
Single Image Depth Estimation Trained via Depth from Defocus Cues

Shir Gur
Tel Aviv University

Lior Wolf
Facebook AI Research and Tel Aviv University

Abstract

Estimating depth from a single RGB images is a fun-
damental task in computer vision, which is most directly
solved using supervised deep learning. In the field of unsu-
pervised learning of depth from a single RGB image, depth
is not given explicitly. Existing work in the field receives
either a stereo pair, a monocular video, or multiple views,
and, using losses that are based on structure-from-motion,
trains a depth estimation network. In this work, we rely,
instead of different views, on depth from focus cues. Learn-
ing is based on a novel Point Spread Function convolutional
layer, which applies location specific kernels that arise from
the Circle-Of-Confusion in each image location. We evalu-
ate our method on data derived from five common datasets
for depth estimation and lightfield images, and present re-
sults that are on par with supervised methods on KITTI
and Make3D datasets and outperform unsupervised learn-
ing approaches. Since the phenomenon of depth from de-
focus is not dataset specific, we hypothesize that learning
based on it would overfit less to the specific content in each
dataset. Our experiments show that this is indeed the case,
and an estimator learned on one dataset using our method
provides better results on other datasets, than the directly
supervised methods.

1. Introduction

In classical computer vision, many depth cues were
used in order to recover depth from a given set of im-
ages. These shape from X methods include structure-from-
motion, which is based on multi-view geometry, shape from
structured light, in which the known light source plays the
role of an additional view, shape from shadow, and most rel-
evant to our work, shape from defocus. In machine learning
based computer vision, the interest has mostly shifted into
depth from a single image, treating the problem as a mul-
tivariant image-to-depth regression problem, with an addi-
tional emphasis on using deep learning.

Learning depth from a single image consists of two
forms. There are supervised methods, in which the target in-
formation (the depth) is explicitly given, and unsupervised

methods, in which the depth information is given implic-
itly. The most common approach in unsupervised learn-
ing is to provide the learning algorithm with stereo pairs
or other forms of multiple views [37, 41]. In these meth-
ods, the training set consists of multiple scenes, where for
each scene, we are given a set of views. The output of the
method, similar to the supervised case, is a function that
given a single image, estimates depth at every point.

In this work, we rely, instead of multiple view geometry,
on shape from defocus. The input to our method, during
training, is an all-in-focus image and one or more focused
images of the same scene from the same viewing point. The
algorithm learns a regression function, which, given an all-
in-focus image, estimates depth by reconstructing the given
focused images. In classical computer vision, research in
this area led to a variety of applications [44, 35, 32], such
as estimating depth from mobile phone images [33]. A
deep learning based approach was presented by Anwar et
al. [1] who employ synthetic focus images in supervised
depth learning, and an aperture supervision depth learning
by Srinivasan et al. [31], who employ lightfield images in
the same way that we use defocus images.

Our method relies on a novel Point Spread Function
(PSF) layer, which preforms a local operation over an im-
age, with a location dependent kernel which is computed
“on-the-fly”, according to the estimated parameters of the
PSF at each location. This layer receives three inputs: an
all-in-focus image, estimated depth-map and camera pa-
rameters, and outputs an image at one specific focus. This
image is then compared to the training images to compute a
loss. Both the forward and backward operations of the layer
are efficiently computed using a dedicated CUDA kernel.
This layer is then used as part of a novel architecture, com-
bining the successful ASPP architecture [5, 9], used previ-
ously in semantic segmentation and supervised depth esti-
mation. To improve the ASPP block, we add dense connec-
tions [16], followed by self-attention [42].

We evaluate our method on all relevant benchmarks we
were able to obtain. These include the flower lightfield
dataset and the multifocus indoor and outdoor scene dataset,
for which we compare the ability to generate unseen focus
images with other methods. We also evaluate on the KITTI,

1



NYU, and Make3D, which are monocular depth estimation
datasets. In all cases, we show an improved performance in
comparison to methods with a similar level of supervision,
and performance that is on par with the best directly super-
vised methods on KITTI and Make3D datasets. We note
that our method uses focus cues for the purpose of depth es-
timation, and we do not evaluate it as a defocusing method.

When learning depth from a single image, the most dom-
inant cue is often the content of the image. For example, in
street view images one can obtain a good estimate of the
depth based on the type of object (sidewalk, road, building,
car) and its location in the image. We hypothesize that when
learning from focus data, the role of local image statistics
becomes more dominant, and that these image statistics are
more global between different visual domains. We therefore
conduct experiments in which a depth estimator trained on
one dataset is evaluated on another. Our experiments show
a clear advantage to our method, in comparison to the state-
of-the-art supervised monocular method of [9].

2. Related Work
Learning based monocular depth estimation In monoc-
ular depth estimation, a single image is given as input, and
the output is the predicted depth associated with that im-
age. Supervised training methods learn from the ground
truth depth directly and the so-called unsupervised methods
employ other data cues, such as stereo image pairs. One
of the first methods in the field was presented by Saxena et
al. [27], applying supervised learning and proposed a patch-
based model and Markov Random Field (MRF). Following
this work, a variety of approaches had been presented us-
ing hand crafted representations [29, 18, 26, 11]. Recent
methods use convolutional neural networks (CNN), start-
ing from learning features for a conditional random field
(CRF) model as in Liu et al. [22], to learning end-to-end
CNN models refined by CRFs, as in [2, 40].

Many models employ an autoencoder structure [7, 12,
17, 19, 39, 9], with an added advantage to very deep net-
works that employ ResNets [15]. Eigen et al. [8, 7] showed
that using multi-scaled depth predictions helps with the de-
crease in spatial resolution, which happened in the encoder
model, and improves depth estimation. Other work uses dif-
ferent loss for regression, such as the reversed Huber [24]
used by Laina et al. [19] to lower the smoothness effect
of the L2 norm, and the recent work by Fu et al. [9] who
uses ordinal regression for each pixel with their spacing-
increasing discretization (SID) strategy to discretize depth.
Unsupervised depth estimation Modern methods for
unsupervised depth estimation have relied on the geome-
try of the scene, Garg et al. [12] for example, proposed us-
ing stereo pairs for learning, introducing the differentiable
inverse warping. Godard et al. [14] added the Left-Right
consistency constraint to the loss function, exploiting an-

other geometrical cue. Zhou et al. [43] learned, in addition
the ego-motion of the scene, and GeoNet [41] also used the
optical flow of the scene. Wang et al. [37] recently showed
that using direct visual odometry along with depth normal-
ization substantially improves performance on prediction.

Depth from focus/defocus The difference between depth
from focus and depth from defocus is that, in the first case,
camera parameters can be changed during the depth estima-
tion process. In the second case, this is not allowed. Un-
like the motion based methods above, these methods obtain
depth using the structure of the optical geometry of the lens
and light ray, as described in Sec. 3.1. Work in this field
mainly focuses on analytical techniques. Zhuo et al. [44]
for example, estimated the amount of spatially varying de-
focus blur at edge locations. The use of Coded Aperture had
been proposed by [20, 36, 30] to improve depth estimation.
Later work in this field, such as Suwajanakorn et al. [33],
Tang et al. [35] and Surh et al. [32] employed focal stacks
— sets of images of the same scene with different focus
distances — and estimated depth based on a variety of blur-
ring models, such as the Ring Difference Filter [32]. These
methods first reconstruct an all-in-focus image and then op-
timize a depth map that best explains the re-rendering of the
focal stack images out of the all-in-focus image.

There are not many deep learning works in the field.
Srinivasan et al. [31] presented a new lightfield dataset of
flower images. They used the ground truth lightfield im-
ages to render focused images and employed a regression
model to estimate depth from defocus by reconstruction of
the rendered focused images. Anwar et al. [1] utilized the
provided depth of those datasets to integrate focus rendering
within a fully supervised depth learning scheme.

While Srinivasan et al. [31] did not compare to other
RGB-D datasets such as KITTI [13], Make3D [27, 28] and
NYU [23], their method can take as input any all-in-focus
image. We compare the rendering process of [31] with
ours on the KITTI dataset. In comparison to [31, 1]: (i)
Our method uses continuous learnable kernels and not a fi-
nite set of kernels. (ii) The compositional method of [31]
renders, for each pixel, the weighted sum of different blur
kernels, without considering information from neighboring
pixels. However, the literature [32, 33] teaches us to pick
the most fitted focus from the focal stack. By contrast, our
method composes a blur kernel, which is directly correlated
with neighboring CoC values. (iii) To improve results, [31]
uses a bilateral filter, which is sensitive to texture changes,
as can be seen in Fig. 7 of [31].

3. Differentiable Optical Model

We review the relevant optical geometry on which our
PSF layer relies and then move to the layer itself.



(a) Lens illustration

16 32 48 64 80
Distance [meter]

0

5

10

15

20

C
oC

 [p
ix

el
]

CoC limit = 7

Df=16 [m]
Df=32 [m]
Df=48 [m]
Df=64 [m]
Df=80 [m]

(b) CoC - KITTI

Focused - Far

Unfocused - Near

Kernel 7x7

CoC
Blur
Energy

(c) CoC - KITTI

Figure 1: (a) Illustration of lens principles. Blue beams
represent an object in focus. Red beams represent an object
further away and out of focus. See text for symbol defi-
nitions. (b) CoC diameter w.r.t. object distance as seen in
KITTI. Camera settings are: N = 2.8, F = 35, and s = 2.
(c) Sample blur kernel. Green line is the depth edge, Blue
colors represent the amount of blur contribution w.r.t. CoC.

3.1. Depth From Defocus

Depth from focus methods are mostly based on the thin-
lens model and geometry, as shown in Fig. 1(a). The figure
illustrates light rays trajectories and the blurring effect made
by out-of-focus objects. The plane of focus is defined such
that light rays emerging from it towards the lens fall at the
same point on the camera sensor plane. An object is said
to be in focus, if its distance from the lens falls inside the
camera’s depth-of-field (DoF), which is the distance about
the plane of focus where objects appear acceptably sharp
by the human eye. Objects outside the DoF appear blurred
on the image plane, an effect caused by the spread of light
rays coming from the unfocused objects and forming what
is called the “Circle-Of-Confusion” (CoC), as marked by C
in Fig. 1(a). In this paper, we will use the following termi-
nology: an all-in-focus image is an image where all objects
appear in focus, and a focused image is one where blurring
effects caused by the lens configuration are observed.

In this model, we consider the following parameters to
describe a specific camera: focal-length F , which is the dis-
tance between the lens plane and the point where initially
parallel rays are brought to a focus, apertureA, which is the
diameter of the lens (or an opening through which light trav-
els), and the plane of focus Df (or focus distance), which
is the distance between the lens plane and the plane where
all points are in focus. Following the thin-lens model, we
define the size of blur, i.e., the diameter of the CoC, which
we denote as Cmm, according to the following equation:

Cmm = A
|Do −Df |

Do

F

Df − F
(1)

where Do is the distance between an object to the lens
plane, and A = F/N where N is what is known as the
f-number of the camera. While CoC is usually measured in
millimeters (Cmm), we transform its size to pixels by con-
sidering a camera pixel-size of p = 5.6µm as in [3], and
a camera output scale s, which is the ratio between sensor

size and output image size. The final CoC size in pixels C
is computed as follows C = Cmm

p·s .
The CoC is directly related to the depth, as illustrated in

Fig. 1(b), where each line represents a different focus dis-
tance Df . The relation is not one-to-one and will cause
ambiguity in depth estimation. Moreover, different cam-
era settings are required for different scenes in terms of the
scene’s maximum depth, i.e. for KITTI, we consider maxi-
mum depth of 80 meters, and 10 meters for NYU. We also
consider a constant f-number of N = 2.8 and a different
focal-length for all datasets, in order to lower depth ambi-
guity by lowering the DoF range (see Sec. 5.2 for details).

We now refer to one more measurement named CoC-
limit, defined as the largest blur spot that will still be per-
ceived by the human eye as a point, when viewed on a final
image from a standard viewing distance. The CoC-limit
also limits the kernel size used for rendering and is, there-
fore, highly influential on the run time (bigger kernels lead
to more computations). We employ a kernel of size 7 × 7,
which reflects a standard CoC-limit of 0.061mm.

In this work, following [33, 35], we consider the
blur model to be a disc-shaped point spread function
(PSF), modeled by a Gaussian kernel with radius r =
C/2 and kernel’s location indices u, v: G(u, v, r) =

1
2πr2 exp(−(u

2+v2

2r2 )). Because we work in pixel space, if
the diameter is less then one pixel (C < 1), we ignore the
blurring effect.

According to the above formulation, a focused image can
be generated from an all-in-focus image and depth-map, as
commonly done in graphics rendering. Let I be an all-in-
focus image and J be a rendered focused image derived
from depth-map Do, CoC-map C, camera parameters A,
F and Df , we define J as follows:

Fx,y(u, v) =
2

πC2
x,y

exp

(
− 2

(
u2 + v2

C2
x,y

))
(2)

Jx,y : = (I ~ F ) (3)

=

∫
u,v∈Ω

Ix−u,y−vFx−u,y−v(u, v)dudv∫
u′,v′∈Ω

Fx−u′,y−v′(u′, v′)du′dv′
,

where Ω is an offsets set related to a kernel of size m×m:

Ω :=

{
(u, v) : u, v ∈

[
− m

2
, . . . , 0, . . . ,

m

2

]
∈ N

}
(4)

We denote by ~ the convolution operation with a functional
kernelF , by (x, y) the image location indices, and by (u, v)
the offset indices bounded by the kernel size.

Based on Eq. 3, given a set of focused images of the same
scene, one may optimize a model to predict the all-in-focus
image and the depth map. Alternatively, given a focused
image and its correspondent all-in-focus image, we predict
the scene depth by reconstructing the focused image.



While [31] use a weighted sum of disk kernels to render
blur, our blur kernel is not a Gaussian one, but a composi-
tion of different blur contributions from all neighbors. This
is process is given in Eq. 3, where each kernel coefficient is
calculated by a Gaussian function w.r.t. a different estimated
CoC, as illustrated in Fig. 1(c).

3.2. The PSF Convolutional layer

The PSF layer we employ can be seen as a particular
case of the locally connected layers of [34], with a few
differences: first, in the PSF layer, the same operator is
applied across all channels, while in the locally-connected
layer, as well as in conventional layers (excluding depth-
convolution [6]), the local operator varies between the input
channels. Additionally, The PSF layer does not sum the
outcomes, and returns the same number of channels in the
output tensor as in the input tensor.

The PSF convolutional layer, designed for the task of
Depth from Defocus (DfD), is based on Eq. 3, where kernels
vary between locations and are calculated “on-the-fly”, ac-
cording to function F , which is defined in Eq. 2. The kernel
is, therefore, a local function of the object’s distance, with a
blur kernel applied to out-of-focus pixels. The layer takes as
input an all-in-focus image I , depth-mapDo and the camera
parameters vector ρ, which contains the aperture A, the fo-
cal length F and the focal depth Df . The layer then outputs
a focused image J . As mentioned before, we fix the near
and far distance limits to fit each dataset and use the fixed
pixel size mentioned above. The rendering process begins
by first calculating the CoC-map C according to Eq. 1, and
then applying the functional kernel convolution defined in
Eq. 3. A detailed explanation of the forward and backward
pass is provided in the supplementary material. A detailed
explanation of the forward and backward pass is provided
in the supplementary material.

4. Approach
In this section, we describe the training method and the

model architecture, which extends the ASPP architecture to
include both self-attention and dense connections. We then
describe the training procedure.

4.1. General Architecture and the Training Loss

Let J be a (real-world) focused version of I , and J̄ be a
predicted focused version of I . We train a regression model
to minimize the reconstruction loss of J and J̄ .

We define two networks, f and g, for depth estimation
and focus rendering respectively. While f is learned, g im-
plements Eq. 2 and 3. Both networks take part in the loss,
and backpropagation through g as detailed in the supple-
mentary.

The learned network f is applied to an all-in-focus im-
age I and returns a predicted depth D̄o = f(I). The fixed

D̄o

Do

g(I; D̄o; ρ)

g(I;Do; ρ)

f(I)
I J̄

J real/rendered

Loss

Figure 2: Training scheme. Blue region represents the ren-
dering branch, which is used for depth-based datasets.

network g consists of the PSF layer, as described in Sec. 3.2.
It takes as input an all-in-focus I , a depth (estimated or
not) Do and the camera parameters vector ρ. It outputs
J = g(I,Do, ρ), which is a focused version of I accord-
ing to depth Do and camera parameters ρ. We distinguish
between a rendered focus image from ground truth depth
Do which we denote as J (also used for real focused im-
aged), and rendered focused image from predicted depth
D̄o, which we denote as J̄ = g(I, D̄o, ρ).

The training procedure has two cases, training with real
data or on generated data, depending on the training dataset
at hand. In both cases, training is performed end-to-end
by running f and g sequentially. First, f is applied to an
all-in-focus image I and outputs the predicted depth-map
D̄o. Using this map, the all-in-focus image and camera pa-
rameters ρ, g renders the predicted focused image J̄ . A
reconstruction error is then applied with J and J̄ , where
for the case of depth-based datasets, we render the train-
ing focused images J , according to ground truth depth-map
Do and camera specifications ρ. Fig. 2 shows the training
scheme, where the blue dashed rectangle illustrates the sec-
ond case, where J is rendered from the ground truth depth.

In the first case, since we compare with the work of [31],
we use a single focused image during training, although
more can be used. In the second case, we compare with
fully supervised methods, that benefit from a direct access
to the depth information, and we report results for 1, 2, 6
and 10 rendered focused images.
Training loss We first consider the reconstruction loss
and the depth smoothness [38, 14] w.r.t. the input image
I , the predicted focused image J̄ , the focused image J , and
the estimated depth map D̄o:

Lrec =
1

N

∑
α

1− SSIM(J̄ , J)

2
+ (1− α)‖J̄ − J‖1

(5)

Lsmooth =
1

N

∑
|∂xD̄o|e−|∂xI| + |∂yD̄o|e−|∂yI| (6)

where SSIM is the Structural Similarity measure [38], and
α controls the balance w.r.t. to L1 loss.

The reconstruction loss above does not take into account
the blurriness in some parts of image J , which arise from



Decoder

Encoder

Input

Output

Dense ASPP + Self-Attention

ResNet

Upsample + Conv

Pooling

Conv 1x1

Atrous Conv

Atrous Conv

Self-Attention

Skip Connection
Concatenate

Figure 3: Dense ASPP with an added attention block.

regions that are out of focus. We, therefore, add a sharp-
ness measure S(I) similar to [25], which considers the
sharpness of each pixel. It contains three parts: (i) the im-
age Laplacian ∆I := ∂2

xI + ∂2
yI , (ii) the image Contrast

Visibility C(I) :=

∣∣∣∣ I−µI

µI

∣∣∣∣, and (iii) the image Variance

V (I) := (I − µI)
2, where µI is the average pixel value

in a window of size 7× 7 pixels. The sharpness measure is
given by S(I) = −∆I −C(I)− V (I), and the loss term is
Lsharp = ‖S(Ĵ)− S(J)‖1. The final loss term is then:

Loss = λ1Lrec + λ2Lsmooth + λ3Lsharp (7)

For all experiments, we set λ1 = 1, λ2 = 10−3, λ3 = 10−1.

4.2. Model Architecture

Our network f is illustrated in Fig. 3. It consists of
an encoder-decoder architecture, where we rely on the
DeepLabV3+ [4, 5] model, which was found to be effective
for semantic segmentation and depth estimation tasks [9].
The encoder has two parts: a ResNet [15] backbone and a
subsequent Atrous Spatial Pyramid Pooling (ASPP) mod-
ule. Unlike [9], we do not employ a pretrained ResNet and
learn it end-to-end.

The Atrous convolutions (also called dilated convolu-
tions) add padding between kernel cells to enlarge the re-
ceptive field from earlier layers, while keeping the weight
size constant. ASPP contains several parallel Atrous convo-
lutions with different dilations. As advised in [5], we also
replace all pooling layers of the encoder with convolution
layers with an appropriate stride.

The loss is computed in the highest resolution, to sup-
port higher quality outputs. However, to comply with GPU
memory constraints, the network takes as an input, a down-
sampled image of half the original size. The network’s out-
put is then upsampled to the original image size.
Dense ASPP with Self-Attention The original ASPP
consists of three or more independent layers - average pool-
ing followed by 1 × 1 convolution, 1 × 1 convolution, and

four Atrous layers. Each convolution layer has 256 chan-
nels and the four outputs of these layers, along with the
pool+conv layer are concatenated together to form a tensor
with channel size C = 1280. We propose two additional
modifications from different parts of the literature: dense
connections [16] and self attention [42].

We add dense connections between the 1×1 convolution
and all Atrous convolution layers of the ASPP module, se-
quentially connecting all layers from smallest to the largest
dilation layer. Each layer, therefore, receives as the input
tensor not just the output of the previous layer, but the con-
catenation of the output tensors of all preceding layers. This
is illustrated as the skip connection arrows in Fig. 3.

Self-Attention aims to integrate local features with their
global dependencies, and as shown in previous work [42,
10], it improve results in image segmentation and gener-
ation. Let x ∈ RC×N be the input to the self-attention
module with C channels and N = H ×W where H and
W are the input’s height and width. We first transform it
into two feature spaces q (for query) and p (for key), where
q(x) = Wqx, p(x) = Wpx. The energy e and atten-
tion α are computed as follows: e = tanh(q(x)T p(x)),
α = softmax(e), where Wq,Wp ∈ RC̄×C , and C̄ is taken
as C/8. The softmax operator is applied to each column of
the N ×N matrix e. We then transform the original input x
with t(x) = Wtx,Wt ∈ RC×C to compute the final context
vector: c = t(x)αT . c ∈ RC×N is then viewed as a tensor
of size C ×H ×W and is passed as the input the decoder
of the network f .

The decoder part of f consists of three upsampling
blocks, each having three convolution layers followed by
bilinear upsampling. A skip connection from a low level
layer of the backbone is concatenated with the input of the
second block. The output of decoder is the predicted depth.

5. Experiments
We divide our experiments into two types, DoF supervi-

sion and DoF supervision from rendered data, as mentioned
in the previous section. We further experiment with cross
domain evaluation, where we evaluate our method in com-
parison to the state-of-the-art supervised method [9]. Here
the models are trained on domain A and tested on domain B,
denoted asA→ B. We show that learning depth from focus
cues, though not achieving better results than the supervised
methods - but comparable with top methods in KITTI and
Make3D datasets, achieves better generalization in depth
estimation in cross domain evaluation.

The network is trained on a single Titan-X Pascal GPUs
with batch size of 3, using Adam for optimization with a
learning rate of 2 · 10−5 and weight decay of 4 · 10−5. The
dedicated CUDA implementation of the PSF layer runs x80
faster than the optimized pytorch implementation.

The following five benchmarks are used:



Algorithm Supervision PSNR SSIM

Image Regression [31] DoF 24.60 0.895
Multi-View [31] DoF 34.49 0.960
Lightfield [31] DoF 36.68 0.967
Compositional [31] DoF 36.90 0.966
Ours DoF 38.33 0.979

Table 1: Quantitative results on the Lightfield test set, re-
ported as a mean value of PSNR and SSIM of the recon-
structed focused image.

Lightfield dataset [31] The dataset contains lightfield
flowers and plants images, taken with a Lytro Illum cam-
era. From the lightfield images, we follow the procedure
of [31] to generate the all-in-focus and shallow depth-of-
field images, and split the dataset into 3143 and 300 images
for train and test.
DSLR dataset [3] This dataset contains 110 images and
ground truth depth from indoor scenes, with 81 images for
training and 29 images for testing, and 34 images from out-
door scenes without ground truth depth. Each scene is ac-
quired with two camera apertures: N = 2.8 and N = 8,
providing focused and all-in-focus images.
KITTI [13] This benchmark contains RGB-D images
taken in an outdoor environment at resolution of roughly
370 × 1226 which we refer to as the full resolution output
size. The train/test splits we employ follow Eigen et al. [8],
with 23,000 training images and 697 test images. The in-
put depth-maps and images are cropped, according to [8] to
obtain valid depth values, and resized to half-size.
NYU DepthV2 [23] This benchmark contains about
120K indoor RGB and depth images captured with a Mi-
crosoft Kinect. The datasets consists of 249 scenes for train-
ing and 215 scenes for testing. We report results on 654
test images from a small subset of 1449 aligned RGB-depth
pairs, as done in previous work.
Make3D [27, 28] The Make3D benchmark contains 534
RGB-depth pairs, split into 400 pairs for training and 134
for testing. The input images are provided at a high resolu-
tion, while the depth-maps are at low resolution. Therefore,
data is resized to 460 × 345, as proposed by [27, 28]. Fol-
lowing [27], results are evaluated in two settings: C1 for
depth cap of 0-70, and C2 for depth cap 0-80.

5.1. Results

DoF supervision We first report results on the Lightfield
dataset dataset, which provides focused and all-in-focus im-
age pairs with no ground truth depth. The performance is
evaluated using the PSNR and SSIM measures. Our results
are shown in Tab. 1. As can be seen, we significantly out-
perform the literature baselines provided by [31].

Rendered DoF supervision For rendered DoF supervi-

sion, we consider four datasets [8, 27, 23, 3] with ground
truth depth, where we render focused images with differ-
ent focus distances. We denote by F1, F2, F6, F10 the
four training setups, which differ by the number of ren-
dered focused images used in training. The order in which
focal distances are selected, is defined by the following fo-
cal sequence [0.2, 0.8, 0.1, 0.9, 0.3, 0.7, 0.4, 0.6, 0.5, 0.35],
where each number represents the percent of the maximum
depth used for each dataset. For example, F2 employs focal
distances of 0.2 and 0.8 times the maximal depth.

We perform two types of evaluations. First, we evalu-
ate our method for each dataset with different numbers of
focused images during training, and compare our results
with other unsupervised methods, as well as with super-
vised ones. The evaluation measures are those commonly
used in the literature [13, 27, 28] and include various RMSE
measures and a thresholded error rate.

Tab. 2 and 3 show that our method outperforms monoc-
ular and stereo supervision methods on the KITTI and
Make3D dataset. This also holds when the previous meth-
ods are trained with additional data obtained from the
Cityscapes dataset. In comparison to the depth supervised
methods, we outperform all methods on KITTI, with the ex-
ception of [9], and outperform [9, 21] on Make3D. In Fig. 4,
we present qualitative results of our method compared to
the state-of-the-art unsupervised method [37] on the KITTI
dataset. As can be seen in Tab. 4, there are no literature
unsupervised methods reported for the NYU dataset, where
we are slightly outperformed by the supervised methods.

We next preform cross domain evaluation compared
to the published models of the state-of-the-art supervised
method [9], where training is performed on KITTI or NYU,
and tested on different datasets. These tests are meant to
evaluate the specificity of the learned network to a particular
dataset. Since the absolute depth differs between datasets,
we evaluate the methods by computing the Pearson correla-
tion metric. Results are shown in Tab. 5. As can be seen,
when transferring from both KITTI and NYU, we outper-
form the directly supervised method. The gap is especially
visible for the NYU network.

We also provide cross-domain results for the outdoor im-
ages of the DSLR dataset, where no ground truth depth is
provided, using the PSNR and SSIM metrics. Tab. 6 shows
in this case that our method transfers better from NYU and
only slightly better from KITTI in comparison to [9].

5.2. Ablation Studies

The Effect of Focal Distance Because the focus distance
Df and DoF range are positively correlated, training with a
far focus distance increases the DoF and puts a large range
of distances in focus. As a result, focus cues are lowered,
causing performance to decrease. In Fig. 5 we present, for
the Make3D dataset, the accuracy of F1 training with differ-



Reference Image Ground Truth Wang [37] F2 F6 F10

Figure 4: KITTI: Qualitative results on the KITTI Eigen Split. All images are cropped to the valid depth region as proposed
in [8]. From left to right, reference image and ground truth, Wang et al. [37] and ours.

Algorithm Supervision Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard et al. [14] S 0.148 1.344 5.927 0.247 0.803 0.922 0.964
Geonet-ResNet [41] M 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Wang et al. [37] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
Godard et al. [14] S(K+CS) 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Ours F1 DoF 0.141 1.473 5.187 0.221 0.846 0.953 0.981
Ours F2 DoF 0.129 0.722 4.233 0.183 0.856 0.960 0.985
Ours F6 DoF 0.114 0.671 4.144 0.172 0.867 0.963 0.987
Ours F10 DoF 0.110 0.666 4.186 0.168 0.880 0.966 0.988
Liu et al. [22] Depth 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Kuznietsov et al. [17] Depth 0.113 0.741 4.621 0.189 0.862 0.960 0.986
DORN et al. [9] Depth 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Table 2: KITTI: Quantitative results on the KITTI Eigen split. Top - Unsupervised methods where ‘S’ and ‘M’ stands for
stereo and video (monocular) supervision, and ‘K+CS’ stands for training with the added data from the CityScapes dataset.
Middle - Our method. Bottom - Supervised methods.

Algorithm Supervision
C1 C2

Abs Rel RMSE log10 RMSE Abs Rel RMSE log10 RMSE

Godard et al. [14] S 0.443 0.156 11.513 - - -
Zhou et al. [43] MS 0.383 0.478 10.470 - - -
Wang et al. [37] MS 0.387 0.204 8.090 - - -

Ours F1 DoF 0.568 0.192 8.822 0.575 0.195 10.147
Ours F2 DoF 0.287 0.116 7.710 0.294 0.121 9.387
Ours F6 DoF 0.262 0.109 7.474 0.269 0.115 9.248
Ours F10 DoF 0.246 0.110 7.671 0.254 0.116 9.494

Li et al. [21] Depth 0.278 0.092 7.120 0.279 0.102 10.27
MS-CRF [40] Depth 0.184 0.065 4.380 0.198 - 8.56
DORN [9] Depth 0.157 0.062 3.970 0.162 0.067 7.32

Table 3: Make3D: Quantitative results on Make3D [27, 28] dataset. Top - Unsupervised methods where ‘S’ and ‘M’ stands
for stereo and video (monocular) supervision. Middle - Our method. Bottom - Supervised methods.

Algorithm Supervision Abs Rel RMSE log10 RMSE δ < 1.25 δ < 1.252 δ < 1.253

Ours F1 DoF 0.254 0.092 0.766 0.691 0.880 0.944
Ours F2 DoF 0.162 0.068 0.574 0.774 0.941 0.984
Ours F6 DoF 0.149 0.063 0.546 0.797 0.951 0.987
Ours F10 DoF 0.162 0.068 0.575 0.772 0.942 0.984

Li et al. [21] Depth 0.143 0.063 0.635 0.788 0.958 0.991
MS-CRF [40] Depth 0.121 0.052 0.586 0.811 0.954 0.987
DORN [9] Depth 0.115 0.051 0.509 0.828 0.965 0.992

Table 4: NYU: Quantitative results on NYU V2 [23] dataset. Top - Our method. Bottom - Supervised methods.



Transition Algorithm Correlation

KITTI→ NYU
DORN [9] 0.423 ± 0.010
Ours F1 0.121 ± 0.006
Ours F10 0.429 ± 0.009

KITTI→Make3D
DORN [9] 0.616 ± 0.011
Ours F1 0.484 ± 0.019
Ours F10 0.642 ± 0.014

KITTI→ D3Net
DORN [9] 0.145 ± 0.048
Ours F1 0.148 ± 0.032
Ours F10 0.275 ± 0.054

NYU→ KITTI
DORN [9] 0.456 ± 0.006
Ours F1 0.567 ± 0.006
Ours F10 0.634 ± 0.005

NYU→Make3D
DORN [9] 0.250 ± 0.019
Ours F1 0.249 ± 0.032
Ours F10 0.456 ± 0.022

NYU→ D3Net
DORN [9] 0.260 ± 0.054
Ours F1 0.530 ± 0.048
Ours F10 0.434 ± 0.052

Table 5: Quantitative results for cross domain evaluation.
Models are trained on domain A and tested on domain B.
Reported numbers are mean ± standard error.

ent focus distances, where a clear decrease in performance
is seen at mid-range Df and an increase afterward, as a
result of the dataset maximum depth, capping the far DoF
distance, i.e. lowering the DoF range, and increasing focus
cues for closer objects.
Dense ASPP with Self-Attention We evaluate our dense
ASPP with self-attention in comparison to three versions of
the original ASPP model: vanilla ASPP, ASPP with dense
connections and ASPP with self-attention. In order to dif-
ferentiate between different ambiguity scenarios, training is
preformed with the F1, F2, F6 and F10 methods. As can be
seen in Tab 7, our model outperform the different ASPP ver-
sions. However, as the number of focused images increases,
the gaps are reduced.
Different rendering methods To further compare
with [31], we have conducted a test on the KITTI dataset,
where we replaced our rendering network g with their
compositional rendering, and modified our depth network
f ’s last layer to output 80 depth probabilities (similar
to [31]). From Tab. 8, the compositional method of [31]
preforms poorly on KITTI in the F1 and F2 setting.

6. Conclusion

We propose a method for learning to estimate depth from
a single image, based on focus cues. Our method outper-
forms the similarly supervised method [31] and all other
unsupervised literature methods. In most cases, it matches

Transition Algorithm PSNR SSIM

KITTI→ DSLR
DORN [9] 24.95 0.823
Ours F1 24.91 0.822
Ours F10 24.98 0.826

NYU→ DSLR
DORN [9] 24.73 0.749
Ours F1 24.97 0.774
Ours F10 24.97 0.773

Table 6: Quantitative results on the outdoor DSLR [3] test
set, reported as mean value of PSNR and SSIM of the re-
constructed focused image.

Model F1 F2 F6 F10

ASPP 5.412 4.422 4.311 4.194
ASPP + D 5.285 4.351 4.170 4.190
ASPP + SA 5.387 4.402 4.232 4.188
Our 5.187 4.233 4.144 4.186

Table 7: A comparison on KITTI between the original
ASPP and our dense ASPP with self-attention. We de-
note ‘D’ for Dense connections and ‘SA’ for Self-Attention.
RMSE is shown for focused image stacks of different sizes.

Algorithm
F1 F2

Abs Rel RMSE δ<1.25 Abs Rel RMSE δ<1.25

[31] 0.489 12.395 0.293 0.636 11.177 0.230
[31]+BF 0.379 11.921 0.354 0.339 11.612 0.418
Ours 0.141 5.187 0.846 0.129 4.233 0.856

Table 8: A comparison on KITTI dataset between different
blur methods on top of our network. BF= bilateral filtering.

0 8 16 24 32 40 48 56 64 72 80
Df Distance [meter]

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.88

0.90

<
1.

25

0 8 16 24 32 40 48 56 64 72 80
Df Distance [meter]

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

R
M

S
E

(a) (b)

Figure 5: (a) δ<1.25, lower is better, for training F1 with
different focus distance. (b) RMSE, higher is better.

the performance of directly supervised methods, when eval-
uated on test images from the training domain. Since fo-
cus cues are more generic than content cues, our method
outperforms the state-of-the-art supervised method in cross
domain evaluation on all available literature datasets.

We introduce a differentiable PSF convolutional layer,
which propagates image based losses back to the estimated
depth. We also contribute a new architecture that introduces
dense connection and Self-Attention to the ASPP module.



Our code is available as part of the supplementary material.

Acknowledgment
This project has received funding from the European Re-

search Council (ERC) under the European Unions Horizon
2020 research and innovation programme (grant ERC CoG
725974). The contribution of the first author is part of a
Ph.D. thesis research conducted at Tel Aviv University.

References
[1] S. Anwar, Z. Hayder, and F. Porikli. Depth estimation and

blur removal from a single out-of-focus image. In BMVC,
2017. 1, 2

[2] Y. Cao, Z. Wu, and C. Shen. Estimating depth from monoc-
ular images as classification using deep fully convolutional
residual networks. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 2017. 2

[3] M. Carvalho, B. Le Saux, P. Trouvé-Peloux, A. Almansa,
and F. Champagnat. Deep depth from defocus: how can de-
focus blur improve 3D estimation using dense neural net-
works? 3DRW ECCV Workshop, 2018. 3, 6, 8

[4] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmenta-
tion. arXiv preprint arXiv:1706.05587, 2017. 5

[5] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam. Encoder-decoder with atrous separable convo-
lution for semantic image segmentation. arXiv preprint
arXiv:1802.02611, 2018. 1, 5

[6] F. Chollet. Xception: Deep learning with depthwise separa-
ble convolutions. arXiv preprint, pages 1610–02357, 2017.
4

[7] D. Eigen and R. Fergus. Predicting depth, surface normals
and semantic labels with a common multi-scale convolu-
tional architecture. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2650–2658, 2015. 2

[8] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction
from a single image using a multi-scale deep network. pages
2366–2374, 2014. 2, 6, 7

[9] H. Fu, M. Gong, C. Wang, K. Batmanghelich, and D. Tao.
Deep ordinal regression network for monocular depth esti-
mation. pages 2002–2011, 2018. 1, 2, 5, 6, 7, 8

[10] J. Fu, J. Liu, H. Tian, Z. Fang, and H. Lu. Dual at-
tention network for scene segmentation. arXiv preprint
arXiv:1809.02983, 2018. 5

[11] R. Furukawa, R. Sagawa, and H. Kawasaki. Depth es-
timation using structured light flow–analysis of projected
pattern flow on an object’s surface–. arXiv preprint
arXiv:1710.00513, 2017. 2

[12] R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised
cnn for single view depth estimation: Geometry to the res-
cue. In European Conference on Computer Vision, pages
740–756. Springer, 2016. 2

[13] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. International Journal of Robotics
Research (IJRR), 2013. 2, 6

[14] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsuper-
vised monocular depth estimation with left-right consistency.
2(6):7, 2017. 2, 4, 7

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. pages 770–778, 2016. 2, 5

[16] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger.
Densely connected convolutional networks. In CVPR, vol-
ume 1, page 3, 2017. 1, 5

[17] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-supervised
deep learning for monocular depth map prediction. pages
6647–6655, 2017. 2, 7

[18] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of
perspective. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 89–96, 2014. 2

[19] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and
N. Navab. Deeper depth prediction with fully convolutional
residual networks. pages 239–248, 2016. 2

[20] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image
and depth from a conventional camera with a coded aperture.
ACM transactions on graphics (TOG), 26(3):70, 2007. 2

[21] B. Li, C. Shen, Y. Dai, A. Van Den Hengel, and M. He. Depth
and surface normal estimation from monocular images us-
ing regression on deep features and hierarchical crfs. pages
1119–1127, 2015. 6, 7

[22] F. Liu, C. Shen, G. Lin, and I. D. Reid. Learning depth from
single monocular images using deep convolutional neural
fields. IEEE Trans. Pattern Anal. Mach. Intell., 38(10):2024–
2039, 2016. 2, 7

[23] P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, 2012. 2, 6, 7

[24] A. B. Owen. A robust hybrid of lasso and ridge regression.
Contemporary Mathematics, 443(7):59–72, 2007. 2

[25] M. Pagidimarry and K. A. Babu. An all approach for multi-
focus image fusion using neural network. Artificial Intelli-
gent Systems and Machine Learning, 3(12):732–739, 2011.
5

[26] R. Ranftl, V. Vineet, Q. Chen, and V. Koltun. Dense monoc-
ular depth estimation in complex dynamic scenes. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4058–4066, 2016. 2

[27] A. Saxena, S. H. Chung, and A. Y. Ng. Learning depth from
single monocular images. In Advances in neural information
processing systems, pages 1161–1168, 2006. 2, 6, 7

[28] A. Saxena, M. Sun, and A. Y. Ng. Learning 3-d scene struc-
ture from a single still image. In Computer Vision, 2007.
ICCV 2007. IEEE 11th International Conference on, pages
1–8. IEEE, 2007. 2, 6, 7

[29] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. IEEE transactions
on pattern analysis and machine intelligence, 31(5):824–
840, 2009. 2

[30] A. Sellent and P. Favaro. Which side of the focal plane are
you on? In 2014 IEEE international conference on compu-
tational photography (ICCP), pages 1–8. IEEE, 2014. 2

[31] P. P. Srinivasan, R. Garg, N. Wadhwa, R. Ng, and J. T. Bar-
ron. Aperture supervision for monocular depth estimation.
pages 6393–6401, 2018. 1, 2, 4, 6, 8



[32] J. Surh, H.-G. Jeon, Y. Park, S. Im, H. Ha, and I. S. Kweon.
Noise robust depth from focus using a ring difference filter.
In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2017. 1, 2

[33] S. Suwajanakorn, C. Hernandez, and S. M. Seitz. Depth from
focus with your mobile phone. pages 3497–3506, 2015. 1,
2, 3

[34] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface:
Closing the gap to human-level performance in face verifi-
cation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1701–1708, 2014. 4

[35] H. Tang, S. Cohen, B. L. Price, S. Schiller, and K. N. Kutu-
lakos. Depth from defocus in the wild. pages 4773–4781,
2017. 1, 2, 3

[36] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and
J. Tumblin. Dappled photography: Mask enhanced cameras
for heterodyned light fields and coded aperture refocusing. In
ACM transactions on graphics (TOG), volume 26, page 69.
ACM, 2007. 2

[37] C. Wang, J. M. Buenaposada, R. Zhu, and S. Lucey. Learning
depth from monocular videos using direct methods. pages
2022–2030, 2018. 1, 2, 6, 7

[38] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simon-
celli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image process-
ing, 13(4):600–612, 2004. 4

[39] J. Xie, R. Girshick, and A. Farhadi. Deep3d: Fully au-
tomatic 2d-to-3d video conversion with deep convolutional
neural networks. In European Conference on Computer Vi-
sion, pages 842–857. Springer, 2016. 2

[40] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. Multi-
scale continuous crfs as sequential deep networks for monoc-
ular depth estimation. 1, 2017. 2, 7

[41] Z. Yin and J. Shi. Geonet: Unsupervised learning of dense
depth, optical flow and camera pose. 2, 2018. 1, 2, 7

[42] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-
attention generative adversarial networks. arXiv preprint
arXiv:1805.08318, 2018. 1, 5

[43] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe. Unsuper-
vised learning of depth and ego-motion from video. 2(6):7,
2017. 2, 7

[44] S. Zhuo and T. Sim. Defocus map estimation from a single
image. Pattern Recognition, 44(9):1852–1858, 2011. 1, 2


