffman codes
follows a common practice in neural net language models [15]. We adhere to this
practice, although its main advantage over encoding through balanced trees is to
reduce evaluation time through an early stopping mechanism. This consideration
is not a major concern in our system, where D is relatively small.

As mentioned above, the vector representation Vj of each glossary word,
j = 1 . . D, is its projection to the hidden layer; that is, it is the array of weights
used to project the corresponding bit in the input vector Bin to the hidden
layer. Intuitively, it captures the contribution of each glossary word to a layer
that enables a relatively effective way of predicting the output vector. This is a
semantic task, and the representation is therefore semantic. Also, by design, since
linear projections are summed to capture local neighborhoods, the representation
behaves well under addition.

3.2 Bilingual Extension

Very recently, a method was proposed for employing word2vec in the bilingual
context [17]. The proposed method trains two word2vec models independently
and then, using a seed list of pairs of words and their translation, the two spaces
are aligned.

More specifically, assume that word wk in the first language is translated as
word w′

k in the second, k = 1 . . t, where t is size of the seed set. Let the vectors
V1, V2, . . . , VD be the learned word2vec representations in the first language, and
V ′
1 , V

′
2 , . . . , V

′
D′ the learned vectors of the second. A transformation T is then

learned from the space of the second representation to the space of the first,
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such that the following measure is minimized:

t∑
k=1

∥∥∥TV ′
w′

k
− Vwk

∥∥∥2 .
This is a linear least squares problem. In [17] stochastic gradient descent was

used to solve for the transformation T . In our experiments we employ conven-
tional linear solvers.

4 Joint word2vec

The bilingual method of [17] is motivated by the observation that when visual-
izing the word vectors using PCA, the vector representations of similar words in
different languages were related by a linear transformation. However, since there
is no guarantee that the two spaces are indeed related by a linear transformation,
it could be suboptimal to learn each space separately and then try to align the
two. In addition, if the corpora used to train the two vector spaces are related,
it might be beneficial to use one language to improve the representation of the
other, for example, in cases of word sense ambiguities.

In our method, joint word2vec, two versions of the same text are used for
training. One of the versions is set to be the baseline version, and the other is
aligned to it using an HMM-based word-alignment model [20]. The result, for a
specific text (which will be used in our next examples as well) is illustrated in
Fig. 1. In this example, a Hebrew verse from Genesis is used as the baseline text,
and the English King James translation is mapped to it. Some of the words in
the English text are not mapped to any Hebrew words and vice versa.

The joint word2vec model is a variant of the word2vec model with some
significant modifications in both structure and training procedure that allow for
simultaneous learning of unified representations for both languages. The input
layer of the joint model corresponds to a union of the two dictionaries. Let the
glossary of the first (second) language, consisting of frequent-enough words, be
of size D (D′, respectively). The input layer of the joint architecture is of size
D+D′, where the first D (last D′) elements correspond to the entries of the first
(second) glossary. The output layer is of size lg(D+D′), and encodes the words
of the two dictionaries based on their frequencies in the bilingual corpora. The
hidden layer and the log-linear model structure remain as in the conventional
word2vec model.

The training procedure is illustrated in Fig. 2. It consists of four stages
for each input occurrence i of the first language. First, as in the conventional
word2vec, the neighborhood of i (first language) is used to predict word i. Then,
the same process is repeated for the second-language word that is aligned to i,
using the second-language words that are aligned with the first-language neigh-
borhood of i. Naturally, this only occurs when there is a second-language word
aligned with word i. Also, the aligned neighborhood could be smaller than the
first-language neighborhood since not all first-language words are mapped to the
second language.
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Fig. 1. A short alignment example (Genesis 1:5), which is also used in Fig. 2.
The Hebrew verse (top row) is the baseline text to which the English verse at
the bottom row is aligned. The words in the middle are those words that were
found by the HMM model to match the Hebrew words they are connected to
with an arrow.

These first two stages train two models using the same hidden layer. However,
the two models are not tied together: each is using only the part of the input
vectors Bin that corresponds to just one language. The next two stages tie the
models together at the semantic level. In these stages, a word from one language
is being predicted using the neighborhood in the other language, which helps
make the model language-agnostic. First, the aligned word of the second language
is predicted based on the neighborhood of word i in the first language. The input
vector Bin is derived from data in the first language, and the output vector Bout

is derived from second language data. Lastly, the process is reversed: the aligned
second language neighborhood is used to predict and output vector Bout that is
the Hoffman coding of word i in the first language.

Since training of the joint word2vec is four times slower than training of the
conventional method, we modify the training procedure slightly. Whereas the
original method employs stochastic gradient descent, which updates the network
after observing each training samples, we introduced “mini-batches” and update
the weights only after a small number of training examples. In between updates,
the gradient is accumulated but not used to perform updates.

5 Evaluation

We compare the performance of the proposed joint word2vec to the performance
of conventional word2vec and the performance of the bilingual model of [17]
(Sect. 3.2). Given two texts, where the second is aligned to the first, the trans-
formation of this bilingual method is estimated using all the words of the first
text and their alignment, when they exist. Each pair is used once, regardless of
the number of its occurrences.

Three benchmarks have been devised: (i) a translation benchmark that looks
to see how close to each other a word and its translation are; (ii) a homograph
benchmark; and (iii) a single-language synonym benchmark. The benchmarks
are applied on two datasets, except for the third task, which is only applied to
one dataset.
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5.1 Datasets

In our experiments, as a second language, we used (transliterated) Arabic and
Hebrew – both highly inflected languages. Among other interesting characteris-
tics, Semitic languages in general are based on complicated derivational as well
as inflectional morphologies. Furthermore, the lack of short vowels in writing
increases the level of ambiguity of the written word. Words are derived from a
root and a pattern (template), combined with prefixes and suffixes. The root
consists of 3 or 4 consonants and the pattern is a sequence of consonants and
variables for root letters. Using the same root with different patterns may yield
words with different meanings. Words are then inflected for person, number and
gender; proclitics and enclitics are added to indicate definiteness, conjunction,
various prepositions, and possessive forms. On account of this morphological
complexity, a single Arabic or Hebrew word often translates into several English
words; for example, the English translation of the Arabic word wbbytyn is “and
in his two houses”.

Our first benchmark uses Arabic news stories that we aligned on the word
level with their English sources. Overall, we have about 4M Arabic words. Due
to Arabic’s rich morphology, we preprocessed the Arabic text with MADA [11],
a context-sensitive morphological analyzer that works on the word level, and
then used TOKAN [11] to tokenize the text, additionally separating the definite
article (Al) from nouns (and modifiers) and the future particle (s) from verbs.
For example, the word wbbyth, “and in his house”, gets tokenized like this: w+
b+ byt +h, each token respectively translated into: “and”, “in”, “house”, and
“his”. Alignment proceeds on this token level.

The second dataset was constructed by aligning the Bible, in Hebrew, to its
King James translation into English. The two resources are already aligned at
the verse level, and contain 23,145 verses. The Hebrew text, like in Arabic, was
tokenized using a context-sensitive morphological analyzer and a tokenizer. We
used the MILA [14] morphological analyzer, with probabilities obtained using
EM-HMM training [1,10]. The Hebrew tokenization scheme is similar to the one
for Arabic. Both resources were aligned on the token level using GIZA++ [20], an
implementation of the IBM word alignment models [7]. GIZA++ is a popular sta-
tistical machine translation toolkit that includes an HMM-based word-alignment
model. It uses Baum-Welch training, and includes smoothing techniques for fer-
tility (multiple-word translations of a single word).

For the synonym benchmark, we obtained the list of Biblical synonyms used
in [2]. That list was compiled in the following manner: The King James trans-
lation of the Bible almost invariably translates synonyms identically. So, one
can generally identify Hebrew synonyms by considering their translations. Word
senses were derived from Strong’s 1890 concordance [22], which lists separately
every occurrence of each sense of each root that appears in the Bible. (Some
anomalies due to polysemy in English were manually removed from the list by
a Bible scholar.) The procedure yielded 529 synonym sets, ranging in size from
2 to 7 (“fear”), for a total of 1595 individual synonyms.
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Table 1. The performance of various word2vec networks in the translation
benchmark, in which distances of normalized vector representations of word
pairs that are uniquely aligned between the two languages are compared. For
the Bible (Heb) Dataset, the English text is aligned to the Hebrew one, and vice
versa for Bible (Eng). Since the alignment is not symmetric, the pairs of words
used for benchmarking differ between the two directions. The baseline algo-
rithm [17] (Sect. 3.2) runs conventional word2vec on each corpus separately and
then estimates a linear transformation that minimizes the L2 distance between
the vector representations of aligned words. It is evaluated for both alignment
directions. The joint word2vec algorithm is applied to both corpora at once.
Shown are the mean distance between vector pairs normalized to have a norm of
one and the standard error of these distances. A lower distance indicates greater
proximity of the vector representations of translated words.

Dataset Method Normalized Distance
± Standard Error

News 2×Vanilla W2V (Eng and Arab mapped to Eng space) 1.1534 ± 0.0000
2×Vanilla W2V (Arab and Eng mapped to Arab space) 1.1505 ± 0.0000
Joint W2V (Eng+aligned Arab) 1.1644 ± 0.0000

Bible 2×Vanilla W2V (Heb and Eng mapped to Heb space) 0.9739 ± 0.0002
(Heb) 2×Vanilla W2V (Eng and Heb mapped to Eng space) 1.0066 ± 0.0002

Joint W2V (Heb+aligned Eng) 0.9710 ± 0.0002

Bible 2×Vanilla W2V (Eng and Heb mapped to Eng space) 0.8900 ± 0.0005
(Eng) 2×Vanilla W2V (Heb and Eng mapped to Heb space) 0.8543 ± 0.0005

Joint W2V (Eng+aligned Heb) 0.8790 ± 0.0006

5.2 Experiments

The translation benchmark. For each of the two datasets we identify pairs of
glossary words that are uniquely mapped between the two texts, that is, we
extract a list of words in the first text that are consistently aligned by GIZA++

to the same word in the second. Ideally, the vector representations of the words
in each pair would be as close as possible; indeed the bilingual method of [17]
directly minimizes the distance between the representations of words that are
mapped between the two languages.

The distance computed in the first benchmark is measured for our method
in the joint space, and in the method of [17] in each one of the spaces, after the
computed linear transformation is applied. In word2vec experiments [16], cosine
similarity (dot product of the normalized vectors) is often used. We comply
with this by computing the distance between the normalized vectors, which also
makes the comparison of distances between the various vector spaces valid.

The results of this benchmark are depicted in Table 1. Sometimes the joint
word2vec outperforms the baseline algorithm and sometimes it is the other way
around. This is remarkable given that the score that the baseline algorithm
optimizes is directly related to the score employed in the benchmark and that
the baseline algorithm is applied twice.
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The homograph benchmark. We now consider the words in one language that
are mapped to multiple words in the second language. This can be (i) a result
of synonyms in the second language, or, (ii) as is almost always the case when
aligning the Hebrew Bible to the King James edition, a result of homographs
in the first language. For the first case, we would like to have the vector repre-
sentation of the word in the first space as close as possible to that of the vector
representations in the second space, and the vector representations in the sec-
ond space as close as possible. In the second case, since the model is additive, it
makes sense to expect the vector representation of the word in the first language
to be a linear combination of the vector representations of the vectors in the
second language, that is, to be spanned by those vectors.

Since we have no means to determine which of the two cases is the source
of the multiple glossary word alignments, and since the spanning criteria is also
approximately satisfied in case two vectors are similar, this criteria is the basis
of our success score. Let Vi be the vector representation of the word in the

first language, and let V
′(k)
i , k = 1 . . n be the n > 1 words that are aligned to it

throughout its occurrences in the dataset. The score employed in this benchmark
is the reconstruction error: ∥∥∥∥∥ Vi

‖Vi‖
−

n∑
k=1

λkV
′(k)
i

∥∥∥∥∥ ,
where the λk are the coefficients that minimize this error. The minimization is
obtained by solving (least squares) a linear set of L = 200 equations in these n
unknowns. Note again, that in order to adhere to previous work with word2vec,
and to allow a fair comparison between different vector spaces, the normalized
version of Vi is used.

Table 2 depicts the results of this benchmark. The joint word2vec method
clearly outperforms the baseline method, and the difference in performance is
significant at an extremely low p-value in both t-test and Wilcoxon signed rank
test. We also report results for another variant of the reconstruction error in
which the weights λk are constrained to be positive. This is motivated by the
nature of the word2vec architectures, in which, during training, projections are
added but never subtracted. Naturally, the added positiveness constraint in-
creases the reconstruction error, but this increase seems to be moderate, and in
our experiments the order of the scores obtained by the various algorithms does
not change.

The synonym benchmark. Lastly, we evaluate the quality of the learned word2vec
representation using the Hebrew list of biblical synonyms. Eighty percent of
the identified synonym pairs were included in our glossary, which contains only
words that appear at least three times. For each of these we employ the distance
between the normalized vector representations of the two words as the score.

This is a single language task and joint word2vec would outperform the
baseline method only if learning jointly two languages successfully utilizes the
information in the second language to improve the vector space of the first. The
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Table 2. The performance of various word2vec networks in the homograph
benchmark, in which the glossary words in the first language that are aligned
to multiple words in the second language are employed. The reconstruction er-
ror is the distance between the L2 normalized vector representation in the first
language to the linear space spanned by the vector representations in the sec-
ond language; lower is better. Also shown is the reconstruction error when the
combination weights λk used to compute the linear combination are constrained
to be positive. Due to the additional constraint, the reconstruction errors are
aways bigger; however, qualitatively the results remain the same. See text and
the caption of Table 1 for more details.

Dataset Method Reconstruction Err Reconstruction Err
± Standard Error ± Standard Error

(Positive Weights)

News 2×Vanilla W2V 0.9387 ± 0.0000 0.9469 ± 0.0000
(Eng + transformed Arab)
2×Vanilla W2V 0.9321 ± 0.0000 0.9388 ± 0.0000
(Arab + transformed Eng )
Joint W2V (Eng+aligned Arab) 0.8893 ± 0.0000 0.9000 ± 0.0000

Bible 2×Vanilla W2V 0.8063 ± 0.0001 0.8477 ± 0.0001
(Heb) (Heb and Eng mapped to Heb space)

2×Vanilla W2V 0.8410 ± 0.0001 0.8797 ± 0.0000
(Eng and Heb mapped to Eng space)
Joint W2V (Heb+aligned Eng) 0.7462 ± 0.0001 0.7613 ± 0.0001

Bible 2×Vanilla W2V 0.9033 ± 0.0002 0.9228 ± 0.0002
(Eng) (Eng and Heb mapped to Eng space)

2×Vanilla W2V 0.8173 ± 0.0004 0.8696 ± 0.0004
(Heb and Eng mapped to Heb space)
Joint W2V (Eng+aligned Heb) 0.6610 ± 0.0006 0.6896 ± 0.0006

results in Table 3 suggest that this is indeed the case. A significant improvement
is obtained in the joint word2vec method in comparison to the baseline method.

6 Discussion

In the experiments we conducted, both datasets are relatively small compared to
the sizes typically employed to learn representations in word2vec models. Larger
bilingual datasets are available; however, the processing required by the GIZA++

software for these datasets could not fit into our schedule. Fortunately, the joint
word2vec software itself proved efficient enough and scales equally well as the
open-source word2vec, upon which code base it is built. The up-side is that our
experiments are the first to explore the utilization of word2vec on a scale possi-
ble for under-resourced languages, in which digitized texts and translations are
scarce. It is interesting that, at least at these scales, joint word2vec representa-
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Table 3. The performance of various word2vec networks on the Bible-Synonyms
benchmark. The distance between the normalized representations of each pair of
Hebrew synonyms is computed. As can be seen, the joint word2vec outperforms
the baseline method, although this is a single-language task. The results in the
two last rows are added for completeness, as they are expected to be worse. It
is interesting to note that even learning joint word2vec with Hebrew aligned to
English, which processes the Hebrew text in a way that is likely to disrupt its
structure, seems to outperform the baseline method.

Method Normalized Distance
± Standard Error

Vanilla W2V (Heb) 1.1864 ± 0.0013
Joint W2V (Heb+aligned Eng) 1.0637 ± 0.0015

2×Vanilla W2V (Heb mapped to Eng space) 1.2396 ± 0.0009
Joint W2V (Eng+aligned Heb) 1.1073 ± 0.0015

tions outperform vanilla word2vec learned vectors even at tasks requiring just
one language.

While our exposition is focused on the bilingual case, it seems straightfor-
ward to generalize it to multiple languages. In fact, with little modifications,
the joint word2vec system can employ heterogeneous inputs to learn a unified
“Babel fish” semantic vector representation for a union of multiple dictionaries.
During training, the weights can be updated from unilingual texts (conventional
word2vec), bilingual texts (as done here), or aligned multi-lingual texts, each
time updating the projection weights of the current word with accordance to the
available data.

As an effective method to learn representations, word2vec is often seen as
part of the “deep learning” trend, in which neural networks containing multiple
layers and multiple non-linear transformations are used to learn state-of-the-
art representations in domains such as computer vision and speech processing.
While there is nothing deep in the word2vec architecture, by comparing it to
deeper representations, the creators of the original architecture have been able
to demonstrate that the simplest log-linear models are “as deep as is necessary”,
thereby complying with the road plan set forth by [4].

Still, the word2vec representation is wanting in some respects. For example,
it would be desirable that homographs would be represented, not by one vector,
but by a set of vectors. In the bilingual context, the automatic identification of
homographs seems plausible. Recall that words in one language that are aligned
with multiple words in the second language are either homographs or are trans-
lated to a set of synonyms. As discussed in Sect. 5.2, the set of synonyms should
form a tight cluster, which can be easily measured, for example, by computing
the mean distance to the centroid of the set of vectors representing the aligned
words.
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(a) (b)

(c) (d)

Fig. 2. An illustration of the joint word2vec network applied to a sample He-
brew/English verse during training. The input layer has two parts, corresponding
to the two vocabularies. During training there are four steps (a–d): (a) Word
i of the Hebrew text is predicted, that is, encoded at the output layer Bout

i in
accordance to its Huffman encoding Hw(i). The Hebrew neighborhood of word
i is encoded through a bag-of-words scheme as the input layer Bin

i . The hidden
layer is a linear projection layer and the entire architecture is a simple log-linear
one. (b) Using the same architecture and the same hidden units, the process is
repeated for predicting the English word that corresponds to the Hebrew word
i from the English words that are mapped to the neighborhood of i. Note that
this neighborhood typically differs from the neighborhood in the English text
and is often smaller than the Hebrew neighborhood since some Hebrew words
are not aligned to any English words. (c) The Hebrew neighborhood is used to
predict the English word that matches word i. (d) The English neighborhood
(see (b)) is used to predict the Hebrew word i.
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