
Principal-channels for One-sided Object Cutout

Lior Gavish, Lior Shapira, Lior Wolf and Daniel Cohen-Or
School of Computer-Science
Tel Aviv University, Israel

Abstract

We introduce principal-channels for cutting out objects
from an image by one-sided scribbles. We demonstrate
that few scribbles, all from within the object of interest,
are sufficient to mark it out. One-sided scribbles provide
significantly less information than two-sided ones. Thus, it
is required to maximize the use of image-information. Our
approach is to first analyze the image with a large filter
bank and generate a high-dimensional feature space. We
then extract a set of principal-channels that discern one
object from another. We show that by applying an iterative
graph-cut optimization over the principal-channels, we can
cut out the object of interest.

1. Introduction

One inherent difficulty in automatic image segmentation
is that different user interpretations of the image lead to
different results. It therefore seems that some level of user
guidance is unavoidable. A natural question to ask is what
is the minimal level of such user provided information.

This question is not merely a theoretical question. A
reduction in required user intervention reduces the users’
efforts and simplifies their experience. In addition, it can
lead to automatic image segmentation of pre-specified object
classes using today’s often crude and unreliable object-
recognition methods. These methods may mark reliably
some pixels inside an object, but requiring the marking of
outside pixels, makes the problem almost twice as hard.

We motivate our work by what we dub ”the axiom of
choice”. Namely, that each object in the image can be
selected without ambiguity from a few scribbles taken only
from inside the object. This one-sided approach provides
much less information than is provided to other segmenta-
tion techniques. For example, Lazy Snapping [1] requires
scribbles both inside and outside the object. GrabCut [2],
another popular segmentation method, requires the use of
a bounding box, which segments the entire image approxi-
mately to foreground and background. Naturally, a reduced
amount of user supervision makes the segmentation problem
significantly harder.

A new method is suggested in order to deal with this
decreased amount of supervision, while not sacrificing the
segmentation quality. The method is tapping into sources

of information that are not fully used in today’s competing
methods. One such source is texture information via the filter
bank approach and a simple patch-based color representa-
tion.

In the texture representation above, a large number of
filters and color descriptors are used. For a specific texture-
edge, only a few of these are relevant. The rest may hinder
the total edge response. An optimal combination of texture
and color is also a non-trivial problem. We deal with these
issues by employing Principal Component Analysis to infer
a reliable visual similarity metric among image pixels. The
result is a small set of principal-channels, which highlight
different aspects of local appearance (Figure 1). We use the
principal-channels to define an energy function which should
correspond to a proper segmentation. An efficient graph-cuts
approach [3] is then applied to optimize the energy function.

Lastly, the whole process is iterated in order to employ
the information available at the end of one segmentation
iteration to obtain a better-yet segmentation. This iterative
scheme, which is similar to the one in GrabCut, improves
the results significantly. Taken together, the newly combined
foreground extraction method provides a solid solution to
minimal intervention image segmentation.

2. Previous Work

Graph-cuts segmentation methods. The graph-cuts tech-
nique in the context of image segmentation is first introduced
in [4], where it is used to integrate region information with
boundary cues. The technique has since proven to be useful
and efficient in optimizing a large class of cost functions.

Our work is especially related to Lazy Snapping [1] and
GrabCut [2], both providing the user with an interactive
UI for foreground extraction. In both systems, the user’s
input is used as a cue for modeling the foreground and
background colors. A Graph-cuts optimization then finds
an optimal labeling with respect to the computed models.
While Lazy Snapping allows the user to draw scribbles on
the image, marking the locations of the foreground and
the background, GrabCut users draw a rectangle around
the foreground object. In the GrabCut system, iterative
graph-cuts are used to derive growingly accurate foreground
models, compensating for the lack of specificity in the user’s
marking.

Figure 1. A small set of principal channels (p-channels) highlight different aspects of local appearance.

Texture analysis.. Traditional methods for texture analy-
sis are often grouped into three major categories: statistical,
structural and spectral. In the statistical approach, texture
statistics (e.g., moments of the gray-value histogram, or co-
occurrence matrices) serve as texture descriptors. In struc-
tural approaches, the structure is analyzed by constructing a
set of rules that generates the texture. Spectral approaches
analyze the frequency domain.

In contrast to the wealth of approaches suggested in the
past, the last decade has been dominated by the filter bank
approach [5], where the image is convolved with a large
collection of filters tuned to various orientations and scales.
Of the many studies that employ banks of filters, the most
common set of filters seems to be the Gabor filters [6]–[8],
which we use here as well.

3. The proposed cutout algorithm

Figure 2 shows an overview of our system. Below, we
portray its building blocks. We motivate each of the com-
ponents separately, and describe their integration.

Texture Feature Extraction . Our system utilizes a set of
color and texture features to capture local image appearance.
For each pixel, we calculate three types of raw features. (1)
the Lab color values (a 3-vector); (2) A vector of length 30
depicting the color histogram of a local patch; and (3) A set
of 24 Gabor filter outputs. We then process these inputs and
use (1) for the smoothness term and the combination of (2)
and (3) as the texture descriptor used in the data term.

More specifically, the color distribution of a local 5× 5
neighborhood is estimated channel-by-channel by employing
histograms. Each histogram contains 10 bins, and we have
three such histograms corresponding to the R, G and B
channels. To obtain local spatial structure descriptors, we
use a battery of Gabor filters in 4 different scales and in 6
orientations. For each image pixel the vector of length 24

of filter outputs forms the frequency encoding part of the
texture descriptor.

The Principal-channels. We apply PCA to the con-
catenated Gabor and histogram vectors (54 dimensions) to
extract the three most prominent texture-based channels. The
transformation between the normalized texture space and the
new representation is simply given as a 3×52 matrix with
orthogonal rows.

Interestingly, in contrast to our original hypothesis super-
vised learning does not perform better for this task than
PCA, even if many reliable foreground/background labels
are given as training. We tried several classical and less
classical learning techniques such as LDA, Fisher criterion
score, Pearson coefficients, and the Kolmogorov-Smirnov
test (the last three are feature selection techniques), SVM,
and NCA [9]. We speculate that the reason of the lack
of success with such techniques is that the most relevant
discriminative information is at the texture boundaries. We
cannot expect, however, to have that information available,
until the segmentation problem is solved.

The Lab 3-vectors are also transformed via PCA. Here, we
do not reduce the dimensionality of the data. However, the
PCA transform allows us to observe visually the dominant
edge pattern in the image. We coin the combination of
the three texture PCA channels and the three color PCA
channels ”principal-channels”, or p-channels for short. We
present such channels as images in Figure 3. As can be seen,
prominent image edges often manifest themselves clearly in
at least one of those channels.

Graph-Cut iterations. To solve the segmentation prob-
lem, we adopt an energy minimization approach. We let
each pixel i in the image have a label xi ∈ {F, B}, indicating
whether it belongs to the foreground or the background. We
define the following energy term

E(x1, . . . , xN) = ∑
i

E1(i,xi)+α · ∑
i, j∈Nei(i)

E2(i, j,xi,x j),

Figure 2. Overview of the segmentation process. We extract a high-dimensional feature space (b) from the input
image (a). Features are used to derive the p-channels (c). We then iteratively estimate the probability of a pixel to
belong to the foreground (d) and segment the image (e).

Figure 3. The p-channels that were extracted from the
input image. Color components are shown on the left
column, texture on the right. Notice how the topmost
texture channel captures the cat.

which accounts for foreground/background modeling via the
E1 term, and for the local smoothness and coherence via
the E2 term. E1 describes the likelihood of each pixel in the
image to belong to one of the classes: the foreground or the
background. Specifically,

E1(i,xi) = − log(Pxi(a(i))) ,

where Pxi(a(i)) is the probability that a pixel with a p-
channel descriptor a(i) belongs to class xi. We choose
to model the distribution of each class using a Gaussian

Mixture Model (GMM) over the 6D p-channels, where each
mixture contains five Gaussians with general covariance
matrices.

The parameters of the foreground model are estimated
using the points on the user specified scribbles as the training
set. This is done using the EM algorithm. We do not,
however, have training points for the background data. We
found that initializing the background GMM using all of
the points in the image as training works well. First, in
many situations the background dominates the foreground
with respect to the number of pixels, and second, it is
the difference in the likelihoods between the classes that
determines much of the segmentation. That is, it is sufficient
at first that for many foreground pixels, the foreground
likelihood would be larger than the background likelihood.

Our smoothness term E2 relies solely on the three color
components of the p-channels. We do not use the texture
information here, since some of our texture features are
derived using filters with significant supports, and therefore
show rather crude edges. The combination of color-based
edge term with color/texture-based region term allows us
to simultaneously capture the appearance of the foreground
object and maintain accuracy near the edges.

Specifically, we use the term

E2(i, j,xi,x j) =
{

exp
(
−‖ac(i)−ac(j)‖2/β

)
xi 6= x j

0 xi = x j

where ac(i) is the color components vector of pixel i’s p-
channels response, and β = 10 1

4N ∑‖ac(i)− ac(j)‖2. This
term penalizes foreground/background boundaries where
there is no clear edge in the image, thus encouraging
coherent labeling of spatially-related uniformly-colored pix-
els. The energy term E is optimized using an iterative
α-expansions graph-cuts technique [3]. The optimization
results in a labeling x1, . . . , xN , assigning each pixel to the
foreground or the background.

Repeated iterations. Our system faces a situation which
is not unlike the one faced by GrabCut: Statistical models
that are used for segmentation are being estimated from
limited user input.

The solution used in GrabCut is appropriate here
as well. We use an iterative scheme where the back-
ground/foreground solution of one iteration is fed to the

next. Given a segmentation from a preceding iteration, we
re-estimate the parameters of the background and foreground
models by fitting the foreground and background labels
of that iteration. Provided the new, more accurate GMM
models, we re-estimate the probabilities PF(i),PB(i), which
govern the region term E1. We then apply the graph-cuts
method to obtain a new, better segmentation. The process is
demonstrated in Figure 4.

We repeat this process until changes in E(x1, . . . , xN) are
negligible. Our iterations are guaranteed to converge to a
local minima of E(x1, . . . , xN), since every step we make
does not increase the energy. This can be shown as follows.
While graph-cuts segmentation optimizes E(x1, . . . , xN) with
respect to the labels x1, . . . , xN , the re-estimation of the
GMMs optimizes E(x1, . . . , xN) with respect to the model
parameters. Since both steps cannot increase the energy, the
process is bound to converge.

4. Results

We have compared the quality of the foreground extrac-
tion provided by our method to the one provided by Lazy
Snapping and GrabCut. Lazy Snapping requires background
scribbles, however, even with this extra information it does
not perform as good as our algorithm. The main reason
is its limited texture analysis capabilities. See Figure 5
for one such comparison. GrabCut, like our algorithm is
motivated by the need of having minimal user intervention.
However, a rectangle marking the outside of an object if
often insufficient for accurate segmentation, as demonstrated
in Figure 6. The authors of GrabCut propose to correct
the result by letting the user add scribbles. Effective use
of GrabCut, therefore, might require more user interaction
than our method.

In another set of experiments, we have applied our algo-
rithm to the output of automatic object-detection systems.

Figure 4. We show how the input image (a) is iteratively
segmented (c) to arrive at the result (b).

Figure 5. We compare our method with Lazy Snapping.
Though we use only the foreground scribbles (a) we
derive a better result (c) as compared to Lazy Snapping
(d) with two-sided scribbles (b).

Figure 6. We compare our method with GrabCut.
Using our scribbles (a) we derive a better result (c) as
compared to GrabCut (d) using a surrounding box (b).
Though GrabCut allows the user to manually correct
the segmentation, this would considerably add to the
amount of required user input.

We ran the pedestrian detector of Dalal and Triggs [10] on
sample images. This detector excels in its task, but more
often than not marks rectangular detections that are either
too large or too small. For that reason, running GrabCut on
the detector’s output fails in extracting the boundaries of the
pedestrian.

We ran our algorithm where as a scribble, we took a stripe
in the middle of each detection result (a rectangle) which has
a height of 1/5 of the rectangle and a width of 1/20. As can
be seen in Figure 8 the resulting segmentation can handle
detections that are out of scale in both directions.

Our algorithm can sometimes display behavior which is
unexpected by most users. For example, it can mark regions
that are not connected to the marked foreground object
(see Figure 7). This can be fixed by simple means, if the
application so requires. Additional segmentation results can
be seen in Figure 9.

5. Conclusions

We have explored minimal forms of interaction which
are suitable for many graphics editing tasks. We have
demonstrated that it is possible to reduce the amount of
user guidance and in the same time improve the results of
a foreground extraction task. This result opens new avenues
for other graphical editing tasks in which scribbles are
used, since the number of the employed scribbles can be
reduced as well as their variety. Moreover, robotic “users”
with limited intelligence, so to speak, such as the current
automatic object recognition systems, can also benefit from
minimal user guidance systems.

We attribute the success of our system to two factors. The
first factor is the use of carefully chosen texture features
that capture local structures as well as their color. The
other contributing factor is a carefully engineered process in
which these features are combined into one overall system.
By making the design choices presented here we deliver a
foreground extraction system which requires minimal user
indication and works well for a variety of images.

References

[1] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum, “Lazy snapping,”
in SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers. New
York, NY, USA: ACM Press, 2004, pp. 303–308.

[2] C. Rother, V. Kolmogorov, and A. Blake, “”grabcut”: inter-
active foreground extraction using iterated graph cuts,” ACM
Trans. Graph., vol. 23, no. 3, pp. 309–314, 2004.

Figure 7. The hands of people at the back are marked
as foreground, since they have visual similarity to the
swimmer.

Figure 8. (a) The original images with pedestrian de-
tections marked in red. (b) Pedestrians extracted using
our method. (c) Pedestrians extracted using GrabCut.

[3] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate
energy minimization via graph cuts,” in ICCV (1),
1999, pp. 377–384. [Online]. Available: citeseer.ist.psu.edu/
boykov99fast.html

[4] Y. Boykov and M.-P. Jolly, “Interactive graph cuts for optimal
boundary and region segmentation of objects in n-d images.”
in ICCV, 2001, pp. 105–112.

[5] I. Fogel and D. Sagi, “Gabor filters as texture discriminator,”
Biological Cybernetics, vol. 61, pp. 103–113, 1989.

[6] J. Malik and P. Perona., “Preattentive texture discrimination
with early vision mechanisms,” J. Optical Soc. Am., vol. 7,
no. 2, pp. 923–932, 1990.

[7] T. Hofmann, J. Puzicha, and J. Buhmann, “Unsupervised
segmentation of textured images by pairwise data clustering.”
in The IEEE International Conference on Image Processing,
1996.

[8] C. Fowlkes, D. Martin, and J.Malik, “Learning affinity func-
tions for image segmentation: Combining patch-based and
gradient-based approaches.” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2003.

[9] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov,
“Neighbourhood components analysis,” in Advances in Neu-
ral Information Processing Systems 17, 2005, pp. 513–520.

[10] N. Dalal and B. Triggs, “Histograms of oriented gradients for
human detection,” in International Conference on Computer
Vision & Pattern Recognition, C. Schmid, S. Soatto, and
C. Tomasi, Eds., vol. 2, INRIA Rhône-Alpes, ZIRST-655, av.
de l’Europe, Montbonnot-38334, June 2005, pp. 886–893.
[Online]. Available: http://lear.inrialpes.fr/pubs/2005/DT05

Figure 9. Additional segmentation results. In each pair the original image is shown on the left with one-sided
scribbles, and the segmented result is shown to its right.

