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Abstract

Many significant historical corpora contain leaves that
are mixed up and no longer bound in their original
state as multi-page documents. The reconstruction of old
manuscripts from a mix of disjoint leaves can therefore be
of a paramount importance to historians and literary schol-
ars. Previously, it was shown that visual similarity pro-
vides meaningful pair-wise similarities between handwrit-
ten leaves. Here, we go a step further and suggest a semi-
automatic clustering tool that helps reconstruct the original
documents. The proposed solution is based on a graphical
model that makes inferences based on catalog information
provided for each leaf as well as on the pairwise similarities
of handwriting. Several novel active clustering techniques
are explored, and the solution is applied to a significant part
of the Cairo Genizah, where the problem of joining leaves
remains unsolved even after a century of extensive study by
hundreds of human scholars.

1. Introduction

Written text is an ideal source for understanding histori-
cal life. Handwritten texts, such as community documents,
notebooks, personal letters and commercial records can all
contribute to a fuller understanding of a given place and
time. Many large collections of such material are currently
being digitized and made available on the Internet, includ-
ing: (1) 350,000 fragments of discarded medieval codices,
scrolls, letters and documents, discovered in the 1890s in
the attic of a synagogue in old Cairo and being digitized by
the Friedberg Genizah Project [5, Chap. 11]; (2) 2,000,000
images of 70,000 pre-1900 Taiwanese deeds and court pa-
pers in the Taiwan History Digital Library [3]; and (3)
30,000 vellum fragments from the Dead Sea Scrolls found
in Qumran, now undergoing multispectral imaging [°].

Scholars have expended a great deal of time and effort
on manually rejoining leaves of the same original book or
pamphlet, and on piecing together smaller fragments. In the
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case of the Cairo Genizah, whose fragments are dispersed
world-wide, this may involve visiting numerous libraries,
usually as part of research on a particular topic or literary
work.

Recently, computer vision tools were shown to be ef-
fective in automatically identifying potential joins between
pairs of leaves of the same original book, so that they may
be verified by human experts [22]." This system employs
modern image-recognition tools such as local descriptors,
bag-of-features representations and discriminative metric
learning techniques, that are modified for the problem at
hand by applying suitable preprocessing, and by using task-
specific key-point selection techniques.

This pairwise approach was shown to provide significant
value to the scholarship of the Genizah, and approximately
1000 new joins of significant importance were verified [22].
This is to be compared with the overall number of joins
found in over a century of Genizah research, by hundreds
of researchers, which numbers only a few thousand.

In this work, we integrate across the leaves the pair-
wise visual similarity as well as catalog-derived infor-
mation to obtain solutions for a more general task: the
reconstruction—to the extent possible—of the original doc-
uments. Computationally, this problem is a challenging
clustering problem: the scale of the problem is tens or hun-
dreds of thousands, the number of clusters is unknown a
priori, the clusters’ sizes vary greatly, and the underlying
similarity measure is based on incomplete and noisy data.
On the other hand, the work of scholars over the last cen-
tury can be used to seed the clustering, as well as to learn
suitable metrics and parameters of the underlying clustering
problem.

The problem is solved in an active manner, where ex-
perts can provide some feedback to the reconstruction sys-
tem, validate its riskiest hypothesis, and help the system
overcome critical points of ambiguity. Such expert inter-
vention is necessary, since the system does not have the do-

!Joins are groups of multiple leaves originating from one original
manuscript. Sometimes ‘join’ refers to a single pair of leaves, even if it’s
part of a larger known join. The distinction should be clear from context.



main knowledge required to validate or reject challenging
borderline cases. Whereas a human expert can read frag-
ments and match them by content, the underlying OCR task
is challenging due to poor conservation of the documents
and wide variability in scripts. In our experience, the pop-
ular Tesseract OCR software [16] fails to produce reliable
results even for square Hebrew letters, despite their limited
variability among scribes and despite retraining with suit-
able samples. Other scripts are even more challenging.

2. Related Work

We use a graphical model approach for clustering. Ear-
lier contributions [15] assume a known number of classes.
A recent contribution in the field of pedestrian tracking
uses a formalization that is similar to ours in many key
aspects [13]. Pedestrians are grouped based on the simi-
larity in their trajectories using a graphical model formula-
tion where inference is made for the trajectory of each in-
dividual out of a list of hypothesis trajectories and for pair-
wise binary “same group” variables. Transitivity constraints
are enforced by considering all triplets of pedestrians. Our
framework is similar with some important modifications:
each data-point in our formulation is associated with mul-
tiple properties that are unique to our problem and require
careful modeling; the scale in which we solve the problem
is several orders of magnitude larger, which requires struc-
tural adaptations; and due to the need of human feedback,
our framework is both semi-supervised and active.

The semi-supervised cues in our system are given by a
list of known joins. The system also makes queries to the
user during the clustering process, making it active. Pre-
vious contributions in the domain of active clustering typi-
cally try to define classifier-based models for each detected
cluster, either as a preprocessing step before clustering [2]
or within iterations [7]. The query strategy is then based on
active learning techniques for supervised learning. This is
in contrast to our work, where the query selection strategy
is closely related to the inference engine, and we propose
a new scheme that seem to outperform conventional active
learning criteria. Another difference from our framework
is that, in the active clustering literature we are aware of,
properties are not assigned to each data-point.

In the context of computer vision, the active clustering of
face images in albums or social networks [17] is a practical
problem for which commercial solutions (e.g., Picasa) in-
volve active user participation. Little is known about the ac-
tual algorithms used in such systems; however, it seems that
in many cases clustering is performed first in a conservative
manner to obtain many relatively small groups that are then
identified by users to form larger groups. This process may
repeat iteratively. A simulation of face image clustering us-
ing a simplified semi-automatic model was done in [6] to
compare the quality of face descriptors, but the literature

on the subject is scarce. Note that typically the user knows
the people involved and is able to make instantaneous deci-
sions, which cannot be expected from the experts using our
system.

The literature on computer-assisted writer identification
based on handwriting is mostly concerned in the super-
vised case, where there are handwriting samples for each
writer. Contributions in the unsupervised case are employed
in small scales. Recently, 24 Greek inscriptions were clus-
tered with high confidence to six writers based on multiple
morphological criteria [12]; 14 samples from a 15th century
book were clustered to two groups by applying repeated k-
means clustering to a vector containing several numerical
properties of the handwriting [1].

As mentioned above, in a recent work on the Cairo Ge-
nizah [22, 21], the related task of finding pairs of fragments
written in the same hand was addressed. It was shown
how handwriting data, especially when combined with prior
knowledge of script styles, physical measurements, and
subject classification, can produce a reliable system. Clus-
tering was applied based on pairwise similarities on a very
coarse level to obtain 18 groups of script styles [21]. In this
work, we build a clustering tool for working at a much finer
scale that aggregates joined pairs into multi-page joins, in-
tegrating pair similarity across multiple documents, and re-
inforcing the join similarity of pairs.

3. Graphical Model

One of the ultimate goals of Genizah scholarly work is
that of reconstructing—to the extent possible—the leaves
of documents (books, pamphlets, letters, etc.) as they were
originally bound, before being discarded and later dispersed
across the globe. To achieve this goal we make use of pair-
wise image similarities as well as on the available catalog
data and physical measurements of the Genizah fragments.

The catalog data we employ contains four properties of
the written text including: subject (Bible, liturgy, etc.), ma-
terial (paper, vellum), script type (square Ashkenazi, cur-
sive Spanish, etc.), and the existence of cantillation signs
(full, partial, none). These are represented by variables
h; = [h], where i is the leaf index, and r = 1...4 for
the four properties (see Section 7 for details).

The four classifications were obtained from the pub-
licly available database of the Friedberg Genizah Project
(www.genizah.org), where multiple catalogs were dig-
itized and combined. The data cannot be taken at face value
and is therefore part of the inference: Many of the leaves
are associated with partial classification or no classification
at all. It is often the case that different leaves of the same
known join have contradicting classifications. Moreover,
even the same leaf might have multiple conflicting classifi-
cations. The per-leaf models &;(h;) capture the fidelity of
the inferred variables h; to the provided catalog data.


www.genizah.org

In addition to inferring integrated catalog information for
each leaf, we also infer the grouping of the leaves. This is
encoded as group variables /;;. If leaves 7 and j belong to
the same group, the variable’s value is 1, and is O otherwise.
The classification compatibility models t;; (h;, h;, l;;) cap-
ture the compatibility of the various leaf classifications in
case they belong to the same join. If they do not belong to
the same join, the classification of one is irrelevant for the
classification of the other.

In contrast to the catalog information, the physical
measurements are computed automatically by the authors
of [22] and are assumed correct. There are seven measure-
ments, including: the number of text lines, the mean height
of the text lines and the average spacing between them, the
height and width of the leaf, and the height and width of the
text area itself. The models ;;(l;;) describe the compati-
bility of two leaves based on their physical measurements.
The estimation of the parameters of the models &;, v;;, and
;5 is described in Section 7.

Even more crucial to the success of the clustering pro-
cess than the above mentioned models is the model derived
from the pairwise handwriting-based image similarity of ¢
and j. It is provided as pseudo-probabilities that are ex-
tracted by the process described in Section 7.2, and stored
in the pairwise models v;; (1;;).

Lastly, transitivity is enforced by adding models
X(Lij, lik, L) for every three leaves 4, j and & that capture
the constraints [13] l;; A Lix — Lk, li; A ljp — I, and
Liz N\ L, — 1;;. That is, such models are created for every
lexicographically ordered pair (i,7) < (i, k) < (j, k), and
are set to be x(1,1,0) = x(1,0,1) = x(0,1,1) = log 1455
and log % otherwise.

The integrated log-probability of the grouping variables
and the inferred catalog information variables incorporates
the above mentioned models:

log P({hi}, {lij}) = Zﬁi(hi)+z¢ij(hi,hj,lij)
+ Z pij(lij) + Z%j(lij)

+ > xWig liks L) —log Z
ik

where Z is the partition function that depends on the various
models and which ensures that the probabilities sum to 1.

4. Inference

We perform inference by employing the Dual Decom-
position MRF optimization method (DD), discussed in [8].
This method is used to approximate a solution of a primal
problem (minimum overall model energy, in our case) by
relaxing its Lagrangian dual-problem and decomposing that
dual into many efficiently solvable subproblems. Utilizing

this method, the lower bound of the minimal model energy
is iteratively improved, while producing solutions (label as-
signments for each model variable) with gradually decreas-
ing energy levels. In practice, the process is not monotonic
and convergence after a reasonable number of iterations is
not guaranteed for large-scale problems. To perform the
DD iterations, we use the code made available by the au-
thors of [20], augmenting it with a tailor-made decomposi-
tion process and an inference engine relevant for our model.

The decomposition into subproblems is performed as
follows. In the primal problem, we have five types of fac-
tors, which can be divided into two groups: the first rep-
resenting the probabilistic models of the random variables
h; and [;;, namely the unary factors &;(h;), ¢;;(li;), and
7i;(L;;), and the second representing mutual relations be-
tween variables, which includes the factors v;;(h;, hj, l;;)
and x(ls5, lix, {;x). The implied factor graph is decomposed
into two layers: the data layer, containing all variables and
all factors except for x(;;, lix, ), and the constraint layer,
which includes the grouping variables /;;, the unary factors
~vi; and ¢;;, and the transitivity factors x(l;;, ik, Ljx). We
further decompose each layer into a set of tree-subproblems,
such that the union of all trees cover all variables and fac-
tors. This is done in the data layer by building one tree per
leaf 7 (root leaf), which contains variables h;, h;, l;; for
that leaf 7 and various other leaves j # 4 (see Sec. 5 for
how these are selected), as well as the factors which involve
only these variables. The constraint layer is factored sim-
ilarly, by building one tree per each variable [;;, i < j as
the root, which contain all l;;, [, variables that are linked
to l;; through the transitivity factor x;;z. Max-Product Be-
lief Propagation is applied for performing inference on each
tree, using the libDAI software package [11].

The primal solution is obtained at every iteration by em-
ploying a heuristic similar, but not identical, to that de-
scribed in [8], which in contrast to the original heuristic
does not employ the internal subproblem Belief Propagation
messages, and uses instead the marginal beliefs. This modi-
fied heuristic assigns all variables a fixed order in which the
catalog classification variables h; appear before all group-
ing variables /;;.

Let the ordered variables be denoted x; ...x, . These
variables are scanned one by one. A variable x; for which
all subproblems support the same assignment is labeled ac-
cordingly. Otherwise, it is assigned a label y;, which min-
imizes, over all assignments y that were suggested by the
subproblems, the estimated contribution of this variable to
the total primal-model energy that is based on the variables
known so far:

Edy) = — Y log(f(ze=yler =yi,...

feFt

1
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where the first summation is over the group F; of factors
that are fully assigned by the variables z1, . . ., z; and which
contain x, and the second summation is over the marginal
beliefs Pgs of the subproblems S that contain ;.

5. Constraint Subsampling

The graphical model presented in Section 3 cannot be
applied naively in order to cluster large collections. For a
collection of n leaves, there are O(n3) factors (dominated
by transitivity factors) and O(n?) subproblems in the Dual
Decomposition. Subsampling of variables and constraints
is therefore performed to keep the problem manageable.

The subsampling of variables is based on the domain-
based expectation that the Genizah collection would contain
many small groups and therefore many of the /;; variables
are expected to be 0. Thus we remove pairwise variables
that have a very low probability of being one. Recall that the
pairwise variable [;; participates in several models. If any
one of these models indicates that the link is very unlikely,
we eliminate the variable. That is, if the visual similarity is
extremely low, the catalog classifications are almost entirely
contradictory, or the physical measurements of leaves ¢ and
7 vary significantly, then we drop the variable. The com-
putation of these probabilities is explained in Section 7. A
probability threshold of 10~2 is used, which discards up to
99% of the grouping variables.

A helpful side effect of dropping many variables [;; is
the potential removal of factors involving these variables.
Furthermore, many of the ternary transitivity models y are
reduced to binary models in case exactly one of the vari-
ables is set to O (i.e., removed; if more than one variable out
of the three is removed, the model is eliminated altogether).

Nevertheless, since the transitivity constraints dominate
the number of overall factors, sampling is performed on
these variables as well. We consider the probability for a
penalty in the transitivity term, which is naively estimated
as the sum of the probabilities of the three assignments
(1,1,0), (1,0,1), (0,1, 1) independently of the rest of the
graph:

Yis (1) vik (1) 755 (0) +735 (1) ¥ik (0) 75 (1) +vi5 (0)yire (D) v (1) -

Those factors x with an estimated probability of less than
0.01 are discarded. The same process is also applied to the
factors based on physical measurements ¢. Overall, a fur-
ther 40% reduction in transitive factors is obtained.

6. Active Learning

Active learning in the context of Bayesian Networks (for
general inference problems) is usually employed in the lit-
erature for learning the parameters of the graphical model
itself [18] or its structure [19]. Here, we employ active
learning as part of the inference process itself.

The queries are presented to the user during the iterations
based on the data available at the end of the last iteration.
This way, the user need not wait for the system to finish the
next iteration, and the system dose not need to wait for the
user. In the DD framework, some of the iterations are non-
improving due to an overshooting step size. Information
obtained from those iterations is discarded.

The query variable is selected from among the variables
for which not all subproblems agreed on an assignment at
the end of the last iteration. We employed three alternative
strategies for selecting the next query variable: (i) uncer-
tainty based, (ii) energy impact based, (iii) structure com-
plexity based (see below). Before the start of the next DD
iteration, the parameters of the primal problem are updated
according to the expert feedback and reprojected to the dual
problems.

The most common query selection strategy used in active
learning is uncertainty sampling [[4]. In the variant we em-
ploy the variable is selected for query x%; based on entropy
maximization:

X} = argmax — Z P(xy =y)log P(x; = y) ,
' yEY:

where x; is one of the grouping variables I;; or the cata-
log classification variables h;, y ranges over Y;, the set of
possible labels of x; suggested by the subproblems, and the
probabilities are estimated using the energy terms computed
in (Eq. 1), P(z; = y) oc e~ P (¥),

An alternative query strategy we employ is to select the
variable in which changing the assigned label would create
the largest impact on the energy of the model. In a sense,
this strategy selects the variable with the lowest amount of
uncertainty, in a sharp contrast to the entropy-based strat-
egy. A similar selection strategy was recently employed in
the context of the approximate inference method called Cut-
set Conditioning in which a subset of variables is instanti-
ated to make the rest of the graph singly connected [4]. The
variable x; is evaluated based on the energy of the assign-
ment y; (Eq. 1) in comparison to the set of assignments Y;
suggested by the various subproblems:

Tp = arg max ﬁ Z Ei(y) — Ex(y") . (2)

Lastly, we employ a third alternative, based on mini-
mizing the structural inference complexity invested in each
variable. Intuitively, the human expert is asked to assist in
those places where most of the computational work is re-
quired, which can be viewed as a measure of practical un-
certainty.

After each iteration, we record, for every variable h; and
l;; in the model, the total complexity of the Belief Propaga-
tion algorithm on all the tree-subproblems containing that
variable. This complexity is simply given by the number of



non-zero elements in the model matrices of each tree, and
provides an estimate on the computational effort exercised
by the machine for each variable in the model. Since we
sum over the subproblems, the estimated structural com-
plexity per variable also depends on the number of trees
that contain that variable, which in turn depends on the un-
derlying graph connectivity. The selected query variable
x¢ is the one with the largest structural complexity. Some-
what surprisingly, this simple novel heuristic seems to ex-
perimentally outperform the other strategies presented.

7. Data and Model Estimation

We have evaluated our methods on a large subset of the
Cairo Genizah that was made public for benchmark pur-
poses (the other leaves presented at the Friedberg Genizah
Project’s website are available only for viewing). This sub-
set, presented in [22] contains 31,315 leaves, all from the
New York (ENA), Paris (AIU), and Jerusalem (JNUL) col-
lections. For the purpose of testing the quality of pairwise
similarities, the leaves have already been divided into pairs,
labeled as same-join or not, and grouped into splits. Since
our goal is different, these splits are not relevant to us.

The available leaves are divided, according to the current
lists of known joins, into 1,208 known joins of size up to
72 (see Fig. 4(a)). A large majority of leaves (81.6%) are
singletons that are not grouped with other leaves.

7.1. Model Parameter Estimation

The parameters of the various models [&;(h;),
wij(hi; h]‘, lij)s Wij (lij)a and ’)/”(l”)] are estimated
empirically using the available join information.

The models involving catalog classifications are based
on the transition probabilities from one category classifi-
cation to another. These are captured by matrices P",
r = 1...4 for subject classification (88 labels), material
classification (2 labels), script type (30 labels), and cantil-
lation (3 labels). The row indices of these matrices corre-
spond to the inferred label, and the columns to the given la-
bels. For modeling purposes, a NULL label is added to each
category to denote the case where no catalog information of
a certain category is provided for a leaf. However, NULL is
not allowed as an output label in the inference process.

For each catalog classification category and for each
classification label we record the number of times mixing
of labels has occurred in the database. There are two cases:
the case of multiple catalog entries for a single leaf, and the
case of multiple catalog classifications of different leaves
of the same known input join (since most manuscript joins
contain just one script style, are made of one material, etc.).

The elements of the transition matrices P, u # v,
which denote the probability of mixing label u of category
r with label v, are estimated as the ratio of the number of

times these categories were mixed and the times each cate-
gory occurred in leaves that either contain multiple catalog
entries or appear as part of known joins. P;,, is computed
by considering the fraction of instances where no mixing
occurred. Lastly, P, , where v is the label NULL, is the fre-
quency of label v in the dataset, disregarding all leaves in
which the label of category r is not given.

The input catalog data associated with each leaf i is
recorded by the vectors g/, where g7 (u) denotes the fre-
quency of label u of category r in the available entries for
fragment . Typically, one label per category is 1, and the
rest are 0. Quite frequently the NULL label is 1, since the
catalog information of category r for leaf ¢ is missing.

The first model &;(h;) captures the fidelity of the esti-
mated catalog classification data to the input classifications.
It is estimated as a sum over the four classifications. Each
operand r = 1...4 is of the form log hl " P" g

The second model 1;; (h;, hj,l;;) ensures that leaves of
the same join have similar classifications. Here, too, there
is an operand for each of the four classification categories.
Each is of the form 47 (h], b}, 1) = log h} " P'"h}, where
P’" is a transition matrix that contains the columns of P”
that correspond to all labels except for the NULL label (after
renormalization to form a double stochastic matrix). For
leaves of different joins, 1;;(h], b7, 0) is uniform over the
various label values.

The parameters of the physical measurements compati-
bility model ¢;;((;;) are estimated based on the seven phys-
ical measurements of each leaf (Section 3). There are seven
operands ¢7;(lij), s = 1...7, each based on the dis-
tance between the measured values of fragment ¢ and frag-
ment j. Denote measurement s of fragment ¢ by mj. A
probabilistic model on the distribution of within join vari-
ability of measurements P*(|m; — m3|) is formed by fit-
ting a Gaussian to the data obtained from the known joins.

pij(1) = 32 log P*(lmj — mj), and ¢3; (0) = 1.

7.2. Image Similarity Modeling

The similarity employed is based on a bag of visual key-
words approach as done in [22]. Each leaf is represented
as a histogram of keyword prototypes by considering the
connected components of the binarized images. To filter
out broken letter parts and dark patches arising from stains
and border artifacts, the size of the connected component
is compared to the height of the lines, which is estimated
separately by using horizontal projections.

Each connected component is described by a SIFT de-
scriptor vector [10]. For encoding of the entire leaf, a dic-
tionary is constructed by detecting connected components
in a small dataset of 500 documents and clustering the as-
sociated SIFT vectors by employing k-means. Given a dic-
tionary, a histogram-based methods is used to encode each
manuscript leaf as a vector, i.e., we count, for each cluster-



Figure 1. Fitting parametric distributions to histogram of distances
between pairs of leaves that are not known to be joins (a) and
pairs known to be joins (b). The first distribution is estimated by
a Gaussian, while the second is estimated by a mixture of three
Guassians.

center in the dictionary, the number of leaf descriptors clos-
est to it. To account for the variability in fragment sizes, the
histogram vector is normalized to sum to 1.

To compare two leaves ¢ and j, we compute the L2 dis-
tance d;; between them. Then, in order to obtain vy;; we
consider two distributions: the distribution of the similar-
ity values between leaves that are not known to be joins,
and the distribution for pairs of leaves that are known joins.
We model each distribution parametrically. The first dis-
tribution P(d;;|not join) is modeled as a Gaussian distri-
bution, while the second P(d;;|join) is parameterized as a
mixture of three Gaussians (see Fig. 1). The prior P(join)
is estimated conservatively with accordance to the preva-
lence of known joins to be 0.001, and Bayes’ rule is used
to compute P(join|d;;). The pairwise similarity model is
simply given as 7;;(1) = log P(join|d;;) and ~;;(0) =
log(1 — P(join|d;;))

Note that while previous work [22, 2 1] has put great em-
phasis on improving the pairwise image similarity, the cur-
rent version of our system uses, for simplicity purposes, a
basic similarity score. More elaborate scores and the appli-
cation of metric learning tools are expected to further im-
prove our system and are left for future implementations.

8. Results

We have conducted two sets of experiments. The first
set is used to evaluate the suitability of each query selec-
tion method within the active learning framework. To allow
for speedy iterations and to reduce the work time of the hu-
man expert, these are evaluated on a smaller subset of 5,000
Genizah leaves. The second set of experiments is the de-
ployment of our system to the entire set of 31,315 leaves
that were made public.

8.1. Comparing Active Learning Query Strategies

To allow a fair comparison among the various alterna-
tives we perform these experiment using a simple interac-
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Figure 2. Test runs on 5,000 leaves. All plots show results for
no-query (blue box), entropy criteria (green triangle), energy dif-
ference criteria (red circle), and selection based on structural com-
plexity (black line). (a) Primal energy throughout the iterations.
(b) Dual energy in each iteration. (c) Average entropy over all
indecisive variables. (d) Mean energy difference (Eq. 2) over all
indecisive variable.

tive protocol in which one query is presented after every DD
iteration. A typical iteration for the subset of 5,000 leaves
takes 45 seconds, making the presented experiments feasi-
ble. However, we did not repeat the experiment multiple
times due to the required human effort.

We compare four query selection strategies (see Sec-
tion 6): (a) fully automatic, without any query; (b) query
selection of the variable z7; with maximum entropy; (c) se-
lection of the variable x}, with the largest impact on the en-
ergy level; (d) selection of the variable x¢, with the highest
structural complexity. All methods are run till convergence.

The results are presented in Fig. 2. As can be seen
(Fig. 2(a)), the overall lowest energy is achieved by the
structural complexity method. Since queries are addressed,
the structure of the graphical model might change be-
tween iterations, therefore the dual energy is not monotonic
(Fig. 2(b), note that the scale differs from Fig. 2(a)). The
structural complexity criteria has the largest impact on the
dual energy, i.e., the dual energy, which is a lower bound on
the primal energy, drops considerably during the iterations.
Fig. 2(c) reveals that the mean entropy per indecisive vari-
ables (those with conflicting subproblems) drops the most,
as expected, by selecting z7;, followed by .. The mean
effect of indecisive variables on the energy (Fig. 2(d)), the
criterion maximized by 7}, drops the most for this query as
well as for xf,. Lastly, the runtime per iteration drops the
most, as expected, by x¢, (not shown for lack of space).
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Figure 3. Convergence of two independent runs on 31,315 leaves.
(a) Primal energy throughout the iterations. (b) Dual energy (note:
different y-scale).

8.2. Reconstructing a Large Chunk of the Genizah

Due to the required human effort, the runs on the en-
tire data set were less comprehensive and only the structural
complexity method that was believed to be the best choice
was tested. Each complete iteration takes 25 minutes, and
the human expert provides feedback for the next iteration
while the current iteration runs. We ran two experiments,
each for 70 iterations, which differ at the stage at which the
human operator took a break. For example, in one of the
experiments, the operator took a first break after two hours,
and in the second, three hours passed before the first break.

The energy levels of the system throughout the runs are
captured in Fig. 3(a) for the primal energy and 3(b) for the
dual one. The regions in which the dual energy monotoni-
cally increases correspond to the rest periods of the human
operator in which the computer was not halted. After 30
hours, each experiment was terminated, and the transitive
closure of the lowest energy result obtained by the two runs
was further evaluated as the clustering output.

The change to the grouping landscape by the incorpora-
tion of new joins is depicted in Fig. 4(a). As can be seen,
there is a shift to larger joins due to the clustering process.
Fig. 4(b) depicts the distribution of similarity values e
for pairwise variables that were either assigned [;; = 0 or
l;; = 1. As can be seen, in both cases the entire range of
values is used, although, as expected, larger values of ~;
are more likely to lead to a value of 1.

Examples of newly found joins are presented in Fig. 5.
In order to quantitatively evaluate the new joins, we have
evaluated two groups of joins that were affected by the clus-
tering process. Among the 50 modified joins (graph cliques,
not just pairs) with the highest mean -;; value, 100% were
found to be correct. Among the 50 modified joins with the
lowest mean +;; value 78% were verified.

Fig. 6 shows results in which ambiguous or missing cat-
alog data was inferred. While the success rates for these
were not computed yet, it seems that many of the outcome
classifications are correct. Finally, the subsampling of the
transitivity constraints leads to violations of transitivity, as
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(a) (b)

Figure 4. Results of the run on 31,315 leaves. (a) the histogram of
join sizes: known (solid blue bar) and after the run (grey bar). For
clarity, singletons and sizes larger than 25 were omitted from the
plot. (b) the distribution of the image similarity measure for each
of the two classes “newly found joins” (solid blue) and “inferred
to be non-joins” (grey).
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Figure 5. Examples of newly-found joins. (al) a page from AIU;
(a2) a joined page from ENA; (b1) a page from AIU; (b2) a joined
page from ENA, a third joined page from ENA is omitted for lack
of space.

can be seen in Fig. 7. A fraction of 1.8% of the new edges
violate a missing transitivity constraint.
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(b)

Figure 6. Pages with initially ambiguous catalog data. (a) Initially
a singleton with no catalog data other than material (paper), it is
found to be a philosophical work with a Naskhi script type. (b) Ini-
tially the subject classification had three equally probable options,
two cantillation options and a very broad script type categoriza-
tion. The inference determines it to be a religious exegesis essay
with a Tiberian semi-cursive script and partial cantillation.

(a) (b) ()

Figure 7. Example showing a transitivity constraint that was vio-
lated in the final assignment. While (a) and (b) are known to be
joins, and (a) is similar in handwriting and catalog data to (c), (b)
and (c) do not look the same, and the transitivity constraint was
left out during the constraint subsampling stage. In the clustering
assignment (a) and (c) were incorrectly joined.

9. Discussion and Future Work

Despite the enormous efforts and expenses invested in
digitization of manuscripts, computer tools to help analyze
them are severely wanting. The methods presented here are
applicable to other corpora as well. In a broader context,
since clustering is ill-posed, active clustering is a key en-
abling technology for large-scale tagging of image collec-
tions. We help bridge a gap in the literature and show a
system that without much optimization is scalable to tens
of thousands of objects on a conventional PC. Lastly, our
newly formulated query selection strategy, which is based
on the notion of structural complexity, seems to outperform
other criteria suggested in the past for active learning or for
approximate inference.
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