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Abstract 1 Introduction

In DNA microarray expression studies, estimated abun-
dances of thousands of mMRNA species in tissue samples are
Array technologies have made it possible to record simulta- obtained through hybridization to oligonucleotide or cDNA
neously the expression pattern of thousands of genes. A funarrays. Biological class differences are manifested as sig
damental problem in the analysis of gene expression data isnificant differences in the expression levels cihaallset of
the identification of highly relevant genes that either dis- genes, resulting in the observed overabundance of mRNA.
criminate between phenotypic labels or are important with The set of relevant genes is typically small, since the ma-
respect to the cellular process studied in the experiment.jority of the active cellular mRNA is not affected by the
Examples include: cell cycle or heat shock in yeast experi- biological differences. In other words, a significant diffe
ments, chemical or genetic perturbations of mammalian cell ence in biological characteristics (e.g a normal cell versu
lines, and genes involved in class discovery for human tu-a tumor cell from the same tissue) does have a gene ex-
mors. We focus on the task of unsupervised gene selectiorpression level manifestation, but the set of genes involved
Selecting a small subset of genes is particularly challeng- can be rather small. For example, previous work on classi-
ing as the data sets involved are typically characterized by fication of tumor tissue samples based on gene expression
a small sample size and a very large feature space. We pro-profiles has shown that in many cases, cancer types can be
pose a model independent approach which scores candidateliscriminated using only a small subset of genes whose ex-
gene selections using spectral properties of the candidatepression levels are strongly correlated with the class dis-
affinity matrix. The algorithm is simple to implement, yet tinction [9, 5]. Identifying highly relevant genes from the
contains a number of remarkable properties which guaran- data is therefore a fundamental problem in the analysis of
tee consistent sparse selections. expression data.
Relevant genes can be selected either in a supervised or
We applied our algorithm on five different data sets. The unsupervised fashion. A tissue sample consists of a vector
first consists of time course data from four well studied in IR" describing the expression valuesmofjenes/clones.
Hematopoietic cell lines (HL-60, Jurkat, NB4, and U937). In asupervisedetting each tissue sample is associated with
The other four data sets include three well studied treat- a label - typically binary or trinary (negative, positiverc
ment outcomes (large cell lymphoma, childhood medul-trol) - denoting its class membership. In ansupervised
loblastomas, breast tumors) and one unpublished data setsetting, the class labels are omitted or unknown. A variety
(lymph status). We compared our approach both with other of algorithms exist for supervised gene selection: signal-
unsupervised methods (SOM,PCA,GS) and with supervisedo-noise [9], recursive feature elimination [10], t-testtm
methods (SNR,RMB,RFE). The results show that our ap-rics [13], Wilcoxon rank sum test [13], and gene shaving
proach considerably outperforms all the other unsuperiise [11]. These studies make an implicit assumption that rele-
approaches in our study, is competitive with supervised vant genes are discriminative genes.
methods and in some cases even outperforms supervised ap- However, discrimination is not the only measure of rele-
proaches. vance and there are many studies where the objective does
not necessarily consist of some measure of discrimination.
Keywords: gene selection, spectral methods, microarrayThese include: finding genes relevant for cell cycle [1], an-
analysis. alyzing a compendium of expression profiles with different



mutations [12], and class discovery [21]. The clustering score in our approach is measured indi-

Unsupervised methods for selecting relevant featuresrectly. Rather than explicitly performing a clustering paa
have been applied in these types of problems using singu€r gene selection candidates, we employ spectral informa-
lar value decomposition (SVD) [1], principle components tion in order to measure the cluster arrangement coherency.
analysis (PCA) and iterative principle components analysi Spectral algorithms have been proven to be successful in

ak.a gene shaving [11, 17], max_surprise [2]’ self Org.aniz Clustering, manifold iearning or dimensionality I’eduntio
ing maps [21], and hierarchical clustering [6]. and approximation methods for NP-hard graph theoretical

eproblems. In a nutshell, given a selection of genes, the
strength (magnitude) of the leadirigeigenvalues of the
affinity matrix constructed from the corresponding expres-
sion levels of the selected genes is directly related to the
coherence of the cluster arrangement induced by the subset
of selected genes. More details are described in Section 2.
It is worthwhile to note that unsupervised gene selec-

In this paper we focus on the task of unsupervised gen
selection. Gene selection, unlike other applications af fe
ture selection in the machine learning literature, is ctara
terized first and foremost by a very small sample gize
typically in the order of few tens of tissue samples — and
by a relatively very large feature spali¥" as the number
of genes tend to be in the thousands~ 10%). Coupled

with the notion that applications in the domain of unsuper- 100 differs from dimensionality reduction in that it only
vised gene selection (such as "class discovery”) requiee on selects a handful of genes (features) which are “relevant

to discover things which are unknown or unexpected, it fol- vyith respect to some inference task. Dimensionality reduc-

lows that the unsupervised gene selection process should bon algorithms, PCA for example, generate a small number
model-independent as much as possible. Motivated by thisOf features, each of which is a combination of all the orig-

fact, we approach the gene selection task as a process d’pal features. A main purpose of expression analysis is to
dividing the tissue samples info(typically k£ = 2, 3) clus-

extract a set of genes that are of interest from the perspec-
ters where the goal is to find the gene subset which max-

tive of the biological process being studied. In general, it
imizes the clusters coherency. In other words, we assumdS @ssumed that each such process involves a limited num-
that if one knew which were the relevant genes to begin with ber of genes. Fpr this reason, feature combination methods
then the tissue sample values corresponding to the selecte@'® NOt as desirable as methods that extract a small subset
genes would be naturally clustered in initaets. Our task of genes. The challenge is to overcome the computational

is therefore to find that subset which maximizes the cluster 2Urden of pruning an exponential amount of gene subsets.
coherency. The@ — « algorithm [24, 19, 25] which we propose to use

L . as a basis for our approach handles the exponential search
The_task of gene selection is somewhat_dﬁferent from space by harnessing the spectral information (the sum of
that of interpreting patterps of gene EXpressions [thm]' ! eigenvalues of the candidate affinity matrix) in such a man-
the latter case, by regarding the quaptitat|ve EXPressmwn l ner where a computationally straightforward optimization
els of n genes ovey samples as defining points inIRY,

. . . guarantees a sparse solution, i.e., a selection of geres rat
one emplc_)ys a clust_erl_ng techmqu_e for grouping togetherthan a combination of the original genes.
genes which have similar expression profiles and use the
cluster averages as expression profiles. Various clugterin
tfachnlques have peen proposeq, fr.om direct visual inspeco  NMethods: Selecting Genes with a
tion [4] to employing self organization maps (SOM) [21].
The visual inspection approach does not scale well to larger ~ Spectral Approach
data sets, is best suited for data with an expected pattern
(like cyclic cell lines) and is therefore less appropriaie f The array based technologies, cDNA and oligonucleotide,
discovering unexpected patterns. The SOM clustering ap-for studying gene expression levels provide static inferma
proach, as all exploratory data analysis tools, involves-ma tion about gene expression (i.e. in which tissue(s) the gene
ual inspection of the data to extract insights. Gene selecti is expressed) and dynamic information (i.e. how the ex-
in comparison is an open problem. Rather than groupingpression pattern of one gene relates to those of others). In
the gene expression levels into clusters, one seeks ta-disti general, the raw data has to be corrected for different exper
guish a small set of genes which are relevant to the biolog-imental conditions by a normalization procedure sometimes
ical classification of the tissue samples. As a result of this followed by a logarithmic transformation to the absolute in
distinction, rather than grouping the gene expressiorideve tensities or ratios. This results in a data matrix whose rows
we look for a subset of genes for which the corresponding correspond to genes and whose columns correspond to tis-
tissue sample values are coherently divided in{@ or 3) sue samples. We assume that exactly one value for each
clusters. The notion of clustering is still there butin adiin ~ gene/sample is given, which may be achieved over repeated
rect manner —the goodness of clustering is used as a score measurements for samples or genes.
for the gene selection process Let the microarray data matrix be denoted ki, The



gene expressions levels that form the rowsbére denoted 1. Let G be a matrix whose(i,j) components are
bym{,...,m)] and are normalized to unit norfim; || = 1. (m m;j)m; Qr=bQ=1"m;.

Each row vector represents a gene sampled ovey tifigs. 2. Leta(™ be the leading eigenvector 6™,

The column vectors of\/ represent they samples (each 3. LetA®™ =" a"m;m] .

sample is a vector iflR™). As mentioned in the previous 4. Letz(" — A‘T;Q““—l).

section, our goal is to select rows (genes) frbfrsuch that

the corresponding candidate data matrix (containing only 5.
the selected rows) consists of columns that are coherently
clustered ink groups. The value df is user specified and is 6. Increment index and go to step 1.
typically 2 or 3 denoting the expected number of different
biological classes in the tissue samples.

Mathematically, to obtain a clustering coherency score
we compute the "affinity” matrix of the candidate data ma-
trix defined as follows. Lety; € {0,1} be the indicator
value associated with the i'th gene, i.e;, = 1 if the i'th
gene is selected and zero otherwise. Hgtbe the corre-
sponding affinity matrix whoséi, j) entries are the inner-
product (correlation) between the i'th and j'th columns of
the resulting candidate data matrit, = >, a;m;m,
(sum of rank-1 matrices). From algebraic graph theory, if
the columns of the candidate data matrix are coherently

grouped intok clusters, we should expect the leadihg Conditions (2) and (3) are not readily apparent in the

e|genyalues ot to b? (.)f high mag”'t“d’? [14, 7]. The formulation of the algorithm (the energy function lacks the
resulting scheme maximizes the sum of eigenvalues of the

. ; . . .. explicit inequality constrainty; > 0 and an explicit term
cand|dat9 data matrix over all possible settings of the-indi to “encourage” sparse solutions) but are nevertheless sati
cator variablesgy;.

What we do | tice. in ordert id th tial fied. The key for having sparse and non-negative weights
atwe doin practice, in orderto avoid tn€ exponential js 1, iaq jn the matrixG (step 1). Generally, the en-
grovvth of assigning b_mary values toindicator variables, tries of G are not necessarily positive (otherwisevould
'S to allow a to receive real values. A least-squares en- g peen non-negative due to the Perron-Frobenious theo-
ergy function over the variables is formed and its optimal

. i ) rem). However, it can be shown that in a probabilistic man-
vaILJ“e IS sought_. V\{,hat makgs_ this approach d|ffe_rent from ner the leading eigenvector 6f is positive with probabil-
th_e gart_jen variety sof_t—demspn_—type algorithms isttia ity 1 — o(1) (i.e, as the number of genesgrows larger
th'$ particular formulation, optimizing over spec_tr.al PfO  the chances that the leading eigenvectoiGofs positive
erties guarantees that the always come out positive and

Il local ) £ th funct h increases rapidly to unity). Fig. 1 shows the (sorted)
Sparseover afl jocal maxima ot In€ energy function. Ihe 51 es for the Hematopoietic differentiation cell lineg{d
energy function takes the following form:

tails about this data set are found below). The details of
why the makeup of7 induces such a property, the con-

7™ 2% 0™ R™ thatis,Q(™ is determined by the “QR”
factorization ofZ(").

Note that steps 4 and 5 of the algorithm consist of the “or-
thogonal iteration” module, i.e., if we were to repeaty
' these we would converge onto the eigenvectorsi&?.
However, the algorithm does not repeat these steps in iso-
lation and instead recomputes the weight vectafsteps
1,2,3) before applying another cycle of steps 4 and 5.

The algorithm is meaningful provided that three condi-
tions are met: (1) the algorithm converges to a local max-
imum. (2) at the local maximum; > 0 (since negative
weights are not admissible), and (3) the weight vector
is sparse(since without it the soft decision does not easily
translate into a hard gene selection).

max trac§Q ' A, A Q) (1) vergence proof and the proof of the "Probabilistic Perron-
" Frobenious” claim can be found in [24].
subject to Zaf =1, Q'Q=1I Finally, it is worth noting that the scheme can be ex-
i—1 tended to handle the supervised situation; that the scheme

can be applied also to the Laplacian affinity matrix; and that
the scheme readily applies when the spectra@jﬁg1 A2 —

Y1 _ki1 A7 is maximized rather tha."_, A? alone. De-
tails can be found in [24].

Note that the matrix) holds the firstk eigenvectors
of A, and that tracg) " A! A, Q) is equal to the sum of
squares of the leading eigenv::xlues:Zf:1 A?. A local
maximum of the energy function is achieved by interleaving
the “orthogonal iteration” scheme [8] within the computa-

tion of o as follows: 3 Data sets

Definition 1 (Spectral Gene Selection)Let M be ann x ¢
input matrix with rowsm/ , ...,m, and let there be some We evaluated our proposed approach for gene selection on

orthonormalg x k matrix Q©), i.e., Q" Q© = . Per- five data sets — one of which is a time course data set and
form the following steps through a cycle of iterations with the remaining four data sets with outcome or status labels.
indexr = 1,2, ... With the four data sets with label information we applied



supervised approaches to compare with our unsupervisedt.1 Comparison with SOM on Time Course Data

gene selection algorithm. o ) L
A significant amount of expression data is time course data.

The first data set consisted of time course data from _.~ % . .
Finding relevant genes in these types of data sets is an open

four Hematopoietic cell lines [21]: HL-60, Jurkat, NB4, roblem. PCA is a reasonable approach when the underly-
and U937. The dimensionality of the expression data wasP ' bp y

7,229 genes. The HL-60, U937, and Jurkat cell lines were N9 f_actor_ of the study is cyclical, for example cell qu@ [1
. . . or circadian rhythms [18]. However, for many studies the
stimulated with phorbol 12-myristate 13-acetate (PMA) for . . . . .
. . . underlying process of interest is not cyclical. One may wish
(0, .5, 4, 24) hours. The NBA4 cell line was stimulated with to find genes that increase in expression over time in one
all trans-retinoic acid (ATRA) fof0, 6, 24, 48, 72) hours. 9 P

Th ining four data set treat  out cell line but decrease in expression for another cell line. A
€ remaining four data sets were treatment OUtCOme Ofgy, 4 approach to address this is to cluster genes and use
status studies. The first was a study of treatment outcome o

. A he clusters as expression profiles. Using our unsupervised
patleryl,ts with d'mf,se large ceII'Iympr_loma. (DLCL.)’ referred gene selection procedure we can find the relevant genes in
to as "lymphoma” [20]. The dimensionality of this data set

as7. 129 and there wera2 samples with 0ood successful time course data directly, without having to cluster.
was’, rew pies with g u u In [21] Hematopoietic differentiation was studied across
outcome and6 with unsuccessful outcome. The second

was a study of treatment outcome of patients with child- four cell Ilngs. Two myelpld cell lines HL-60 and U9.37
hood medulloblastomas [15], referred to as "brain”. The were examined, a T cel Ilpe called QUrkat was examined,
dimensionality of this data sét was129 and there were _and an _acute promyelocytic leukemia cell Ime was exam-

4 . ined. Time course data for these four cell lines was con-
39 samples with good successful outcome amndvith un-

successful outcome. The third was a study of the metas catenated into a data set witli samples and229 genes.
) - : A 4 self-organizing map (SOM) was used to cluster this
tatis status of patients with breast tumors [22], refereed t 6 9 gmap ( )

. ) : ; fter prepr ing with a variation filter. Th
as "breast met”. The dimensionality of this data set was data set after preprocessing with a variation filte c

. ) clusters are displayed in Fig. 2(a). We applied our algo-
3;:r(filjizggst:-?:sevﬁgat:x?smg‘ltﬁ ?;SV;T :Rmihsaﬁ“z r;‘ts rithm to this data set and found that the set of relevant genes
yean R P was sparse (meaning it contained a small number of relevant
where the tumors metastasized within five years. The fourth

) . ., genes), as shown in Fig. 1. Of the genes corresponding to
IS an unpuphshed study of of breast_tumors [16] for which the top40 « values, we display the time course signatures
corresponding lymph nodes were either cancerous or not

referred to as "lymph status”. The dimensionality of this of 6 genes if Fig.2(b) for brevity. The signature of 40

) ! o genes will be available on our web page. The time course
data set isl2, GOQ with 47 positive samples for lymph sta- of theses genes correspond to cluste 1, 22/23, 4, 15,
tus and43 negative samples.

21 in Fig.2(a). For a biological explanation of these genes
or corresponding clusters see [21]. Using our algorithm, we
were able to recapitulate the time courses of [21] virith

4 Results dividual genesather than gene clusters and also find those

genes that are relevant.
The above detailed data sets which were used for our exper-

iments consist of thousands of genes (in the ordei6y.
Many of the techniques presented in the past start with a
pre-filtering step aiming at reducing the number of genes
from thousands to hundreds. For example, [21] passes theFor the four data sets with label information, classificatio
gene expression vectors through a variation filter before ap accuracy was used as a measure of the goodness of our (un-
plying the SOM code for clustering the remaining gene ex- supervised) algorithm. We compared the leave-one-out er-
pression vectors. The variation filter eliminates thoseegen ror on these data sets with the one achieved by both super-
with no significant change across the samples. vised and unsupervised methods of gene selection. For both
One of the strengths of our approach is the ability to han- supervised and unsupervised methods, only the training ex-
dle large amounts of data. Any preprocessing filtering stepamples were used in the process of feature selection and di-
of the data imposes a prior which very likely has a dramatic mensionality reduction. The supervised methods used were
effect on the final results. In many cases, the final results de signal-to-noise (SNR) [9], radius-margin bounds (RMB)
pend not so much on the strength of the main algorithm but[3, 23], and recursive feature elimination (RFE) [10]. The
on the type and care placed on the pre-filtering step. Here,unsupervised methods used were PCA and gene shaving
we applied our algorithm on the original data set without (GS) [11]. In the unsupervised mode, the class labels were
performing pre-filtering steps. The results reported below ignored — and therefore in general one should expect the
start with data matrices consisting of thousands of genessupervised approaches to produce superior results than the
and produce tens of relevant genes. unsupervised ones. A linear support vector machine classi-

4.2 Comparison with Other Supervised and Unsuper-
vised Methods using Labeled Data
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energy function. The profile of the values indicates sparagan-
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fier was used for all the gene selection methods. Parame- ||* — = o T A —
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leave-one-out error. A summary of the results appears in || [f_____ | ConbiNON | L | I |
table 1. = =

Our algorithm considerably out-performs all other unsu-
pervised methods. Furthermore, and somewhat intriguing,
is that our algorithm is competitive with the other super-
vised algorithm (despite the fact that the labels were not .
taken into account in the course of running the algorithm) (leftto right) H.I"§O+.PMA’ U937 + PMA, NBA+ATRA, Ju-
and performssignificantly betteron the lymph status of rkat+PMA. This is Figure 4 from [21]
breast tumors as compared to all other gene selection ap-
proaches — including the supervised methods.

Figure 2: A plot of the24 SOM clusters from the
Hematopoeitic differentiation cell lines. In each of the
clusters the time courses of all four cell lines are shown

combinatorial explosion introduced when all possible gene
subsets are to be scored.

5 Discussion In this work we focused on the unsupervised version of
gene selection. The selection is unsupervised when class
The advent of array technologies make it possible to collect/abels are either absent (as in class discovery) or when the
data on thousands of genes simultaneously while recordingselection is required in the context of cellular procese-stu
both static information (in which of the tissues the gene is ied in experiments — such as cell cycle or heat shock in
expressed) and dynamic information (how the expressiony€ast experiments, and chemical or genetic perturbations o
pattern of one gene relates to those of Others)_ Typ|ca| mi_mamma”an cell lines. In these UnSUperVised Settings, our
croarray data contains tens of thousands of genes over relalgorithm significantly and consistently outperformedesth
atively few samples. It has been observed in many casesWell studied approaches.
that among the many genes, only a small fraction are really The principle of our method is based on scoring gene
relevant for providing discriminatory information overeth  subsets by means of measuring the coherence of the cluster
tissue samples or providing other non-discriminatoryiinfo arrangements of the sample vectors induced by the selec-
mation about class discovery or cell line analysis. The tasktion. The cluster coherence can be indirectly evaluated by
of selecting a small subset of genes is particularly chglen the magnitude of the leading eigenvalues of the correspond-
ing from an information theoretic point of view, in light of  ing affinity matrix. The combinatorial explosion problem is
the few samples. Another challenge in gene selection is theavoided by the special makeup of a key matrix in the algo-
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Figure 3: A plot of6 of the top40 genes that correspond to GS30 30 44 33 33
clusters20, 1, 22/23, 4, 15, 21 in Tamayo et al. In each of Our Method |15 19 57 15
the six panels time courses of all four cell lines are shown SNR 16 a7 29 18
(leftto right) HL-60+PMA, U937 + PMA, NB4+ATRA, Ju- REE 14 35 56 12
rkat+PMA. RMB 13 | 39 24 | 14

rithm which makes it possible to use a soft-selection type of Tacti)le 1 LeaYe"()j“e;"“t_tﬂassmcatio” results f(;)rtthe S{Upemsbe‘:
approaCh, yet guarantee sparse solutions. ana unsupervised algorithms on € various data sets. [0)

We h first ill dth | f h PCAN and GSV the numberN is the number of components
e have first illustrated the value of our approach on a used. Parameters for SNR, RFE, and RMB were chosen to min-

problem that s inherently unsupervised —that of finding rel jmize the leave-one-out error. Our method considerably out

evant genes in time course data. Instead of directly selectyperforms all other unsupervised methods. Furthermoresamn-

ing relevant genes, most algorithms cluster all genes andwhat intriguing, is that our algorithm is competitive withetother

explain the time courses in terms of gene clusters, and thersupervised algorithm (despite the fact that the labels wete

look for genes in the various clusters to try and understandtaken into account in the course of running the algorithmy a

the underlying biology. We directly find the relevant genes performs significantly better on the lymph status of breastars

in the time course data. We compared the two approache§s compared to all other gene selection approaches — ingludi

on four well studied Hematopoietic cell lines (HL-60, Ju- (he supervised methods.

rkat, NB4, and U937). Using our approach we were able €re only the first, 000 genes were used.

to find individual genes with time courses very similar to

those of gene clusters found using SOMs on this data set.

We then applied our algorithm to four (labeled) treatment

outcome data sets. Comparisons with other supervised and

non-supervised approaches showed a consistent superior-

ity over other unsupervised approaches which we tested in
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