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Abstract 
 

This paper advances descriptor-based face recognition 

by suggesting a novel usage of descriptors to form an 

over-complete representation, and by proposing a new 

metric learning pipeline within the same/not-same 

framework. First, the Over-Complete Local Binary 

Patterns (OCLBP) face representation scheme is 

introduced as a multi-scale modified version of the Local 

Binary Patterns (LBP) scheme. Second, we propose an 

efficient matrix-vector multiplication-based recognition 

system. The system is based on Linear Discriminant 

Analysis (LDA) coupled with Within Class Covariance 

Normalization (WCCN). This is further extended to the 

unsupervised case by proposing an unsupervised variant 

of WCCN. Lastly, we introduce Diffusion Maps (DM) for 

non-linear dimensionality reduction as an alternative to 

the Whitened Principal Component Analysis (WPCA) 

method which is often used in face recognition. 

We evaluate the proposed framework on the LFW face 

recognition dataset under the restricted, unrestricted and 

unsupervised protocols. In all three cases we achieve very 

competitive results.  

 

1. Introduction 

The Labeled Faces in the Wild (LFW) face recognition 

benchmark [1] is currently the most active research 

benchmark of its kind. It is built around a simple binary 

decision task: given two face images, is the same person 

being photographed in both? The comprehensive results 

tables show a large variety of methods which can be 

roughly divided into two categories: pair comparison 

methods and signature based methods. 

In the pair comparison methods [2, 3, 4], the decision is 

based on a process of comparing the two images part by 

part, oftentimes involving an iterative local matching 

process. In the signature based methods [5, 6, 7, 8, 9], 

each face image is represented by a single descriptor 

vector and is then discarded. To compare two face images, 

their signatures are compared using predefined metric 

functions, which are sometimes learned based on the 

training data. 

The pair comparison methods allow for flexibility in 

representation, based on the actual image pair to be 

compared. On the other hand, the signature based methods 

are often much more efficient. Furthermore, there is a 

practical value in signature based methods in which the 

signature is compact. Such systems can store and retrieve 

face images using limited resources. 

In this paper, we propose an efficient signature based 

method, in which the storage footprint of each signature is 

on the order of a hundred floating point numbers. This 

compares to storage footprints of one to three orders of 

magnitude larger in previous work.  

Our method includes multiple contributions. First, as 

detailed in Section 2, we propose to use over-complete 

representations of the input image. This is shown to 

significantly contribute to the overall performance. 

However, this added accuracy is hidden until 

dimensionality reduction is performed. In Section 3, we 

propose the use of the WCCN [10] metric learning 

technique for face recognition. In Section 4, we propose a 

general scheme for generating labeled data from an 

unlabeled data. In Section 5, we describe in detail our 

proposed recognition system, which is applicable for both 

supervised and unsupervised learning by utilizing the 

scheme described in Section 4. This results in an extension 

of the WCCN metric learning to the unsupervised case. In 

Section 6, the Diffusion Maps technique (DM) [11] is 

introduced as a non-linear dimensionality reduction 

method for face recognition. We investigate it as an 

alternative to WPCA [6] and show that it can improve 

performance over the baseline when being fused with 

WPCA. In Section 7, we evaluate the proposed system on 

the LFW dataset under the restricted, unrestricted and 

unsupervised protocols and report state of the art results 

on these benchmarks. Finally, in Section 8, we conclude 

and discuss future work. 

1.1 Overview of the recognition pipeline 

A unified pipeline is used in order to solve the 

unsupervised case and the two supervised scenarios of the 

LFW benchmark: the restricted and the unrestricted 

protocols.  

First, a representation is constructed from the face 

images. This either uses existing methods, such as LBP 

[9], TPLBP [12] and SIFT [7], or methods which are 

introduced to the fields in this paper, such as the OCLBP 
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and the use of the Scattering transform [13]. Second, a 

dimensionality reduction step takes place. This is either 

WPCA or the Diffusion Maps for the unsupervised case, 

or PCA-LDA or DM-LDA for the two supervised settings. 

Third, WCCN is applied. For the supervised settings, the 

original WCCN method [10] is applied. For the 

unsupervised case, our unsupervised WCCN variant is 

applied. As a last step, cosine similarities based on 

multiple representations and image features are combined 

together using uniform weighting. 

2. Over-complete representations 

Over-complete representations have been found to be 

useful for improving the robustness of classification 

systems by using richer descriptors [14, 15]. In this work, 

we introduce two new adaptations of descriptors for the 

domain of face recognition. Both of them share the 

property of over-complete representation. In the 

experimental results section, we show that the 

improvement in the accuracy of using over-complete 

representations remains hidden until some dimensionality 

reduction is involved. However, its contribution to the 

final score is significant. 

2.1. Over-complete local binary patterns 

LBP [16] is one of the most successful features for 

texture classification. Specifically, a modified 'uniform' 

version [9] of the original LBP was found to be useful for 

the task of face recognition. Several attempts to extend or 

modify the LBP have been made in [12, 17]. However, 

most of them resulted in new variants of LBP which do 

not necessarily outperform the original one. 

The standard LBP operator for face recognition is 

denoted as  2

,

u

p r
LBP  where 2u stands for uniform patterns, 

p  defines the number of points that are uniformly 

sampled over a circle with a radius r . This computation is 

done block-wise and the results from all blocks are 

concatenated to form a final descriptor. For an overview of 

the LBP operator for face recognition we refer the reader 

to [9]. 

 In this work we keep the original form of the LBP as it 

is, but suggest an over-complete representation built on 

top of it. The proposed Over-Complete LBP (OCLBP) 

differs from the original LBP in two major properties. 

First, it is computed with overlapping blocks, similar to 

[18]. The amount of vertical- and horizontal-overlap is 

controlled by the two parameters , [0,1)v h∈ with 

0h v= =  degenerating to non-overlapping blocks. The 

second difference is in the varied block and radius sizes. 

We repeat the LBP computation for different sizes of 

block and radius, similar to the multi-scale variant in [19]. 

We name the resulting representation as OCLBP. More 

formally, given an input image and a set of configurations

1{( , , , , , )}
k

i i i i i i i
S a b v h p r == , we divide the image to blocks 

in a size of 
i i

a b×  with vertical overlap of
i

v , horizontal 

overlap of 
i

h  and compute a LBP descriptor using the 

operator
2

,i i

u

p r
LBP .  We repeat this computation for all 

configurations in S  and concatenate the descriptors to a 

single vector which is the resulting OCLBP descriptor. 

Since the computations of the different configurations 

are independent, the OCLBP descriptor can be easily 

paralleled. 

 We show in Section 7 that the OCLBP descriptor 

achieves the same performance as the standard LBP when 

they are used in their original dimension. However, after 

applying dimensionality reduction, a significant gain in 

accuracy is achieved by the more elaborate scheme. 

2.2. Scattering transform for face recognition 

The Scattering Transform was introduced by Mallat in 

[13]. This work has been extended to various computer 

vision tasks in [20, 21]. As an image representation, a 

scattering convolution network was proposed in [20]. This 

representation leads to an extremely high dimensional 

descriptor that is invariant for small local deformations in 

the image. For texture classification, a Scattering wavelet 

network managed to achieve state of the art results [21]. 

The output of the first layer of a scattering network can 

be considered as a SIFT-like descriptor while the second 

layer adds further complementary invariant information 

which improves discrimination quality. The third layer, 

however, was found to have a negligible contribution for 

classification accuracy while increasing the computational 

cost significantly.  

In this work, we investigate the contribution of the 

Scattering descriptor to our face recognition framework. In 

a similar manner to the OCLBP, we find that the 

Scattering descriptor is much more effective when 

combined with dimensionality reduction. 

We refer the reader to [13] for a detailed description of 

the Scattering transform.  

3. Within class covariance normalization 

Within Class Covariance Normalization (WCCN) has 

been used mostly in the speaker recognition community 

and was first introduced in [10]. The within class 

covariance matrix W is computed as follows: 

1 1

1 1
( )( ) ,

inC
j j T

i i i i

i ji

W x x
C n

µ µ
= =

= − −∑ ∑  

Where C  is the number of different classes, 
i

n is the 

number of instances belonging to class i , j

i
x  is the jth  

instance of class i  and 
i

µ is the mean of class i .  

In a sense, WCCN is similar to the family of methods 
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that down-regulate the contribution of the directions in the 

vector space that account for much of the within class 

covariance. This is often done by projecting the data onto 

the subspace spanned by the eigenvectors corresponding 

to the smallest eigenvalues ofW .  In WCCN, this effect is 

performed in a softer way without performing explicit 

dimensionality reduction: instead of discarding the 

directions that correspond to the top eigenvalues, WCCN 

reduces the effect of the within class directions by 

employing a normalization transform 
1/2

T W
−= . While   

to the best of our knowledge it was previously unused in 

face recognition, we show a clear improvement in 

performance over the state of the art by using the WCCN 

method when applied in the LDA subspace. 

In this work, we also introduce an unsupervised version 

of WCCN, which is shown to be useful in case we lack the 

necessary labeled data. In Section 7, we evaluate our 

proposed method and show that it is an improvement over 

the baseline algorithms. Furthermore, we show that 

although the unsupervised WCCN algorithm does not 

make use of any label information, it is competitive with 

the original supervised WCCN in several scenarios. 

4. Unsupervised labeling 

A common and challenging problem in machine 

learning is the beneficial utilization of successful 

supervised algorithms in the absence of labeled data. In 

this section, we propose a simple unsupervised algorithm 

for generating valuable labels for the pair matching 

problem. 

 Before describing the algorithm, we enumerate our 

two assumptions. First, we assume that we are equipped 

with an unsupervised algorithm that is able to achieve 

some classification accuracy – we consider this algorithm 

as the baseline algorithm. We focus our discussion on 

algorithms that produce a classification score and not just 

binary labels. The second assumption is on the shape of 

the distribution of the classification scores. We assume 

that the score distribution is approximately uni-modal and 

has two tails. If our baseline algorithm manages to achieve 

a reasonable accuracy on the training set, we would expect 

to find many fewer classification mistakes on the tails, 

rather than in the area around the mean score.  

In the case of the "same/not-same" classification, we 

would expect the majority of the scores in one tail to 

belong to pairs that are matched and the majority of the 

scores on the other tail to belong to pairs that are 

mismatched. This behavior leads to the formation of two 

(hopefully) separated sets: one consists mostly of "same" 

pairs and the other consists mostly of "not-same" pairs. 

The size of each cluster is determined by the number of 

pairs we pick from the corresponding tail. This number is 

a parameter that defines a tradeoff between the number of 

desired labels and the confidence that we have in this 

labeling. Therefore, we propose Algorithm 1. 

Note that except for positive and negative labels there 

are also 'unknown' labels. In case we are equipped with an 

algorithm (B) that is designed to handle unlabeled samples 

(i.e., a semi-supervised algorithm), we provide it with this 

information. Otherwise, we provide B exclusively with the 

positive and negative sets of examples. 

The optimal values of the parameters 
l

t  and 
r

t  are 

related to the accuracy of the baseline model A , the shape 

of the score distribution, and the number of labels that we 

want to generate. For example, if we are provided with a 

baseline model which achieves poor accuracy, we should 

expect poor labeling as well. In case the empirical 

distribution is symmetric we can choose
l r

t t= , otherwise 

we might consider the size of the tails for each tail 

separately. Since the generated labels are used to train a 

new supervised model we can apply Algorithm 1 

iteratively. Another possible extension is to use a set of 

supervised algorithms instead of a single one and to 

determine the final labeling according to a voting scheme. 

5. Fast supervised and unsupervised vector 

multiplication recognition system  

We now describe in detail our proposed recognition 

system, which we call VMRS for Vector Multiplication 

Recognition System. Given two samples, we need to 

decide whether they belong to the same class or not. First, 

each sample is projected to a low dimensional subspace by 

WPCA. Then, we perform an additional supervised 

dimensionality reduction by applying LDA. Finally, we 

perform WCCN to the resultant feature vectors in the low 

dimensional LDA-subspace and produce a score by 

applying cosine similarity. Therefore, the pipeline can be 

reduced to two matrix-vector multiplications followed by 

cosine similarity. We formally denote ,P L and W as the 

Algorithm 1 ( , , , , )l rA B T t t  

Inputs: A - a trained model of the baseline 

unsupervised algorithm, B - supervised algorithm, T

- training set. 
l

t - a threshold on the left tail, 
r

t - a 

threshold on the right tail. 

Output: C - a new trained model. 

1. Compute the pair-wise score matrix S using A

and T . 

2. Assign a label of  1  to all pairs with a score 

above 
r

t .  

3. Assign a label of 1−  to all pairs with a score 

below 
l

t . 

4. Assign a label of 0  to all the other pairs. 

5. Train a new model C using the assigned labels 

and B  

6. Return C  
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WPCA projection matrix, LDA projection matrix and 

Within Class Covariance (WCC) matrix, respectively. 

Thus, given two vectors, �, ����, representing two face 

images, the final score is defined as:  

( ) ( )
( , , )

T
Mx My

s x y M
Mx My

=  

Where, 
1/2

M W LP
−= . 

The final decision is made according to a prescribed 

threshold that can be set to an Equal Error Rate (EER) 

point, Verification Rate (VR) point, or alternatively, can 

be learned by a SVM [22].  

5.1. Unsupervised pipeline 

The pipeline described above is supervised and requires 

labeled data. However, in many real-world scenarios we 

lack labels. In such cases we can apply Algorithm 1 

(Section 4) in order to generate artificial labels for the 

training set. Specifically, we use the WPCA model as a 

baseline A  and generate new labels according to the 

distribution of the scores of pairs in the training set. We 

then use these labels to estimate the within class 

covariance matrix (note that we do not apply LDA in this 

case, since it is unsupervised). Since WCCN computation 

is based on pairs from the same class, we only choose 

scores from one of the two tails (the 'same' tail). Then we 

treat each pair in the 'same' group as a single class and 

merge classes that share the same samples, i.e., we  utilize 

strongly connected components in the connectivity graph 

induced by the similar pairs.  

In our experiments, we selected the parameter 	�	 so that 

the pairs with distances in the bottom 15% of the distances 

of all possible pairs will constitute the “same” pairs. This 

value was determined once, when performing a limited 

investigation of View 1 of the LFW benchmark (intended 

for parameter fitting) and remained fixed. In Section 7, we 

show that this approach improves over the baseline WPCA 

system. 

As already mentioned in Section 4, one can iterate 

between generating new labels, using them for training a 

new supervised model, and generating new scores. 

However, we did not find that performing multiple 

iterations improves performance. Hence, Algorithm 1 is 

employed only once. With the introduction of this 

unsupervised variant of WCCN,  the proposed system is 

suitable for both the supervised and the unsupervised 

scenarios. 

 It is important to clarify that our proposed system, 

excluding the feature extraction phase, is extremely 

efficient in the sense of computational complexity. The 

most demanding computation which takes place during the 

test phase is the linear transformation M on the pair of 

original feature vectors ,x y . This has a great advantage 

over "lazy" learning approaches such as [22] which make 

an explicit use of the training set during the test phase. The 

complexity of the training phase is dominated by the 

complexity of the computation of the eigen-problems that 

are encountered in WPCA and LDA and the computation 

of the matrix square root of
1

W
−

. 

6. Diffusion Maps 

Many of the state of the art face recognition systems 

incorporate a dimensionality reduction component. The 

aim of dimensionality reduction is twofold. First, learning 

in high dimensional vector spaces is computationally 

demanding. Second, in some cases and especially when 

the high dimensionality stems from over-complete 

representations, there is a large amount of redundancy in 

the data. Dimensionality reduction techniques attempt to 

solve both of these problems by exploring meaningful 

connections between the data points and discover the 

geometry that best represents that data. Most of the work 

done so far in face recognition applied linear 

dimensionality reduction. One of the problems with linear 

dimensionality reduction is the implicit assumption that 

the geometric structure of data points is well captured by a 

linear subspace. It has been shown [23] that real world 

signals, in most cases, have non-linear structures and 

reside over a manifold.  

We propose to use a non-linear dimensionality 

reduction technique called Diffusion Maps (DM). We 

introduce a whitened variant of the conventional DM 

framework and show how to deal with the out-of-sample 

extension problem, which occurs in the test phase. In 

Section 7, we show that by incorporating the DM 

framework into the proposed recognition system of 

Section 5, we achieve results which are on a par with the 

state of the art. Finally, we show that by combining DM 

and WPCA we are able to get an additional improvement 

in accuracy.  

We will briefly describe the main steps of DM (for a 

fully rigorous mathematical derivation we refer the reader 

to [11]).  

In the DM framework, we are provided with a training 

set  
����
�
� ⊂ �� and affinity kernel ( , )k ⋅ ⋅ . A commonly 

used kernel is the Gaussian kernel: 
2( , )

( , ) exp
i j

i j

c x x
k x x

σ

 
= −  

 
 

Where ( , )c ⋅ ⋅  is a metric and σ  is a parameter which 

determines the size of the neighborhood over which we 

trust our local similarity measure. Using the affinity 

kernel, we compute a pair-wise affinity matrix K  . Then, 

we convert K to a transition Markov matrix P by 

normalizing each row in K by its sum: � = ����, where 

D is a diagonal matrix normalizing the rows of K. 

Therefore, t
P is a matrix, in which the entry

,

t

i j
P  is the 
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probability of transition from node 
i

x  to node 
j

x  in t  

steps. A diffusion distance after t  steps is defined by:

2

, ,

1

( , ) ( )
n

t t

t i j i k j k

k

D x x P P
=

= −∑ . Since the diffusion distance 

computation requires the evaluation of the distances over 

the entire training set, it results in an extremely complex 

operation. Fortunately, the same distance can be computed 

in a much simpler way: By spectral decomposition of P , 

we get a complete set of eigenvalues 
0 11 ...

n
λ λ λ= ≥ ≥ ≥  

and left and right eigenvectors satisfying:  
i i i

Pψ λϕ= . We 

then define a mapping 
1

:{ }
n

t i i
H x V= →  according to:

1 1
( ) ,...,

T
t t

t i i l li
H x λ ψ λ ψ =   , where 

ki
ψ  indicates the i -th 

element of the k -th eigenvector of P and l is the 

dimension of the diffusion space V . It has been shown 

[11] that for 1l m= −  the following equation holds:
2

2
( ) ( ) ( , )

t i t j t i j
H x H x D x x− = . This result justifies the 

use of squared Euclidean distance in the diffusion space. 

In practice, one should pick 1l m< − according to the 

decay of
1( )n

i i
λ = . This decay is related to the complexity of 

the intrinsic dimensionality of the data and the choice of 

the parameterσ . 

6.1. Uniform scaling 

Inspired by WPCA, we propose to weigh all coordinates in 

the diffusion space uniformly. We do that by simply 

omitting the eigenvalues when computing the embedding. 

Therefore, we change the mapping H to 

[ ]1
( ) ,...,

T

i i li
H x ψ ψ=  . 

While originally inspired by the relation between PCA and 

WPCA, this modification results in a significant 

improvement when applying it to DM framework. We 

hypothesize that this improvement occurs because DM, as 

an unsupervised algorithm, holds little information in its 

eigenvalues regarding the actual discrimination capability. 

Confounding factors, such as illumination, can be 

associated with some of the leading eigenvectors. 

6.2. Out of sample extension 

Since the domain of H is defined only on the training 

set, we cannot compute the embedding for a new test 

sample. A trivial solution would be to re-compute the 

spectral decomposition on the whole training data and the 

new test sample from scratch. However, this solution is 

extremely costly in the sense of computation time. Thus, 

we propose a simpler solution: Our approach assumes that 

the training data is sufficiently diverse in order to capture 

most of the variability of the face space. In this case, we 

would expect the embedding of a new test sample to be 

approximated well by a linear combination of embeddings 

of the training samples in the low dimensional diffusion 

space. A natural choice is to set the coefficient for each 

training sample as the probability of moving from it to the 

new test sample. Thus, for a new test sample 
1n

x + we 

compute the transition probabilities 1,n j
P + , 1 j n∀ ≤ ≤  and 

define its embedding to be

1 1, 1 1,

1 1

( ) ,...,

T
n n

n n j j n j lj

j j

H x P Pψ ψ+ + +
= =

 
=  
 
∑ ∑  . As a result we 

get an extended mapping 1

1:{ }
n

i i
H x V

+
= → , which includes 

1n
x +  as well. 

Our proposed extension is quite similar to the Nystrom 

method [24] that has been used in spectral graph theory. 

Table 1 LBP OCLBP TPLBP SIFT SCATTERING 

Unsupervised 
 

SQRT 
 

SQRT  SQRT 
 

SQRT 
 

SQRT 

RAW  72.48 ± 0.49 72.48 ± 0.49 72.78 ± 0.39 72.78 ± 0.39 73.91 ± 0.57 73.91 ± 0.57 68.43 ± 0.49 68.43 ± 0.49 66.83 ± 0.63 66.83 ± 0.63 

WPCA  77.90 ± 0.59 80.55 ± 0.38 80.21 ± 0.35 82.78 ± 0.41 78.06 ± 0.45 79.71 ± 0.48 78.80 ± 0.32 79.43 ± 0.30 80.01 ± 0.50 80.61 ± 0.48 

DM 77.30 ± 0.60 79.56 ± 0.44 79.26 ± 0.42 82.20 ± 0.49 77.56 ± 0.40 78.55 ± 0.62 77.75 ± 0.33 78.96 ± 0.40 79.37 ± 0.56 81.13 ± 0.52 

WPCA+WCCN   78.81 ± 0.73 82.48 ± 0.35 81.90 ± 0.42 86.66 ± 0.30 78.35 ± 0.52 80.2 ± 0.51 80.96 ± 0.43 81.88 ± 0.36 81.78 ± 0.49 82.50 ± 0.55 

DM+WCCN  78.75 ± 0.58 82.43 ± 0.22 81.13 ± 0.40 85.46 ± 0.40 79.36 ± 0.43 81.33 ± 0.57 80.70 ± 0.35 81.91 ± 0.29 80.10 ± 0.55 81.36 ± 0.56 

Table 2 LBP OCLBP TPLBP SIFT SCATTERING 

Restricted 
 

SQRT 
 

SQRT  
  

SQRT 
 

SQRT 

PCALDA 83.30 ± 0.59 85.23 ± 0.37 85.10 ± 0.46 87.85 ± 0.69 82.71 ± 0.54 83.88 ± 0.62 83.30 ± 0.59 85.23 ± 0.37 85.10 ± 0.46 87.85 ± 0.69 

DMLDA 81.53 ± 0.66 84.73 ± 0.50 84.68 ± 0.84 87.73 ± 0.58 80.13 ± 0.56 82.08 ± 0.62 81.53 ± 0.66 84.73 ± 0.50 84.68 ± 0.84 87.73 ± 0.58 

WPCA 82.03 ± 0.59 84.86 ± 0.37 83.66 ± 0.50 87.23 ± 0.38 81.45  ± 0.61 82.91 ± 0.53 82.03 ± 0.59 84.86 ± 0.37 83.66 ± 0.50 87.23 ± 0.38 

DM 81.91 ± 0.59 84.53 ± 0.33 83.76 ± 0.56 87.08 ± 0.33 80.05 ± 0.58 81.81 ± 0.59 81.91 ± 0.59 84.53 ± 0.33 83.76 ± 0.56 87.08 ± 0.33 

Table 3 LBP OCLBP TPLBP SIFT SCATTERING 

Unrestricted 
 

SQRT 
 

SQRT  SQRT 
 

SQRT 
 

SQRT 

PCALDA 84.40 ± 0.68 85.96 ± 0.58 86.78 ± 0.58 88.75 ± 0.59 83.91 ± 0.67 85.38 ± 0.67 86.61 ± 0.44 88.06 ± 0.19 87.00 ± 0.70 87.96 ± 0.70 

DMLDA 83.23 ± 0.66 85.26 ± 0.59 85.71 ± 0.56 88.66 ± 0.60 82.91 ± 0.55 84.11 ± 0.59 86.80 ± 0.40 87.06 ± 0.36 85.88 ± 0.73 86.21 ± 0.73 

WPCA 81.91 ± 0.63 84.53 ± 0.43 84.56 ± 0.45 87.30 ± 0.52 81.13 ± 0.70 83.31 ± 0.64 84.01 ± 0.58 84.85 ± 0.25 84.25 ± 0.60 84.89 ± 0.65 

DM  81.11 ± 0.54 83.76 ± 0.48 83.61 ± 0.38 86.96 ± 0.53 81.58 ± 0.62 83.01 ± 0.58 82.93 ± 0.43 83.85 ± 0.34 83.87 ± 0.53 84.43 ± 0.62 

Tables 1-3: Classification accuracy (± standard error) of various combinations of classifiers and descriptors in the unsupervised, 

restricted and unrestricted settings, respectively. See text for details regarding the classifiers and descriptors. 
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The main difference in our formulation is that we ignore 

the eigenvalues due to the modification described above. 

7. Experimental setup and results 

We evaluate the methods described above on the LFW 

dataset [1]. As is customary, we test the effect of the 

various contributions on the 10 folds of view 2 of the 

LFW dataset. 

There are three benchmarks that are commonly used, 

and we provide very competitive results on all three.  The 

most popular supervised benchmark is the "image-

restricted training''. This is a challenging benchmark 

which consists of 6,000 pairs, half of which are “same” 

pairs. The pairs are divided into 10 equally sized sets. The 

benchmark experiment is repeated 10 times, where in each 

repetition, one set is used for testing and nine others are 

used for training. The task of the tested method is to 

predict which of the testing pairs are matched, using only 

the training data (in all three benchmarks, the decision is 

done one pair at a time, without using information from 

the other testing pairs). The second supervised benchmark, 

constructed on top of the LFW dataset, is the 

"unrestricted'' benchmark. In this benchmark, the persons’ 

identities within the nine training splits are known, and the 

systems are allowed to use this information. For example, 

in this benchmark, the original WCCN method can be 

used directly since the training set is divided into identity-

based classes. Last, the unsupervised benchmark uses the 

same training set. Here, however, all the training images 

are given as one large set of images without any pairing or 

label information. The evaluation task remains the same as 

before – distinguish between matching ("same'') and non-

matching ("not-same'') pairs of face images. 

7.1. Front-end 

Our system makes no use of training data outside of the 

LFW dataset, except for the implicit use of outside 

training data through trained facial feature detectors that 

are used to align the images, since we use the aligned 

LFW-a [22] set of images. The aligned images were 

cropped to 150 80×  pixels as suggested in [6]. In contrast 

to other leading contributions [5, 25, 26], we did not apply 

any further type of preprocessing that utilizes pose 

estimators or 3D modeling. 

7.2. Descriptors and parameters 

We evaluate 5 different descriptors: LBP, Three Patch 

LBP (TPLBP), OCLBP, SIFT and the Scattering 

descriptor. For LBP we used the same parameters that 

were used in [6] while for TPLBP we used the parameters 

reported in [12]. We used the SIFT descriptors computed 

by [7].  For the OCLBP descriptors, we used View 1 in 

order to determine the following set of configurations (see 

Section 3.1 for a detailed description of the OCLBP 

parameters): 

1 1 1 1 1 1
{(10,10, , ,8,1), (14,14, , ,8,2), (18,18, , ,8,3)}

2 2 2 2 2 2
S =  

Note that in all three scales, the horizontal and vertical 

overlap parameters are both set to half. 

For the Scattering descriptor we used the Scattering 

Toolbox release from [27]. We set it to use the Gabor 

wavelet and the values suggested in [27]: a scattering 

order of 2, maximum scale of 3 and 6 different 

orientations. 

The original descriptor dimensions are 7080, 40887, 

9216, 3456 and 96520 for the LBP, OCLBP, TPLBP, 

SIFT and Scattering, respectively. 

 

7.3. System parameters 

We used View 1 of the dataset to determine the 

parameters of the system. The WPCA dimension is set to 

500, the DM dimension is also set to 500 and the Gaussian 

kernel parameter is fixed at 4σ = . In the unrestricted and 

restricted benchmarks, we used LDA dimensions of 100, 

100, 100, 30 and 70 for the LBP, OCLBP, TPLBP, SIFT 

and Scattering descriptors, respectively. As already 

mentioned in Section 6, we chose the threshold in the 

unsupervised WCCN algorithm such that the number of 

generated 'same' labels is 15% of all pairs. 

7.4. Results 

We evaluate the proposed system for each feature and 

its square root version under the restricted, unrestricted 

and unsupervised protocols. The experimental results are 

presented in Tables 1-6, and depict the mean classification 

accuracy û and standard error of the mean SE.  

The unsupervised results for the individual face 

descriptors are depicted in Table 1. The table shows the 

progression from the baseline "raw" descriptors, before 

any learning was applied, through the use of 

dimensionality reduction (WPCA or DM) to the results of 

applying unsupervised WCCN (Section 6.1) on the 

dimensionality reduced descriptors. As can be seen, the 

suggested pipeline improves the recognition quality of all 

descriptors significantly, in both the dimensionality 

reduction step and in the unsupervised WCCN step. No 

clear advantage to either WPCA or DM is observed. 

The results obtained by combining the facial 

descriptors together (excluding the original LBP 

descriptor) are reported in Table 4. This combination, here 

and throughout all fusion results in this paper, is done by a 

simple summation of the similarity scores using uniform 

weights. The table also shows, for comparison, the results 

of solely employing OCLBP and the best results obtained 

by previous works. While our face description method is 

considerably simpler than I-LPQ* [28], which is currently 
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the state of the art in this category, it outperforms it, even 

with the usage of a single descriptor. 

 Results in the supervised-restricted benchmark are 

reported in Table 2 for the individual features and in Table 

5 for the combined features. In Table 2, we present four 

possibilities which differ by the dimensionality reduction 

algorithm used: PCA followed by LDA (PCALDA), DM 

followed by LDA (DMLDA), WPCA or DM. WCCN, is 

then applied in all four cases. As a usual trend, it seems 

that employing LDA in between the unsupervised 

dimensionality reduction (PCA or DM) and the WCCN 

method improves results. It is important to clarify that 

both LDA and WCCN were applied in a restricted manner 

by using only pairs information, i.e. no explicit 

information about the identities was used and each pair 

formed a mini-class of its own. 

Table 5 presents the combined results of all the 

descriptors, excluding the original LBP descriptor (due to 

the use of OCLBP).  The combined method ("DM+WPCA 

fusion") includes the four descriptors (with and without 

square root) and both PCA+LDA+WCCN and 

DM+LDA+WCCN (a total of 16 scores). It is evident that 

combining the DM based method together with the PCA 

based method improves performance over using PCA or 

DM separately. 

In comparison to previous methods, our method 

outperforms the state of the art by a large margin. The 

only exception is the "Tom-vs-Pete" [5] method which 

uses an external labeled dataset, which is much bigger 

than the LFW dataset, and employs a much more 

sophisticated face alignment method. Our system 

considerably outperforms the accuracy of 90.57% 

obtained by [3] in the case of a similarity-based alignment 

as used by LFW-a, in spite of the fact that our method 

does not use the added external data.  

The results for the supervised-unrestricted benchmark 

are depicted in Tables 3 and 6. The classical form of 

WCCN [10] applies directly to this setup. Two systems  

outperform ours in this category. The first is CMD+SLBP 

(aligned) which is a commercial system [29]. The second 

[30] has a few distinguishing characteristics, which can be 

further utilized to improve our results. First, a different 

alignment method was used. Second, features were 

extracted on facial landmarks. Finally, their proposed 

algorithm operated in a much higher-dimensional feature 

space, which requires more computational resources. 

In all three experiments, OCLBP achieves a very 

competitive accuracy as a single feature. For example, as 

can be seen in Table 5, in the restricted case it achieves an 

accuracy which is much better than the current best 

reported accuracy obtained by [6]. The Scattering 

transform based description (Section 3.2), however, does 

not seem to improve over descriptors of lower 

dimensionality by a significant margin. Nevertheless, it 

plays a crucial role in increasing performance in fusion.  

One can also notice that the unsupervised WCCN in 

some of the cases achieves an accuracy which is not far 

away from the accuracy obtained by the original 

supervised WCCN. For example, for the OCLBP 

descriptor, WPCA + supervised WCCN achieves an 

accuracy of  87.2% for the restricted case while the 

WPCA + unsupervised WCCN pipeline achieves an 

accuracy of 86.7 %. 

 

8. Conclusions 

We propose an effective method that seems to be 

unique in that it addresses all three benchmarks in a 

unified manner. In all three cases, very competitive results 

are achieved. The method is heavily based on 

dimensionality reduction algorithms, both supervised and 

unsupervised, in order to utilize high dimensionality 

representations. Necessary adjustments are performed in 

order to adapt methods such as WCCN and DM to the 

requirements of face identification and of the various 

benchmark protocols. 

From a historical perspective, our method is 

"reactionary". The emergence of the new face recognition 

benchmarks has led to the abandonment of the classical 

algebraic methods such as Eigenfaces and Fisherfaces. 

However, both PCA and LDA play important roles in our 

pipeline, even though these methods are not applied 

Table 5: Comparison of classification accuracy (± standard 

error) for various systems operating in the restricted setting. 

System Accuracy 

I-LPQ*, aligned [28] 86.20 ± 0.46 

OCLBP 86.66 ± 0.30 

WPCA fusion 88.00 ± 0.36 

DM fusion 87.87 ± 0.41 

DM+WPCA fusion 88.57 ± 0.37 

Table 4: Comparison of classification accuracy (± standard 

error) for various systems operating in the unsupervised setting. 

System Accuracy 

LBP + CSML, aligned [6] 85.57 ± 0.52 

CSML + SVM, aligned [6] 88.00 ± 0.37 

High-Throughput BIF, aligned [14] 88.13 ± 0.58 

Associate-Predict [3] 90.57 ± 0.56 

Tom-vs-Pete + Attribute [5] 93.30 ± 1.28 

OCLBP 87.85 ± 0.69 

PCA fusion 90.61 ± 0.56 

DM fusion 90.26 ± 0.55 

DM+PCA fusion 91.10 ± 0.59 

System Accuracy 

LBP PLDA, aligned [26] 87.33 ± 0.55 

combined PLDA [26] 90.07 ± 0.51 

face.com r2011b [25] 91.30 ± 0.30 

CMD + SLBP, aligned [29] 92.58 ± 1.36 

combined Joint Bayesian [31] 90.90 ± 1.48 

high-dim LBP [30] 93.18 ± 1.07 

OCLBP 88.75 ± 0.60 

DM fusion 91.56 ± 0.45 

PCA fusion 91.56 ± 0.54 

DM+PCA fusion 92.05 ± 0.45 

Table 6: Comparison of classification accuracy (± standard 

error) for various systems operating in the unrestricted setting. 
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directly to image intensities. WCCN, which is a major 

contributing component to our pipeline, was borrowed and 

adapted from the speaker recognition domain. However, it 

is closely related to other algebraic dimensionality 

reduction methods. In contrast to recent contributions such 

as CSML [6] or the Ensemble Metric Learning method 

[29] that are influenced by modern trends in metric 

learning, our method demonstrates that classical  face 

recognition methods can still be relevant to contemporary 

research. 
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