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Abstract

Estimating depth from a single RGB images is a fun-
damental task in computer vision, which is most directly
solved using supervised deep learning. In the field of unsu-
pervised learning of depth from a single RGB image, depth
is not given explicitly. Existing work in the field receives
either a stereo pair, a monocular video, or multiple views,
and, using losses that are based on structure-from-motion,
trains a depth estimation network. In this work, we rely,
instead of different views, on depth from focus cues. Learn-
ing is based on a novel Point Spread Function convolutional
layer, which applies location specific kernels that arise from
the Circle-Of-Confusion in each image location. We evalu-
ate our method on data derived from five common datasets
for depth estimation and lightfield images, and present re-
sults that are on par with supervised methods on KITTI
and Make3D datasets and outperform unsupervised learn-
ing approaches. Since the phenomenon of depth from de-
focus is not dataset specific, we hypothesize that learning
based on it would overfit less to the specific content in each
dataset. Our experiments show that this is indeed the case,
and an estimator learned on one dataset using our method
provides better results on other datasets, than the directly
supervised methods.

1. Introduction

In classical computer vision, many depth cues were
used in order to recover depth from a given set of im-
ages. These shape from X methods include structure-from-
motion, which is based on multi-view geometry, shape from
structured light, in which the known light source plays the
role of an additional view, shape from shadow, and most rel-
evant to our work, shape from defocus. In machine learning
based computer vision, the interest has mostly shifted into
depth from a single image, treating the problem as a mul-
tivariant image-to-depth regression problem, with an addi-
tional emphasis on using deep learning.

Learning depth from a single image consists of two
forms. There are supervised methods, in which the target in-
formation (the depth) is explicitly given, and unsupervised

methods, in which the depth information is given implic-
itly. The most common approach in unsupervised learn-
ing is to provide the learning algorithm with stereo pairs
or other forms of multiple views [37, 41]. In these meth-
ods, the training set consists of multiple scenes, where for
each scene, we are given a set of views. The output of the
method, similar to the supervised case, is a function that
given a single image, estimates depth at every point.

In this work, we rely, instead of multiple view geometry,
on shape from defocus. The input to our method, during
training, is an all-in-focus image and one or more focused
images of the same scene from the same viewing point. The
algorithm learns a regression function, which, given an all-
in-focus image, estimates depth by reconstructing the given
focused images. In classical computer vision, research in
this area led to a variety of applications [44, 35, 32], such
as estimating depth from mobile phone images [33]. A
deep learning based approach was presented by Anwar et
al. [1] who employ synthetic focus images in supervised
depth learning, and an aperture supervision depth learning
by Srinivasan et al. [31], who employ lightfield images in
the same way that we use defocus images.

Our method relies on a novel Point Spread Function
(PSF) layer, which preforms a local operation over an im-
age, with a location dependent kernel which is computed
“on-the-fly”, according to the estimated parameters of the
PSF at each location. This layer receives three inputs: an
all-in-focus image, estimated depth-map and camera pa-
rameters, and outputs an image at one specific focus. This
image is then compared to the training images to compute a
loss. Both the forward and backward operations of the layer
are efficiently computed using a dedicated CUDA kernel.
This layer is then used as part of a novel architecture, com-
bining the successful ASPP architecture [5, 9], used previ-
ously in semantic segmentation and supervised depth esti-
mation. To improve the ASPP block, we add dense connec-
tions [16], followed by self-attention [42].

We evaluate our method on all relevant benchmarks we
were able to obtain. These include the flower lightfield
dataset and the multifocus indoor and outdoor scene dataset,
for which we compare the ability to generate unseen focus
images with other methods. We also evaluate on the KITTI,
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NYU, and Make3D, which are monocular depth estimation
datasets. In all cases, we show an improved performance in
comparison to methods with a similar level of supervision,
and performance that is on par with the best directly super-
vised methods on KITTI and Make3D datasets. We note
that our method uses focus cues for the purpose of depth es-
timation, and we do not evaluate it as a defocusing method.

When learning depth from a single image, the most dom-
inant cue is often the content of the image. For example, in
street view images one can obtain a good estimate of the
depth based on the type of object (sidewalk, road, building,
car) and its location in the image. We hypothesize that when
learning from focus data, the role of local image statistics
becomes more dominant, and that these image statistics are
more global between different visual domains. We therefore
conduct experiments in which a depth estimator trained on
one dataset is evaluated on another. Our experiments show
a clear advantage to our method, in comparison to the state-
of-the-art supervised monocular method of [9].

2. Related Work
Learning based monocular depth estimation In monoc-
ular depth estimation, a single image is given as input, and
the output is the predicted depth associated with that im-
age. Supervised training methods learn from the ground
truth depth directly and the so-called unsupervised methods
employ other data cues, such as stereo image pairs. One
of the first methods in the field was presented by Saxena et
al. [27], applying supervised learning and proposed a patch-
based model and Markov Random Field (MRF). Following
this work, a variety of approaches had been presented us-
ing hand crafted representations [29, 18, 26, 11]. Recent
methods use convolutional neural networks (CNN), start-
ing from learning features for a conditional random field
(CRF) model as in Liu et al. [22], to learning end-to-end
CNN models refined by CRFs, as in [2, 40].

Many models employ an autoencoder structure [7, 12,
17, 19, 39, 9], with an added advantage to very deep net-
works that employ ResNets [15]. Eigen et al. [8, 7] showed
that using multi-scaled depth predictions helps with the de-
crease in spatial resolution, which happened in the encoder
model, and improves depth estimation. Other work uses dif-
ferent loss for regression, such as the reversed Huber [24]
used by Laina et al. [19] to lower the smoothness effect
of the L2 norm, and the recent work by Fu et al. [9] who
uses ordinal regression for each pixel with their spacing-
increasing discretization (SID) strategy to discretize depth.
Unsupervised depth estimation Modern methods for
unsupervised depth estimation have relied on the geome-
try of the scene, Garg et al. [12] for example, proposed us-
ing stereo pairs for learning, introducing the differentiable
inverse warping. Godard et al. [14] added the Left-Right
consistency constraint to the loss function, exploiting an-

other geometrical cue. Zhou et al. [43] learned, in addition
the ego-motion of the scene, and GeoNet [41] also used the
optical flow of the scene. Wang et al. [37] recently showed
that using direct visual odometry along with depth normal-
ization substantially improves performance on prediction.

Depth from focus/defocus The difference between depth
from focus and depth from defocus is that, in the first case,
camera parameters can be changed during the depth estima-
tion process. In the second case, this is not allowed. Un-
like the motion based methods above, these methods obtain
depth using the structure of the optical geometry of the lens
and light ray, as described in Sec. 3.1. Work in this field
mainly focuses on analytical techniques. Zhuo et al. [44]
for example, estimated the amount of spatially varying de-
focus blur at edge locations. The use of Coded Aperture had
been proposed by [20, 36, 30] to improve depth estimation.
Later work in this field, such as Suwajanakorn et al. [33],
Tang et al. [35] and Surh et al. [32] employed focal stacks
— sets of images of the same scene with different focus
distances — and estimated depth based on a variety of blur-
ring models, such as the Ring Difference Filter [32]. These
methods first reconstruct an all-in-focus image and then op-
timize a depth map that best explains the re-rendering of the
focal stack images out of the all-in-focus image.

There are not many deep learning works in the field.
Srinivasan et al. [31] presented a new lightfield dataset of
flower images. They used the ground truth lightfield im-
ages to render focused images and employed a regression
model to estimate depth from defocus by reconstruction of
the rendered focused images. Anwar et al. [1] utilized the
provided depth of those datasets to integrate focus rendering
within a fully supervised depth learning scheme.

While Srinivasan et al. [31] did not compare to other
RGB-D datasets such as KITTI [13], Make3D [27, 28] and
NYU [23], their method can take as input any all-in-focus
image. We compare the rendering process of [31] with
ours on the KITTI dataset. In comparison to [31, 1]: (i)
Our method uses continuous learnable kernels and not a fi-
nite set of kernels. (ii) The compositional method of [31]
renders, for each pixel, the weighted sum of different blur
kernels, without considering information from neighboring
pixels. However, the literature [32, 33] teaches us to pick
the most fitted focus from the focal stack. By contrast, our
method composes a blur kernel, which is directly correlated
with neighboring CoC values. (iii) To improve results, [31]
uses a bilateral filter, which is sensitive to texture changes,
as can be seen in Fig. 7 of [31].

3. Differentiable Optical Model

We review the relevant optical geometry on which our
PSF layer relies and then move to the layer itself.



(a) Lens illustration (b) CoC - KITTI (c) CoC - KITTI

Figure 1: (a) Illustration of lens principles. Blue beams
represent an object in focus. Red beams represent an object
further away and out of focus. See text for symbol de�-
nitions. (b) CoC diameter w.r.t. object distance as seen in
KITTI. Camera settings are:N = 2 :8, F = 35, ands = 2 .
(c) Sample blur kernel. Green line is the depth edge, Blue
colors represent the amount of blur contribution w.r.t. CoC.

3.1. Depth From Defocus

Depth from focus methods are mostly based on the thin-
lens model and geometry, as shown in Fig. 1(a). The �gure
illustrates light rays trajectories and the blurring effect made
by out-of-focus objects. The plane of focus is de�ned such
that light rays emerging from it towards the lens fall at the
same point on the camera sensor plane. An object is said
to be in focus, if its distance from the lens falls inside the
camera's depth-of-�eld (DoF), which is the distance about
the plane of focus where objects appear acceptably sharp
by the human eye. Objects outside the DoF appear blurred
on the image plane, an effect caused by the spread of light
rays coming from the unfocused objects and forming what
is called the “Circle-Of-Confusion” (CoC), as marked by C
in Fig. 1(a). In this paper, we will use the following termi-
nology: anall-in-focusimage is an image where all objects
appear in focus, and afocusedimage is one where blurring
effects caused by the lens con�guration are observed.

In this model, we consider the following parameters to
describe a speci�c camera: focal-lengthF , which is the dis-
tance between the lens plane and the point where initially
parallel rays are brought to a focus, apertureA, which is the
diameter of the lens (or an opening through which light trav-
els), and the plane of focusD f (or focus distance), which
is the distance between the lens plane and the plane where
all points are in focus. Following the thin-lens model, we
de�ne the size of blur,i.e., the diameter of the CoC, which
we denote asCmm , according to the following equation:

Cmm = A
jDo � D f j

Do

F
D f � F

(1)

where Do is the distance between an object to the lens
plane, andA = F=N whereN is what is known as the
f-number of the camera. While CoC is usually measured in
millimeters (Cmm ), we transform its size to pixels by con-
sidering a camera pixel-size ofp = 5 :6�m as in [3], and
a camera output scales, which is the ratio between sensor

size and output image size. The �nal CoC size in pixelsC
is computed as followsC = Cmm

p�s .
The CoC is directly related to the depth, as illustrated in

Fig. 1(b), where each line represents a different focus dis-
tanceD f . The relation is not one-to-one and will cause
ambiguity in depth estimation. Moreover, different cam-
era settings are required for different scenes in terms of the
scene's maximum depth,i.e. for KITTI, we consider maxi-
mum depth of 80 meters, and 10 meters for NYU. We also
consider a constant f-number ofN = 2 :8 and a different
focal-length for all datasets, in order to lower depth ambi-
guity by lowering the DoF range (see Sec. 5.2 for details).

We now refer to one more measurement named CoC-
limit, de�ned as the largest blur spot that will still be per-
ceived by the human eye as a point, when viewed on a �nal
image from a standard viewing distance. The CoC-limit
also limits the kernel size used for rendering and is, there-
fore, highly in�uential on the run time (bigger kernels lead
to more computations). We employ a kernel of size7 � 7,
which re�ects a standard CoC-limit of0:061mm.

In this work, following [33, 35], we consider the
blur model to be a disc-shaped point spread function
(PSF), modeled by a Gaussian kernel with radiusr =
C=2 and kernel's location indicesu; v: G(u; v; r ) =

1
2�r 2 exp(� ( u 2 + v2

2r 2 )) . Because we work in pixel space, if
the diameter is less then one pixel (C < 1), we ignore the
blurring effect.

According to the above formulation, a focused image can
be generated from an all-in-focus image and depth-map, as
commonly done in graphics rendering. LetI be an all-in-
focus image andJ be a rendered focused image derived
from depth-mapDo, CoC-mapC, camera parametersA,
F andD f , we de�neJ as follows:

F x;y (u; v) =
2

�C 2
x;y

exp
�

� 2
�

u2 + v2

C2
x;y

��
(2)

Jx;y : = ( I ~ F ) (3)

=

R

u;v 2 

I x � u;y � v F x � u;y � v (u; v)dudv

R

u 0;v 02 

F x � u 0;y � v0(u0; v0)du0dv0

;

where
 is an offsets set related to a kernel of sizem � m:


 :=
�

(u; v) : u; v 2
�

�
m
2

; : : : ; 0; : : : ;
m
2

�
2 N

�
(4)

We denote by~ the convolution operation with a functional
kernelF , by (x; y) the image location indices, and by(u; v)
the offset indices bounded by the kernel size.

Based on Eq. 3, given a set of focused images of the same
scene, one may optimize a model to predict the all-in-focus
image and the depth map. Alternatively, given a focused
image and its correspondent all-in-focus image, we predict
the scene depth by reconstructing the focused image.


