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Abstract

Diorama artists produce a spectacular 3D effect in a confined space by generating depth illusions that are faithful
to the ordering of the objects in a large real or imaginary scene. Indeed, cognitive scientists have discovered that
depth perception is mostly affected by depth order and precedence among objects. Motivated by these findings,
we employ ordinal cues to construct a model from a single image that similarly to Dioramas, intensifies the depth
perception. We demonstrate that such models are sufficient for the creation of realistic 3D visual experiences.

The initial step of our technique extracts several relative depth cues that are well known to exist in the human
visual system. Next, we integrate the resulting cues to create a coherent surface. We introduce wide slits in the
surface, thus generalizing the concept of cardboard cutout layers. Lastly, the surface geometry and texture are

Volume 26 (2007), Number 3

extended alongside the slits, to allow small changes in the viewpoint which enriches the depth illusion.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; 1.4.8 [Image Processing and Computer Vision]: Depth cues

1. Introduction

Presenting a realistic view of a large scene in a small com-
pact space has been the main goal of dioramas since their
invention in the 19th century. Diorama techniques have in-
cluded placing object-models at small depth changes, and
using occlusion, parallax and light changes to reinforce the
illusion of viewing a larger space. The goal of this work is
to create a similar illusion from a single input image, i.e.,
to automatically construct a model in which depth can be
realistically perceived by the observer.

The construction of a 3D scene from a single image,
is a highly challenging problem mainly due to the obvi-
ous view/space ambiguities and the sparseness of the details
that can be utilized to reconstruct the scene. Over the last
few years, various effective techniques have been applied to
this problem including, among others *Tour Into The Pic-
ture’ [HAA97] and * Automatic Photo Popup’ [HEHOS].

While attempting to produce a model which resembles the
original 3D scene, these methods often fit a simplified 3D
model, such as piecewise planar models. Our technique fo-
cuses on a general model that provides depth sensation, but
does not reconstruct the original 3D structure. L.e., we sim-
plify the reconstruction problem by considering only the es-
sential elements that assist the image depth perception, by
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Figure 1: Diorama construction from a single image. The
original image (a); An example of the extracted relative cues
(b), shown as arrow heads pointing further away from the
viewer; The generated surface with slits (c); and a synthe-
sized Diorama model (d).

allowing to change viewpoint and experience the parallax
and occlusions between the various image objects.

We scan the image for cues which convey relative depth
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differences between the various objects in the image, and
construct a depth-map by using quadratic optimization
which is constrained by inequalities. This is in contrast to
previous work that focus on absolute depth and constraints
of the form of equalities. We build a piecewise smooth depth
map surface, into which we insert wide slits expressing depth
discontinuities. An example of a reconstructed surface with
slits is shown in Figure 1 (c). To create a novel-view, we ex-
pand the surface geometry and texture beyond the slit edges.
The resulting views express realistically the occlusions and
parallax effects between the different parts of the surface.

More specifically, the contributions herein include:

e Describing a semi-automatic technique for building a
model from a single image that conveys a depth experi-
ence to the viewer. This is accomplished despite the fact
that an accurate and complete 3D model cannot be repro-
duced due to the inherent ambiguities and the sparse set
of available depth cues.

e Presenting an analysis of the image and extracting a set of
depth cues. While the basic ideas behind many of those
cues are not new, we construct novel solutions which take
advantage of our use of ordinal and sparse constraints.

e Introducing a novel optimization scheme for integrating
relative depth cues and building a coherent slitted model.

e Enhancing the model by extending its geometry and tex-
ture to complete occluded regions and allow to perceive a
continuous view for small viewpoint changes.

2. Related Work

Pictorial relief is the three-dimensional spatial impression
obtained when one looks at a two-dimensional picture. Cues
which contribute to the pictorial relief have been used by
artists throughout time in paintings and sculptures. In 1822,
the term Diorama was coined by Louis Daguerre, for a 3D
scene replica showing historical events or nature scenes. The
Diorama was designed to give the viewer an impression of
full 3D, although the set is highly confined in its dimensions.
Diorama models, which were later massively adopted in mu-
seums and in art, are based on making use of pictorial relief
cues such as depth from lighting and shading [HG68].

Human perception of depth has been also studied by cog-
nitive scientists. Koenderink and his colleges [KvDKTO1,
CM84] studied how perceptual relief can be measured and
which aspects of it are especially robust against day-to-day
intra observer variations. They argued that only aspects of
the partial depth order and precedence in infinitesimal re-
gions are actually used as stable cues. Their work had mo-
tivated our attempt to detect these ordinal cues in the image
and to exhibit them in the resulting model.

The construction of an accurate 3D model from 2D pic-
tures is an active research topic. Classical structure-from-
motion approaches for 3D reconstruction, usually require
two or more images of the scene. Over the last few years,

additional techniques were introduced, which use special ap-
paratus or stimuli to gain depth information, for example,
close/far focused images, and using structured light. In the
following review, we focus on studies for 3D modeling based
on one casual image.

The work of Horry ef al. [HAA97] is one of the early at-
tempts in constructing 3D scene from a single image. Their
*Tour Into The Picture’ technique extracts the 3D scene
model from a 2D picture and makes a "walk through" an-
imation of the 2D picture. In general, *Tour Into The Pic-
ture’ employs a spidery mesh over the picture to obtain a
pseudo-3D scene model. This simple planes-based mesh is
constructed from realization of the perspective through van-
ishing points and requires tedious user interaction. Their
technique was extended by others [KSO02], and recently
Boulanger et al. [BBP06] suggested an automatic way for
camera calibration that would allow to automatically detect
vanishing points, by analyzing lines found in the image.

Sturm and Maybank [SM99] assembled the objects within
the scene, by examining their corners, edges and planes for
perspective constraints. Shesh and Chen [SCO05], followed
the edges of buildings to recover their shapes as cubes. Both
of these works rely on human assistance and work espe-
cially well on man-made scenes, where the object facets and
their correspondence are often simple and regular. For natu-
ral landscape images, such methods are not appropriate.

The system proposed by Zhang et al. [ZDPSS01] has sig-
nificantly influenced our work. They propose a system which
enables manual construction of free-form, texture-mapped,
3D scene models from a single painting or photograph. It
allows users to specify a set of sparse constraints, includ-
ing absolute depth, depth discontinuities, and absolute nor-
mal directions, and produces 3D models at interactive rates.
Similar methods for manual mesh construction and modifi-
cations were also suggested by Kang [Kan98]. Our method,
which is based upon constraints of a different nature, is
geared towards an automatic model extraction.

Recently, Prasad et al. [PZF06] demonstrated a novel
method for the construction of a surface from its apparent
contour and potentially other types of information such as
surface normals. They demonstrate remarkable results in the
analysis of simple objects scenes. Extending this method
to scenes with multi-objects such as casual pictures is not
straightforward.

Statistical techniques were also used to infer depth from
a single image. Han and Zhu [HZ03] proposed a two levels
scheme in which objects are recognized and their interrela-
tions are inferred from a set of training scenes with some
degree of human assistance. Although they introduce both
man made objects and natural objects such as plants, their
model is limited to a predefined set of objects and relations.
A more recent work by Hoiem et al. [HEHOS5], employed
machine learning techniques for recovering a 3D ’contex-
tual frame’ of an image, containing the image major sur-
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Figure 2: An overview of our technique. Given an image, we analyze it using a set of relative depth cues. Next, we iteratively
construct a surface with slits. This surface is completed alongside the slits, to allow for novel-view synthesis.

face components, by classifying each pixel as being a part
of the ground plane, the sky, vertical surface, and other sub
classes. They demonstrated excellent results in recovering
scenes composed on such elements. Subsequently, Saxena
et al. [SCNO6] used a Markov Random Field to model the
depth relations among image patches, and learn the underly-
ing statistical distributions from a large training set.

3. Overview

The general framework of our method is illustrated in Figure
2. It can be broken into three main stages: cues analysis, cues
integration and the diorama construction.

The cue analysis (Section 4) consists of the extraction of
ordinal depth constraints from cues such as texture and fo-
cus differences. Next, in the cue integration stage (Section
5) we integrate the cues into a depth map that satisfies the
depth constrains. Slits are introduced along paths of large
depth discontinuities, and the process is repeated iteratively.
Finally, in the diorama construction stage (Section 6) , we
allow the creation of novel-views by extending the image
and the model geometry to make up for regions which are
exposed by the introduction of the slits.

The depth cues which are used in our system are sparse,
and are applied on image regions. Therefore, as a prelimi-
nary step, we segment the given image in two different lev-
els. First, we apply a high level segmentation into major
segments. Typically an image is segmented into approxi-
mately 10-20 major segments. In most cases these segments
will result in coherent and smooth surface pieces. The sec-
ond segmentation is much finer - it breaks the image into
small image superpixels each consisting of regions of sim-
ilar texture or color [RMO3]. Using superpixels reduces the
complexity of the input image and improves the coherence
of the results . We have examined various segmentation al-
gorithms for both segmentation levels including the ones de-
scribed in [FHO04, RMO03], but no significant differences in
our generated dioramas were observed.

The boundary between adjacent major segments defines
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Figure 3: An example of the major-segments map (colored
patches) superimposed with the superpixel map (gray tiles),
and their corresponding stitches (yellow lines).

a list of stitches that connect pairs of adjacent superpixels
which are not part of the same major segment. The stitches,
(Figure 3), reduce the complexity of the following steps.

As a last preliminary stage we define the diorama back-
plane. Although this is optional, it improves the depth per-
ception of distant objects. Since we focus on outdoor scenes,
in most cases we select the sky as the back region, by us-
ing the simple sky detection algorithm of [LE02]. For other
types of scenes or cases where the sky exhibits large color
gradients, we select the backplane manually.

4. Cue Analysis

In his work, Cutting studies a comprehensive list of cues that
influence the depth perception. He argues that most of the
monocular cues are global in the sense that they cannot be
observed by examining small neighborhoods, and that they
generate mostly ordinal information with large amount of
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ambiguities. It is the overall organization of the image, he
claims, and the combination of the cues, that create the pic-
torial relief of the viewed image [CM84]. We follow these
studies by integrating what Cutting refers to as “traditional
pictorial cues’: Partial occlusion between objects (interpo-
sition), height in visual field, relative size and density (tex-
ture gradient), aerial perspective (known today as environ-
mental cue or atmospheric scattering). Additionally, we use
depth from focus as a cue, following [MBA*96, WLGWO01,
PKO6]. Currently, we do not include perspective and shad-
ing/lighting constraints directly, since their extraction in un-
constrained scenery images is extremely challenging.

4.1. Partial Occlusion

Partial Occlusion (interposition) is one of the most
perceptually-dominant depth cues. Here, we propose a
straight-forward occlusion detector that is based on filtering
many pairs of horizontal image edges and checking whether
these two edges are the boundaries of an occluding object. In
the case of an occlusion we can expect the appearance within
these boundaries to vary considerably from the appearances
outside. We can also expect the appearance just outside of
the boundaries of the occluding object to be similar on both
sides. This is illustrated in Figure 4.

To model appearances we define visual signatures
Csig(p,H) of a point p on a line H in the following way. We
consider a line perpendicular to H at p of length 70 pixels in
each direction. We group nearby points of similar colors to
generate a sequence of color clusters. The sequence of col-
ors clusters along the line encodes the rough color structure
of the line.

Every straight horizontal line H in the image crosses
edges of major-segments (as defined in section 3) in
points ej...e,. Our algorithm enumerates over all pairs
{(ex,er),er < e;} and selects those for which the outer sig-
natures at points e, — € and e; + € are similar and non uni-
form, while the inner signatures are different. More formally,
we locate cases where the following hold:

Length(CS,-g(ek—S,H)UCSig(€,+8,H)) Th
deair (Crig (e, —€.H) Ciig (¢, +€,H) ) >im
dedir (Csig(ex — € H),Cyig(e +€,H)) > Thy

dedir (Csig(el - €7H)»Csig(el +37H)) >Th;

In the formula above, € is taken as the largest edge width
(usually considered as 15 pixels), and Thy,Th; are thresh-
olds used to control the number of cues generated. Edit dis-
tance is used to compare two sequences, in which a constant
cost is used for insertion and deletions, and a variable cost is
defined for modification based distance between colors.

We apply this approach on a grid of horizontal lines
for several image rotation. To reduce the number of false-
positives we use only points which exhibit the required prop-
erties in several nearby rotations. We assume that a persistent
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Figure 4: Partial occlusion cue analysis. We look for similar
color appearances outside an edge pair.

detection always indicates an occluding object. Note that this
assumption sometimes fail since holes or painted textures
may also be detected. We therefore include partial occlusion
constrains only if they are validated by other constraints.

4.2. Texture Analysis

In images with large homogeneous regions, depth difference
can be detected reliably using texture gradients [MR97].
However, it is often found to be impractical for our purposes
due to non-homogeneous major segments and high level of
noise. Instead, we focus on more rough cues that can be an-
alyzed from smaller regions. Namely, that similar textures
found in different scaled-down versions of two different re-
gions may indicate that such regions have the same texture
at different depths.

To describe texture appearances, we employ the textons
of [MBLSO1] as a basic building block. We apply a filter
bank composed of Gabor filters in different orientations and
scales. We then cluster the filter responses into a small set of
prototype response-vectors called textons and examine their
histograms within small patches. Such texton-histograms are
also computed for various scaled-down versions of the im-
age. We detect scale differences, by comparing the local tex-
ton distribution in one scale to the texton distributions in an-
other. A match (across the image and between scales) in-
dicates a scaling effect that we attribute to perspective. We
validate each match by repeating the comparison for scaled
down versions of the matching regions as shown in Figure 6.
We search for depth differences among all superpixels par-
ticipating in stitches and in major segments’ centers. We use
as relative cues only patches with sufficient superpixels sup-
port, and minimal contradicting evidance.

(© The Eurographics Association and Blackwell Publishing 2007.
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Figure 5: Texture analysis. We create scaled-down versions
of the image shown on the left, and examine the texture
histogram similarities between different points at different
scales. In this example, for visualization purposes, we clus-
tered the texton histograms space into 6 groups each marked
with different color. As shown, at a certain scale ratio the
texton histograms in regions A and B becomes similar.

Figure 6: Validation of relative depth. The histogram dis-
tances between several scaled down versions of two regions
are measured and shown in the middle affinity matrix rep-
resentation. Blue rectangles indicate possible matches be-
tween histograms in different scales. The black line illus-
trates our verification technique which examines the differ-
ence also in smaller scales.
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4.3. Depth from Focus

The amount of blur on an object provides a remarkable depth
sensation. We use two complementary methods for extract-
ing depth information from the image depth of field (DOF).
Also, because DOF measurements are potentially unreliable,
we compute these for every super-pixel, but only consider
depth constraints for stitches between major segments, if
and only if there is a high level of agreement between the
stitches.

The first DOF measurement is inspired by the work of
Park and Kim [PKO06], and it examines variances in neigh-
boring pixels. We define n as the set of neighboring pixels
for each point and /. as the intensity map for the color chan-
nel c. We calculate /i = ]Vp{ g%n (I:(p))- Next, we calculate an

effective blur measure for each pixel:

_ 1 P
Ipor, *CG%%EIS <|Tl| Y, (e(p) — ) ) (1)

PEN

The second method examines a larger neighborhood by
applying a ’Difference of Gaussians’ (DoG) operator to
quantify the amount of blur in the various layers of the im-
age. We use Gaussians with 61 =5 and 6, = 0.5 and sup-
ports of size 20 x 20 and 10 x 10 respectively. Note that
more elaborated methods exist, such as the work of Wang
et al. [WLGWO1]. On our image set, the simple DOG meth-
ods had proved to be sufficient.

To construct a depth cue from either DOF measurement,
we assume the image sharpest focus is on the nearest image
object. This assumption holds for many natural images. A
more elaborate model, which uses the sharpness of the edge
between the pairs of objects to determine their order [Mat97]
was examined but had failed to deliver consistent reliable
results.

4.4. Atmospheric Scattering

Atmospheric scattering is the phenomena of light degrada-
tion over the atmosphere. There is a simple, albeit non-linear,
relationship between the radiance of an image at any given
wavelength and the distance between object and viewer. To
use this cue, we apply a method similar to the one suggested
by [NNO2]. In their work, they recover the ratio of depth of
three locations, assuming that the viewed image intensity is
homogeneous, and with a known value of the sky intensity
Ly (sky intensity is considered as the area in which objects
are indistinguishable). Given 3 regions with similar texture
in different depths d;,d5,d3, and corresponding image lumi-
nance L, Ly, L3, the following holds:

Li—L,
dy—dy Log (L;_Lx) @)
d2_d3 Log(ﬁz_lﬂv)

We found the RGB blue channel luminance to provide a
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Figure 7: 'Depth from Focus’ cues. The resulting cues are
presented on top of superpixels heat map - darker superpix-
els indicate low depth of focus. The left image shows results
for method Ipor, and the right one for DoG. The source im-
age is shown on the middle.

good estimate of the scattering effect. To allow automatic
analysis of this cue, we make the following assumptions:
The sky intensity is measured from the defined Diorama
backplane region, or assumed to be the highest luminance
value and the average luminance value is considered to be
associated with the average-depth point in the scene. Cue
detection is being done by examining differences between
superpixels with uniform luminance participating in stitches.
Relative information can be retrieved from Eq. 2 where L;
and L, are acquired as the luminance of the superpixels and
Lj is the average luminance. To reduce the number of false-
positives, we smooth the blue channel noise while retaining
its edges, by applying bilateral filtering [TM98], and com-
pare only superpixels with uniform luminance.

4.5. Height in Visual Field

Psychophysical studies have shown that lower objects in the
visual field are perceived nearer than higher ones [CM84].
We apply this cue between a pixel and the three pixels be-
neath it (applying to pairs of top and bottom pixels results
in vertical lines artifacts). At occlusions boundaries this cue
is not reliable, therefore we do not apply it at the edges of
major segments.

5. Cue Integration

Cue integration in the human vision has been the subject of
many studies. Although some advances were made, the syn-
thesis method still remains unknown. Some studies had ob-
served that the human vision cue preference is adaptive —
each cue’s reliability weight is proportional to its previous
success in resolving the correct depth [Tod04]. This sug-
gests the use of learning techniques in order to determine,

Figure 8: Atmospheric scattering cues. This cue detects dif-
ferences in superpixel average luminance in a smoothed blue
channel of the image.

Figure 9: Retrieved cues. The cues gathered for this example
are shown in different colors: Red indicates depth of field,
Blue shows scattering cues, and yellow represents texture.
Arrow directions indicate depth (arrow base is closer)

based on similar images, the relevance of each type of depth
cue. Learning methods, however, require a large training set
which we do not currently have. Instead, we assign each cue
a priority based on its stability in preliminary experiments
and provide the user with an option not to use a specific type
of cue on an input image. The assigned priorities are used to
resolve contradictions. We employ the following order: At-
mospheric scattering > defocus > partial occlusion > texture
> height in the visual field. The user ability to veto a cer-
tain type of cue is the main aspect in which our system is
semi-automatic rather than automatic. In the supplementary
material we specify when such intervention was used.

Even if all cues are appropriate for a given image, our set

(© The Eurographics Association and Blackwell Publishing 2007.
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of constraints is usually still sparse, and the reconstruction
problem is ill-posed. To reduce the space of possible solu-
tions, we seek a surface with the following properties:

e It is piecewise smooth, where we encourage continuity
anywhere except for along a minimal number of slits.

e It has as little depth differences as possible, i.e., we give
preference to surfaces that are parallel to the image plane.

e Its maximal depth, defined as the depth from the frontal
objects to the background region, is limited.

To generate the surface, we apply several iterations of sur-
face construction and slit creation phases. In each iteration
we measure the total surface gradient energy. The process
halts when the surface is sufficiently smooth, or after a cou-
ple of iterations.

5.1. Surface Construction

The basic construction of the smooth surface is done
using quadratic thin-plate energy, in a similar manner
to [ZDPSSO01, PZF06]. There are two major differences,
though: (1) Our constraints are mainly inequalities and (2)
We minimize the first spatial derivatives of depth as well as
the second derivatives. The first difference allows the intro-
duction of ordinal cues, and the second promotes surfaces
that are as parallel to the image plane as possible. Specifi-
cally, we compute depth d; ; for each point in the image by
minimizing the sum of the following energy score over all
pixels (i,j) not on slits :

[(d,-,l,j —2d; ;i + dlur]‘j)z + (d,;’jfl —2d;j+ di,j+l)2+
(dij—1 = di j+1)* + (dim1,j—1 = dig1,j+1)°+
(dim1,j—dis1,5)* + (dim1j1 — dig1,j—1)7]

The minimization is performed subject to several
constraints. First, for every point (i,j) on the back-
plane (see Section. 3) we set d;; = 0. Second, we
have several constrains for points (i,j) not on im-
age slits: (d,'}j _di,j+l) < MaxGradient, (di,j _di+1.j) <
MaxGradient, d; j < MaxDepth, where MaxGradient and
MaxDepth are constants controlling the generated diorama
depth. Third, for each ordinal cue between image-points a
and b we set d, + diff < dj,, where diff is the minimal differ-
ence in their depth, determined by the magnitude of the cue,
e.g., it is proportional to the scale difference in the texture
cue, and to the amount of scattering the atmospheric cue.
Lastly, based on the height in visual field cue, we define the
following term for each pixel which is not on the border of a
major segment: d; ; > % (di,17j+1 +d;ij1 —0—d,»+1,j+1).

Sometimes, the set of constraints is not feasible, i.e., it
contains contradictions. To resolve those cases we construct
a directed graph with one vertex per superpixel and one edge
per cue. A contradiction would manifest itself as a cycle in
this graph. We therefore detect cycles and remove the cue of
the cycle-edge with the lowest priority. Another step we take
to make the above computation more robust is to examine
the resulting depth map, and remove cues that are near points
where the depth gradient is excessively high.

(© The Eurographics Association and Blackwell Publishing 2007.

5.2. Slit formation

In this stage we create the surface slits in areas of high depth
gradient. The slits should match the edges of the image ob-
jects and should be as continuous and smooth as possible. To
establish such properties, we have implemented a curve evo-
lution algorithm which considers the existing strong edges
in the image, the depth gradient and existing slits, by mim-
icking a known physical model of crack propagation.

The likelihood of a point to participate in a crack de-
pends on external pulling forces (E), its local strength (S)
and the location of nearby cracks, through a stress function
G. Specifically, this likelihood grows with the following tear
potential: (S+0)E.

By crack propagation theory [Ric68] directional stress
Oy, Oy at distance r and angle 6 from the crack tip is cal-
culated as:

_ Cya 0 -0 360
Gx—m@osj- 1 +sin 5 - sin %
Cy/a 0 30

Gy = m«cos%- 1 —sing -sin %
where a is the current crack length, and C is a material de-
pendent constant. Such formulas are only accurate starting
some distance from the crack-tip. We therefore, in accor-
dance with crack propagation theory, inhibit the calculated
stress in a small region near the tip (we inhibit for r < 5).
For simplicity, we consider 6 = ||ox,0y||.

We define the strength of each image point as inversely
proportional to its edge magnitude, computed via the com-
pass image operator [RTO1]. We therefore promote slit cre-
ation on object boundaries. An example of such edge map is
shown in Figure 10. As a tearing force we take the magnitude
of the gradient of the depth map, recovered as in Section 5.1.
A high gradient in the depth field may indicate the need to
tear the surface at that location.

We extend existing slits or create new ones using a simple
greedy process. At each step we select the point p with the
highest tear potential. We connect it to the closest slit tip,
if nearby, or create a new crack. In both cases p becomes a
tip-end. When the last updated crack becomes longer than
100 pixels, we terminate the crack advancement for this cy-
cle and recompute the depth map. This re-computation is
required since once cracks (i.e., slits) are introduced the tear
potential becomes invalid.

The introduction of slits reduces the depth map gradients
in the next cycle. The iterative two step process, of comput-
ing the depth map and of introducing slits terminates once
the total magnitude of gradients in the depth map drops be-
low a certain threshold.

6. Model Extension And Diorama Viewer

Modifications to the image view-point can create prominent
depth illusions by using motion parallax. The main difficulty
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Figure 10: Slit creation. The computed model is slitted
shown in the lower depth maps, (initial -left and result-
right). The slit advancement is guided by the surface ten-
sion (depth gradient) shown in the upper heat maps (initial
-left and result- right), and the image edges (middle right).

in creating such novel-views given the original image is the
need to present information that is occluded in the original
view but exposed in the new one. To overcome this problem
we extend both the occluding surface and the occluded one
alongside each slit edge. Figure 11 shows an example.

We expand the geometry and texture of the occluded ob-
ject by using image completion techniques. The maximal re-
quired completion surface width along the edge, referred to
as the required strip, can be easily calculated given the de-
sired viewpoint change and its distance to the edge. Since
we require both the geometry of the strip and its texture to
reflect the occluded object, we utilize a variant of a fragment
based image completion [DCOYO03], in which we encourage
the selection of fragments that belong to the occluded ob-
ject. This is done by considering weights for each fragment
candidate that are proportional to their depth similarity, i.e.,
a large difference in depth reduces the likelihood for select-
ing a fragment. We extend the surface geometry in a simi-
lar manner, by using the calculated depth map as the source
for the selected fragments. The resulting extended surface
is therefore constructed by elements of the original image
texture and geometry, creating a plausible result. Alternative
surface completion methods include [SACO04].

To enhance the realism of the slit, we use the Poisson
Matting technique [SJTS04] to smooth the occluding object
jagged boundaries. We define a narrow band (6-10 pixels
wide) over the slit, as the "unknown region’ and the fore-
ground and background as the two edge sides.

Figure 11: Surface completion alongside the slits. We
complete surfaces that are occluded in original viewpoint
(shown in green, example in the lower closeup) by extending
the image and the geometry in the direction of the purple ar-
rows. We also extend the occluding surface, matting the slit
edge, (shown in red in the upper closeup).

7. Results

Our method was tested on a multitude of casual photographs
of various subjects including panoramic views of both natu-
ral and urban locations and closeups on objects such as mon-
uments, statues and animals, several are presented in Fig-
ure 12. The Dioramas depth illusion can be viewed in the
submitted supplementary material. In general, we found our
technique suited for images of outdoor scenes with minimal
regular patterns or straight lines. Straight parallel lines and
straight angles can be distorted by our technique, creating
disturbing artifacts, since we do not currently enforce such
constraints. Diorama creation in its current form is there-
fore complementary to other methods specializing in urban
scenes [HAA97, HEHOS], or alternately can be extended by
integrating algorithms for detecting 3D model from image
edges [PZF06].

The presented results were created mostly in Matlab. The
Mosek [ARTO03] solver was used for the optimization prob-
lem of Section 5.1. At its current form the complete end-
to-end process of generating the model takes about half an
hour for a 2 megapixels image, however we estimate that at
least an order of magnitude can be gained from optimizing
the code. The main computational hurdle is the computa-
tion of cues such as partial occlusion and texture analysis,
which perform better in high resolutions. Carefully subsam-
pling the image, may improve running times.

8. Conclusions and Future work

We propose a semi-automatic way to generate 3D models
that can induce a realistic depth perception. Since the input is

(© The Eurographics Association and Blackwell Publishing 2007.
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Figure 12: Several examples of generated models: The detected relative depth cues (left); the generated depth map (middle);
and the resulting diorama from an oblique viewpoint (right). For the diorama illusion examine the supplementary video

a single casually taken photograph, such Diorama visualiza-
tions can be integrated into image sharing applications or im-
age directories to enrich the users’ experience. The method
can also be used to create realistic stereo pairs from a sin-
gle image that can be printed using lenticular printers and
serve as a cheap substitute to current dioramas. 3D images
and videos for digital 3D displays can also be created.

This work can be extended in several directions: Our cur-
rent implementation is only semi-automatic and near-perfect
results may require some minimal user intervention which
modifies the relative strength of the various cues accord-
ing to the image characteristics. This task can be automated

(© The Eurographics Association and Blackwell Publishing 2007.

by using machine learning techniques, so that the a com-
bined solution may not require any user intervention over the
full spectrum of input images. In addition, a hybrid method
which relies on both relative and quantitative cues can prove
to be more robust.

Recovering only specific aspects of the 3D scene while
not attempting to build a full reconstruction of the original,
provides new possibilities in redefining view based modeling
quality. The quality of the result can be judged on how real-
istic it looks, instead of measuring how close it is to the orig-
inating scene. This quality definition opens a door to new re-
construction algorithms, in a similar manner that non-photo
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realistic rendering (NPR) opens new possibilities of render-
ing models while conveying some of the original model at-
tributes. Additionally, our current method uses parallax and
occlusion as a mean to highlight 3D perception. This can be
extended to additional effects such as lighting and shadow-
ing, thus increasing the 3D perception by the viewer.
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