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Abstract

Array technologies have made it possible to record simulta-
neously the expression pattern of thousands of genes. A fun-
damental problem in the analysis of gene expression data is
the identification of highly relevant genes that either dis-
criminate between phenotypic labels or are important with
respect to the cellular process studied in the experiment.
Examples include: cell cycle or heat shock in yeast experi-
ments, chemical or genetic perturbations of mammalian cell
lines, and genes involved in class discovery for human tu-
mors. We focus on the task of unsupervised gene selection.
Selecting a small subset of genes is particularly challeng-
ing as the data sets involved are typically characterized by
a small sample size and a very large feature space. We pro-
pose a model independent approach which scores candidate
gene selections using spectral properties of the candidate
affinity matrix. The algorithm is simple to implement, yet
contains a number of remarkable properties which guaran-
tee consistent sparse selections.

We applied our algorithm on five different data sets. The
first consists of time course data from four well studied
Hematopoietic cell lines (HL-60, Jurkat, NB4, and U937).
The other four data sets include three well studied treat-
ment outcomes (large cell lymphoma, childhood medul-
loblastomas, breast tumors) and one unpublished data set
(lymph status). We compared our approach both with other
unsupervised methods (SOM,PCA,GS) and with supervised
methods (SNR,RMB,RFE). The results show that our ap-
proach considerably outperforms all the other unsupervised
approaches in our study, is competitive with supervised
methods and in some cases even outperforms supervised ap-
proaches.

Keywords: gene selection, spectral methods, microarray
analysis.

1 Introduction

In DNA microarray expression studies, estimated abun-
dances of thousands of mRNA species in tissue samples are
obtained through hybridization to oligonucleotide or cDNA
arrays. Biological class differences are manifested as sig-
nificant differences in the expression levels of asmallset of
genes, resulting in the observed overabundance of mRNA.
The set of relevant genes is typically small, since the ma-
jority of the active cellular mRNA is not affected by the
biological differences. In other words, a significant differ-
ence in biological characteristics (e.g a normal cell versus
a tumor cell from the same tissue) does have a gene ex-
pression level manifestation, but the set of genes involved
can be rather small. For example, previous work on classi-
fication of tumor tissue samples based on gene expression
profiles has shown that in many cases, cancer types can be
discriminated using only a small subset of genes whose ex-
pression levels are strongly correlated with the class dis-
tinction [9, 5]. Identifying highly relevant genes from the
data is therefore a fundamental problem in the analysis of
expression data.

Relevant genes can be selected either in a supervised or
unsupervised fashion. A tissue sample consists of a vector
in IRn describing the expression values ofn genes/clones.
In asupervisedsetting each tissue sample is associated with
a label - typically binary or trinary (negative, positive, con-
trol) - denoting its class membership. In anunsupervised
setting, the class labels are omitted or unknown. A variety
of algorithms exist for supervised gene selection: signal-
to-noise [9], recursive feature elimination [10], t-test met-
rics [13], Wilcoxon rank sum test [13], and gene shaving
[11]. These studies make an implicit assumption that rele-
vant genes are discriminative genes.

However, discrimination is not the only measure of rele-
vance and there are many studies where the objective does
not necessarily consist of some measure of discrimination.
These include: finding genes relevant for cell cycle [1], an-
alyzing a compendium of expression profiles with different
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mutations [12], and class discovery [21].

Unsupervised methods for selecting relevant features
have been applied in these types of problems using singu-
lar value decomposition (SVD) [1], principle components
analysis (PCA) and iterative principle components analysis,
a.k.a gene shaving [11, 17], max-surprise [2], self organiz-
ing maps [21], and hierarchical clustering [6].

In this paper we focus on the task of unsupervised gene
selection. Gene selection, unlike other applications of fea-
ture selection in the machine learning literature, is charac-
terized first and foremost by a very small sample sizeq —
typically in the order of few tens of tissue samples — and
by a relatively very large feature spaceIRn as the number
of genes tend to be in the thousands (n ≈ 104). Coupled
with the notion that applications in the domain of unsuper-
vised gene selection (such as ”class discovery”) require one
to discover things which are unknown or unexpected, it fol-
lows that the unsupervised gene selection process should be
model-independent as much as possible. Motivated by this
fact, we approach the gene selection task as a process of
dividing the tissue samples intok (typically k = 2, 3) clus-
ters where the goal is to find the gene subset which max-
imizes the clusters coherency. In other words, we assume
that if one knew which were the relevant genes to begin with
then the tissue sample values corresponding to the selected
genes would be naturally clustered in intok sets. Our task
is therefore to find that subset which maximizes the cluster
coherency.

The task of gene selection is somewhat different from
that of interpreting patterns of gene expressions [21, 4]. In
the latter case, by regarding the quantitative expression lev-
els ofn genes overq samples as definingn points inIRq,
one employs a clustering technique for grouping together
genes which have similar expression profiles and use the
cluster averages as expression profiles. Various clustering
techniques have been proposed, from direct visual inspec-
tion [4] to employing self organization maps (SOM) [21].
The visual inspection approach does not scale well to larger
data sets, is best suited for data with an expected pattern
(like cyclic cell lines) and is therefore less appropriate for
discovering unexpected patterns. The SOM clustering ap-
proach, as all exploratory data analysis tools, involves man-
ual inspection of the data to extract insights. Gene selection
in comparison is an open problem. Rather than grouping
the gene expression levels into clusters, one seeks to distin-
guish a small set of genes which are relevant to the biolog-
ical classification of the tissue samples. As a result of this
distinction, rather than grouping the gene expression levels
we look for a subset of genes for which the corresponding
tissue sample values are coherently divided intok (2 or 3)
clusters. The notion of clustering is still there but in an indi-
rect manner —the goodness of clustering is used as a score
for the gene selection process.

The clustering score in our approach is measured indi-
rectly. Rather than explicitly performing a clustering phase
per gene selection candidates, we employ spectral informa-
tion in order to measure the cluster arrangement coherency.
Spectral algorithms have been proven to be successful in
clustering, manifold learning or dimensionality reduction,
and approximation methods for NP-hard graph theoretical
problems. In a nutshell, given a selection of genes, the
strength (magnitude) of the leadingk eigenvalues of the
affinity matrix constructed from the corresponding expres-
sion levels of the selected genes is directly related to the
coherence of the cluster arrangement induced by the subset
of selected genes. More details are described in Section 2.

It is worthwhile to note that unsupervised gene selec-
tion differs from dimensionality reduction in that it only
selects a handful of genes (features) which are “relevant”
with respect to some inference task. Dimensionality reduc-
tion algorithms, PCA for example, generate a small number
of features, each of which is a combination of all the orig-
inal features. A main purpose of expression analysis is to
extract a set of genes that are of interest from the perspec-
tive of the biological process being studied. In general, it
is assumed that each such process involves a limited num-
ber of genes. For this reason, feature combination methods
are not as desirable as methods that extract a small subset
of genes. The challenge is to overcome the computational
burden of pruning an exponential amount of gene subsets.
TheQ − α algorithm [24, 19, 25] which we propose to use
as a basis for our approach handles the exponential search
space by harnessing the spectral information (the sum of
eigenvalues of the candidate affinity matrix) in such a man-
ner where a computationally straightforward optimization
guarantees a sparse solution, i.e., a selection of genes rather
than a combination of the original genes.

2 Methods: Selecting Genes with a
Spectral Approach

The array based technologies, cDNA and oligonucleotide,
for studying gene expression levels provide static informa-
tion about gene expression (i.e. in which tissue(s) the gene
is expressed) and dynamic information (i.e. how the ex-
pression pattern of one gene relates to those of others). In
general, the raw data has to be corrected for different exper-
imental conditions by a normalization procedure sometimes
followed by a logarithmic transformation to the absolute in-
tensities or ratios. This results in a data matrix whose rows
correspond to genes and whose columns correspond to tis-
sue samples. We assume that exactly one value for each
gene/sample is given, which may be achieved over repeated
measurements for samples or genes.

Let the microarray data matrix be denoted byM . The
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gene expressions levels that form the rows ofM are denoted
by m⊤

1 , ..., m⊤
n and are normalized to unit norm‖mi‖ = 1.

Each row vector represents a gene sampled over theq trials.
The column vectors ofM represent theq samples (each
sample is a vector inIRn). As mentioned in the previous
section, our goal is to select rows (genes) fromM such that
the corresponding candidate data matrix (containing only
the selected rows) consists of columns that are coherently
clustered ink groups. The value ofk is user specified and is
typically 2 or 3 denoting the expected number of different
biological classes in the tissue samples.

Mathematically, to obtain a clustering coherency score,
we compute the ”affinity” matrix of the candidate data ma-
trix defined as follows. Letαi ∈ {0, 1} be the indicator
value associated with the i’th gene, i.e.,αi = 1 if the i’th
gene is selected and zero otherwise. LetAα be the corre-
sponding affinity matrix whose(i, j) entries are the inner-
product (correlation) between the i’th and j’th columns of
the resulting candidate data matrix:Aα =

∑n

i=1 αimim⊤

i

(sum of rank-1 matrices). From algebraic graph theory, if
the columns of the candidate data matrix are coherently
grouped intok clusters, we should expect the leadingk
eigenvalues ofAα to be of high magnitude [14, 7]. The
resulting scheme maximizes the sum of eigenvalues of the
candidate data matrix over all possible settings of the indi-
cator variablesαi.

What we do in practice, in order to avoid the exponential
growth of assigning binary values ton indicator variables,
is to allow αi to receive real values. A least-squares en-
ergy function over the variablesαi is formed and its optimal
value is sought. What makes this approach different from
the “garden variety” soft-decision-type algorithms is that in
this particular formulation, optimizing over spectral prop-
erties guarantees that theαi always come out positive and
sparseover all local maxima of the energy function. The
energy function takes the following form:

max
Q,αi

trace(Q⊤A⊤

α AαQ) (1)

subject to
n∑

i=1

α2
i = 1, Q⊤Q = I

Note that the matrixQ holds the firstk eigenvectors
of Aα and that trace(Q⊤A⊤

α AαQ) is equal to the sum of
squares of the leadingk eigenvalues:

∑k

j=1 λ2
j . A local

maximum of the energy function is achieved by interleaving
the “orthogonal iteration” scheme [8] within the computa-
tion of α as follows:

Definition 1 (Spectral Gene Selection)LetM be ann×q
input matrix with rowsm⊤

1 , ..., m⊤

n , and let there be some
orthonormalq × k matrix Q(0), i.e.,Q(0)⊤Q(0) = I. Per-
form the following steps through a cycle of iterations with
indexr = 1, 2, ...

1. Let G(r) be a matrix whose(i, j) components are

(m⊤

i mj)m⊤

i Q(r−1)Q(r−1)⊤mj .

2. Letα(r) be the leading eigenvector ofG(r).

3. LetA(r) =
∑n

i=1
α

(r)
i mim⊤

i .

4. LetZ(r) = A(r)Q(r−1).

5. Z(r) QR
−→ Q(r)R(r), that is,Q(r) is determined by the “QR”

factorization ofZ(r).

6. Increment indexr and go to step 1.

Note that steps 4 and 5 of the algorithm consist of the “or-
thogonal iteration” module, i.e., if we were to repeatonly
these we would converge onto the eigenvectors ofA(r).
However, the algorithm does not repeat these steps in iso-
lation and instead recomputes the weight vectorα (steps
1,2,3) before applying another cycle of steps 4 and 5.

The algorithm is meaningful provided that three condi-
tions are met: (1) the algorithm converges to a local max-
imum. (2) at the local maximumαi ≥ 0 (since negative
weights are not admissible), and (3) the weight vectorα
is sparse(since without it the soft decision does not easily
translate into a hard gene selection).

Conditions (2) and (3) are not readily apparent in the
formulation of the algorithm (the energy function lacks the
explicit inequality constraintαi ≥ 0 and an explicit term
to “encourage” sparse solutions) but are nevertheless satis-
fied. The key for having sparse and non-negative weights
is buried in the matrixG (step 1). Generally, the en-
tries ofG are not necessarily positive (otherwiseα would
have been non-negative due to the Perron-Frobenious theo-
rem). However, it can be shown that in a probabilistic man-
ner the leading eigenvector ofG is positive with probabil-
ity 1 − o(1) (i.e, as the number of genesn grows larger
the chances that the leading eigenvector ofG is positive
increases rapidly to unity). Fig. 1 shows the (sorted)α
values for the Hematopoietic differentiation cell lines (de-
tails about this data set are found below). The details of
why the makeup ofG induces such a property, the con-
vergence proof and the proof of the ”Probabilistic Perron-
Frobenious” claim can be found in [24].

Finally, it is worth noting that the scheme can be ex-
tended to handle the supervised situation; that the scheme
can be applied also to the Laplacian affinity matrix; and that
the scheme readily applies when the spectral gap

∑k

i=1 λ2
i −∑q

j=k+1 λ2
j is maximized rather than

∑k

i=1 λ2
i alone. De-

tails can be found in [24].

3 Data sets

We evaluated our proposed approach for gene selection on
five data sets — one of which is a time course data set and
the remaining four data sets with outcome or status labels.
With the four data sets with label information we applied
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supervised approaches to compare with our unsupervised
gene selection algorithm.

The first data set consisted of time course data from
four Hematopoietic cell lines [21]: HL-60, Jurkat, NB4,
and U937. The dimensionality of the expression data was
7, 229 genes. The HL-60, U937, and Jurkat cell lines were
stimulated with phorbol 12-myristate 13-acetate (PMA) for
(0, .5, 4, 24) hours. The NB4 cell line was stimulated with
all trans-retinoic acid (ATRA) for(0, 6, 24, 48, 72) hours.

The remaining four data sets were treatment outcome or
status studies. The first was a study of treatment outcome of
patients with diffuse large cell lymphoma (DLCL), referred
to as ”lymphoma” [20]. The dimensionality of this data set
was7, 129 and there were32 samples with good successful
outcome and26 with unsuccessful outcome. The second
was a study of treatment outcome of patients with child-
hood medulloblastomas [15], referred to as ”brain”. The
dimensionality of this data set was7, 129 and there were
39 samples with good successful outcome and21 with un-
successful outcome. The third was a study of the metas-
tatis status of patients with breast tumors [22], referred to
as ”breast met”. The dimensionality of this data set was
24, 624 and there were44 samples for which the patients
were disease-free for5 years after onset and34 samples
where the tumors metastasized within five years. The fourth
is an unpublished study of of breast tumors [16] for which
corresponding lymph nodes were either cancerous or not,
referred to as ”lymph status”. The dimensionality of this
data set is12, 600 with 47 positive samples for lymph sta-
tus and43 negative samples.

4 Results

The above detailed data sets which were used for our exper-
iments consist of thousands of genes (in the order of104).
Many of the techniques presented in the past start with a
pre-filtering step aiming at reducing the number of genes
from thousands to hundreds. For example, [21] passes the
gene expression vectors through a variation filter before ap-
plying the SOM code for clustering the remaining gene ex-
pression vectors. The variation filter eliminates those genes
with no significant change across the samples.

One of the strengths of our approach is the ability to han-
dle large amounts of data. Any preprocessing filtering step
of the data imposes a prior which very likely has a dramatic
effect on the final results. In many cases, the final results de-
pend not so much on the strength of the main algorithm but
on the type and care placed on the pre-filtering step. Here,
we applied our algorithm on the original data set without
performing pre-filtering steps. The results reported below
start with data matrices consisting of thousands of genes
and produce tens of relevant genes.

4.1 Comparison with SOM on Time Course Data

A significant amount of expression data is time course data.
Finding relevant genes in these types of data sets is an open
problem. PCA is a reasonable approach when the underly-
ing factor of the study is cyclical, for example cell cycle [1]
or circadian rhythms [18]. However, for many studies the
underlying process of interest is not cyclical. One may wish
to find genes that increase in expression over time in one
cell line but decrease in expression for another cell line. A
standard approach to address this is to cluster genes and use
the clusters as expression profiles. Using our unsupervised
gene selection procedure we can find the relevant genes in
time course data directly, without having to cluster.

In [21] Hematopoietic differentiation was studied across
four cell lines. Two myeloid cell lines HL-60 and U937
were examined, a T cell line called Jurkat was examined,
and an acute promyelocytic leukemia cell line was exam-
ined. Time course data for these four cell lines was con-
catenated into a data set with17 samples and7229 genes.
A 6×4 self-organizing map (SOM) was used to cluster this
data set after preprocessing with a variation filter. The24
clusters are displayed in Fig. 2(a). We applied our algo-
rithm to this data set and found that the set of relevant genes
was sparse (meaning it contained a small number of relevant
genes), as shown in Fig. 1. Of the genes corresponding to
the top40 α values, we display the time course signatures
of 6 genes if Fig.2(b) for brevity. The signature of all40
genes will be available on our web page. The time course
of these6 genes correspond to clusters20, 1, 22/23, 4, 15,
21 in Fig.2(a). For a biological explanation of these genes
or corresponding clusters see [21]. Using our algorithm, we
were able to recapitulate the time courses of [21] within-
dividual genesrather than gene clusters and also find those
genes that are relevant.

4.2 Comparison with Other Supervised and Unsuper-
vised Methods using Labeled Data

For the four data sets with label information, classification
accuracy was used as a measure of the goodness of our (un-
supervised) algorithm. We compared the leave-one-out er-
ror on these data sets with the one achieved by both super-
vised and unsupervised methods of gene selection. For both
supervised and unsupervised methods, only the training ex-
amples were used in the process of feature selection and di-
mensionality reduction. The supervised methods used were
signal-to-noise (SNR) [9], radius-margin bounds (RMB)
[3, 23], and recursive feature elimination (RFE) [10]. The
unsupervised methods used were PCA and gene shaving
(GS) [11]. In the unsupervised mode, the class labels were
ignored — and therefore in general one should expect the
supervised approaches to produce superior results than the
unsupervised ones. A linear support vector machine classi-
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Figure 1: A plot of the sortedα-values for the Hematopoietic
differentiation cell lines. As noted, all values come out positive
despite the fact that positivity is not explicitly constrained in the
energy function. The profile of the values indicates sparsity mean-
ing that around 95% of the values are of an order of magnitude
smaller than the remaining 5%.

fier was used for all the gene selection methods. Parame-
ters for SNR, RFE, and RMB were chosen to minimize the
leave-one-out error. A summary of the results appears in
table 1.

Our algorithm considerably out-performs all other unsu-
pervised methods. Furthermore, and somewhat intriguing,
is that our algorithm is competitive with the other super-
vised algorithm (despite the fact that the labels were not
taken into account in the course of running the algorithm)
and performssignificantly betteron the lymph status of
breast tumors as compared to all other gene selection ap-
proaches — including the supervised methods.

5 Discussion

The advent of array technologies make it possible to collect
data on thousands of genes simultaneously while recording
both static information (in which of the tissues the gene is
expressed) and dynamic information (how the expression
pattern of one gene relates to those of others). Typical mi-
croarray data contains tens of thousands of genes over rel-
atively few samples. It has been observed in many cases,
that among the many genes, only a small fraction are really
relevant for providing discriminatory information over the
tissue samples or providing other non-discriminatory infor-
mation about class discovery or cell line analysis. The task
of selecting a small subset of genes is particularly challeng-
ing from an information theoretic point of view, in light of
the few samples. Another challenge in gene selection is the

Figure 2: A plot of the 24 SOM clusters from the
Hematopoeitic differentiation cell lines. In each of the24
clusters the time courses of all four cell lines are shown
(left to right) HL-60+PMA, U937 + PMA, NB4+ATRA, Ju-
rkat+PMA. This is Figure 4 from [21]

combinatorial explosion introduced when all possible gene
subsets are to be scored.

In this work we focused on the unsupervised version of
gene selection. The selection is unsupervised when class
labels are either absent (as in class discovery) or when the
selection is required in the context of cellular process stud-
ied in experiments — such as cell cycle or heat shock in
yeast experiments, and chemical or genetic perturbations of
mammalian cell lines. In these unsupervised settings, our
algorithm significantly and consistently outperformed other
well studied approaches.

The principle of our method is based on scoring gene
subsets by means of measuring the coherence of the cluster
arrangements of the sample vectors induced by the selec-
tion. The cluster coherence can be indirectly evaluated by
the magnitude of the leading eigenvalues of the correspond-
ing affinity matrix. The combinatorial explosion problem is
avoided by the special makeup of a key matrix in the algo-
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Figure 3: A plot of6 of the top40 genes that correspond to
clusters20, 1, 22/23, 4, 15, 21 in Tamayo et al. In each of
the six panels time courses of all four cell lines are shown
(left to right) HL-60+PMA, U937 + PMA, NB4+ATRA, Ju-
rkat+PMA.

rithm which makes it possible to use a soft-selection type of
approach, yet guarantee sparse solutions.

We have first illustrated the value of our approach on a
problem that is inherently unsupervised – that of finding rel-
evant genes in time course data. Instead of directly select-
ing relevant genes, most algorithms cluster all genes and
explain the time courses in terms of gene clusters, and then
look for genes in the various clusters to try and understand
the underlying biology. We directly find the relevant genes
in the time course data. We compared the two approaches
on four well studied Hematopoietic cell lines (HL-60, Ju-
rkat, NB4, and U937). Using our approach we were able
to find individual genes with time courses very similar to
those of gene clusters found using SOMs on this data set.
We then applied our algorithm to four (labeled) treatment
outcome data sets. Comparisons with other supervised and
non-supervised approaches showed a consistent superior-
ity over other unsupervised approaches which we tested in
our studies and comparable performance to supervised ap-
proaches (despite the fact that our algorithm did not make
use of the available class labels). In one case, the perfor-
mance of our algorithm on the lymph nodes data set for
breast tumor study was significantly superior compared to
all the methods we compared against — including the su-
pervised methods.
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