
Complexity of Multiverse Networks and
their Multilayer Generalization

Etai Littwin and Lior Wolf
The Blavatnik School of Computer Science

Tel Aviv University

Abstract—Multiverse networks were recently proposed as a
method for promoting more effective transfer learning. While an
extensive analysis was proposed, this analysis failed to capture
two main aspects of these networks: (i) the rank of the represen-
tation is much lower than the rank predicted by the analysis; and
(ii) the contribution of increased multiplicity in such networks
diminishes quickly. In this work, we propose additional analysis
of multiverse networks which addresses both deficits. A major
contribution of our work is quantifying the Rademacher com-
plexity of the multiverse network. It is shown that the complexity
upper bound of multiverse networks is significantly lower than
that of conventional networks, and diminishes by a factor of

√
k,

k being the multiplicity. In addition, we generalize the notion
of multiverse networks to multilayer multiverse networks. We
derive the Rademacher complexity formula to such networks
and present experimental results.

I. INTRODUCTION

A major aspect in the recent success of deep neural networks
is their effectiveness in tasks involving transfer learning.
However, only a few contributions have focused on directly
promoting this property. The Multiverse networks [7] have
not only shown experimentally to significantly increase the ef-
fectiveness of transfer learning in comparison to conventional
networks, but are also, in the context of the Joint Bayesian
algorithm [2], theoretically justified.

Multiverse networks are a variant of neural networks in
which the representation layer is linked to the predictions
through multiple sets of pairwise orthogonal classifiers. With-
out explicitly enforcing anything beyond this orthogonality,
two desirable properties emerge. First, the dimensionality of
the learned representation is reduced and a low-rank represen-
tation is obtained. Second, the representation contains more
discriminative directions, as is measured by the fisher score,
i.e., by the generalized Rayleigh quotient of the Between-
and Within-class covariance matrices. Both these properties
are shown by a series of theorems in [7].

Even more remarkably, the multiverse network is essentially
parameter free: as the multiplicity k is increased, the rank of
the representation converges quickly to a “natural dimensional-
ity”. This dimensionality is stable and is much lower than what
is predicted by the theoretical analysis of [7]. Therefore, unlike
most dimensionality reduction and related methods, when
employing multiverse networks, the data provides us with a
clear signal as to the desired representation independently of
our choice of parameters.

In the current work, we address this unique property. First,
we measure the richness of the class of multiverse networks as

a function of the multiplicity parameter k. Second, we explain
the root cause for an emerging dimensionality that is much
lower than what is predicted by [7].

In addition, we generalize the notion of multiverse networks.
In [7], multiverse networks were studies at the level of what
is called the “representation layer”, i.e., the activations of
the layer just below the top classification layer. However, as
we show here, the multiverse principle can also readily be
applied to other layers. In the following sections, multilayer
multiverse networks are defined, a suitable optimization algo-
rithm is proposed, their functional complexity is derived and
initial experimental results for employing such networks are
presented.

II. RECAPITULATING MULTIVERSE NETWORKS

Multiverse networks as introduced in [7] were shown to
improve transfer learning in various verification metrics, as
well as to encourage some desirable properties in the emerging
representation such as low rank and better discriminability
between classes. In its core, the multiverse network is simply
a neural network with multiple orthogonal classifiers for each
class, see Fig. 1(b). During training, the cross entropy loss
of each vector of softmax probabilities produced by the
different classifiers are summed over, with an added term
that encourages orthogonality between the different classifiers
of the same class. Specifically, we consider a simple model
of an L layer feed forward neural net with multiple outputs
and relu activation functions N : Rd → Rc. We denote1

by Wj ∈ Rdj−1×dj = [wj1, wj2...wjdj ] the weights matrix
connecting layer j−1 to layer j where dj is the dimensionality
of layer j (notice that dL = c), and by σ() the relu activation
function acting element wise on its input. The output of a
neural net with l layers acting on input x is therefore:

N (x) =W>L ...σ(W
>
3 σ(W

>
2 σ(W

>
1 x))) (1)

We denote by Nl(x) ∈ Rdl the output of the l’th layer, and
Nn
l (x) ∈ R the output of the n’th neuron in the l’th layer, so

that:
Nn
l (x) = w>lnNl−1(x) (2)

where wln is the n’th column of Wl. A k-multiverse network
has k column-wise orthogonal weight matrices W 1

L...W
k
L

connecting layer L− 1 and layer L. We index the orthogonal
weight vectors of the multiverse network by a superscript such

1The notations used in this work are summarized in Table I.



(a)

(b)

(c)
Fig. 1. An illustration of the multiverse concept. (a) In a conventional neural network, there is one weight matrix that connects each layer to the next one.
This leads to a single vector of softmax pseudo-probabilities on which the training loss is computed. (b) In a conventional multiverse network [7], there are
multiple, alternative, weight matrices connecting the layer before the last to the last layer. In the illustration, the multiplicity parameter k is 2. (c) In multilayer
multiverse networks, there are multiple layers for which alternative weight matrices exist. For a number of split-layers p, and a given multiplicity k, the
number of possible paths is kp. In the illustration p = k = 2.

that: ∀j, i 6= i′ wi>Ljw
i′

Lj = 0. When training, given input pairs
x = (x1, y1)...(xm, ym), the loss is computed as follows:

L(x) = −1

k

k∑
t=1

m∑
i=1

log(
ew

t>
Lyi
NL−1(xi)∑Y

j=1 e
wt>

LjNL−1(xi)
)

+ λ

k∑
t=1

k∑
t′=t+1

Y∑
j=1

|wt>Ljwt
′

Lj | (3)

At test time, the probability of xi ∈ yi is computed as follows:

p(yi|xi) =
1

k

k∑
t=1

ew
t>
Lyi
NL−1(xi)∑Y

j=1 e
wt>

LjNL−1(xi)
(4)

It was shown in [7] that instead of the averaging of
probabilities in Eq. 4 it is enough to select one probability
vector (fix t), since all k probability vectors are identical (this
is due to the fact the the projection of each classifier in the
set of orthogonal classifiers on the data turns out to be the
same, and orthogonality is achieved by the low rank repre-
sentation). In addition, it was shown that multiverse networks
encourage desirable properties in the emerging representation,
such as a more balanced, low rank distribution and fisher
spectrum. It was further shown that these properties allow for

Symbol
x A set of input data.
Y Number of classes.
m Number of data points, typically indexed by i.
y m× 1 vector of labels. Each label is yi.

N (xi)
n
l The output of the n’th neuron in the l’th layer of a neural

net N (xi) evaluated on input xi.
Nmult A network with one or more multiverse layers.

L Number of layers in a network.
dl Dimensionality of the representation in layer l.
Wl A dl−1×dl matrix of weights connecting layer l−1 and

layer l.
wln Column n in Wl.
cl A bound on the norm of wln.
k Multiplicity parameter in a multiverse network.
p Number of multiverse layers in a multiverse network.

R(NL) The rademacher complexity of network N .
R A dL−1×m matrix of features (i.e representation in layer

L− 1 of data x).
K RR>.
ri Column i of R.
U Kernal (Null space) of R.

TABLE I
SUMMARY OF NOTATIONS.

more effective transfer learning using verification metrics, as
demonstrated on tasks such as face recognition.



III. MULTILAYER MULTIVERSE NETWORKS

In this work, we extend the notion of multiverse networks
to hidden layers, where the exact same column wise orthog-
onality principle applies to the weights of single or multiple
hidden layers, as illustrated in Fig. 1(c). In the multilayer case,
in order to compute the loss for some batch, we would need
to forward propagate an input sample through exponentially
many possible paths, and thus sum over exponentially many
softmax probability vectors. For example, given that both
layers L and L−1 have k orthogonal copies, the output of the
network for sample xi depends on the path u = [u1, u2], ui ∈
[1, 2...k]:

NL(xi, u) =Wu1>
L σ(Wu2>

L−1 ...σ(W
>
2 σ(W

>
1 x))) (5)

Since it is not feasible to forward propagate through exponen-
tially many paths during training, we adopt a more stochastic
approach where the path u is uniformly sampled for each
batch. The loss for some path u and input xi is therefore:

L(x, u) = −
m∑
i=1

log(
eN (xi,u)

yi
L∑Y

j=1 e
N (xi,u)

yj
L

)

+ λ
∑
l

∑
t6=ul

∑
j

|wul>
lj wtlj | (6)

where the index l implies summing over ”multiverse” layers.
In order to classify a new sample at test time, exponentially
many forward propagations would still need to be computed
and averaged out, which may be impractical in many real
world applications. However, such a computation is unnec-
essary, since similar to the conventional multiverse network,
the pseudo probability vectors for each path turn out to be the
same, and hence a single forward propagation of any random
path is sufficient.

IV. RADEMACHER COMPLEXITY OF MULTIVRSE
NETWORKS

Let X = [x1...xm], x ∈ Rd denote some input set drawn
from some unknown distribution, and let F : x→ R denote a
class of functions. We denote the random variable R̂m as:

R̂m(F, x) = Eρ

[
sup
f∈F

(
1

m

m∑
i=1

ρif(xi))|x
]

(7)

Where ρi are uniform independent −1, 1 valued random
variables. The Rademacher complexity of F is defined as [1]:

R(F ) = ExR̂m(F ) (8)

For simplicity, we will consider a model of a feed forward
neural net with a single output (dL = 1, wL ∈ RdL−1×1),
which we denote by the superscript 1, e.g., N 1

L, is an L layer
neural network with a univariate output. In addition, we apply
L2 regularization on the weights by restricting the L2 norm
of each weight vector ∀li ‖wli‖2 < cl. We define the

Rademacher complexity of a k-multiverse network N 1
mult,L

as:

R(N 1
mult,L) = ExEρ

[
sup
W

(
1

km

m∑
i=1

ρi

k∑
t=1

wt>L NL−1(xi))|x
]

(9)
The following theorem bounds the Rademacher complexity of
such class of functions.

Theorem 1: The Rademacher complexity of feed forward
neural networks with a single output, relu activation functions
and k orthogonal classifiers is bounded by:

R(N 1
mult,L) ≤

√
dL−1cL√
k

R(N 1
L−1) (10)

Proof:

R(N 1
mult,L) = ExEρ

[
sup
W

(
1

km

k∑
t=1

wt>L

m∑
i=1

ρiNL−1(xi)|x
]

(11)
For any vectors u, v, it holds that ‖u‖1‖v‖∞ > u>v, and so:

R(N 1
mult,L) ≤

ExEρ

[
sup
W

(
‖
∑k
t=1 w

t
L‖1

km
sup
n

∣∣∣∣ m∑
i=1

ρiNn
L−1(xi))

∣∣∣∣|x]
(12)

It holds that ‖
∑k
t=1 w

t
L‖1 ≤

√
dL−1‖

∑k
t=1 w

t
L‖2. Using

the orthogonality constraint between w1
L...w

k
L, we have that

‖
∑k
t=1 w

t
L‖2 ≤ cL

√
k. And so:

R(N 1
mult,L) ≤√

dL−1

k
ExEρ

[
sup
W

(
‖
∑k
t=1 w

t
L‖2

m
sup
n

∣∣∣∣ m∑
i=1

ρiNn
L−1(xi))

∣∣∣∣|x]
≤
√
dL−1cL√
k

ExEρ

[
sup
W

(
1

m
sup
n

∣∣∣∣ m∑
i=1

ρiNn
L−1(xi))

∣∣∣∣|x]
=

√
dL−1cL√
k

R(N 1
L−1) (13)

In order to compare the upper bound with that of a regular
neural network with a single classifier, we notice that substi-
tuting w1

L = w2
L = ...wkL = wL in Eq. 9 results in the standard

Rademacher complexity definition of neural networks with a
single classifier. Following the same derivation, we get the
upper bound for the universe case:

R(N 1
L) ≤

√
dL−1cLR(N 1

L−1) (14)

Theorem 1 gives a clear indication as to the regularization
power of the multiverse architecture, as the model overall com-
plexity is reduced by a factor of

√
k. Theorem 1 can also be

extended to the middle layer multiverse using the Rademacher
bounds for the composition of functions. Specifically, we will
use the following lemma [1]:



lemma 1: Let F be a a class of real valued functions, and let
φ : R → R be a Lipschitz function with a Lipschitz constant
Lφ and φ(0) = 0 . Then:

R(F ◦ φ) ≤ 2LφR(F ) (15)

Lemma 1 directly applies to networks with relu activations,
since the relu function is a Lipschitz function with a constant
Lφ = 1. We now extend Theorem 1 to a general layer in the
network.

Theorem 2: The Rademacher complexity of feed forward
neural networks with a single output, relu activation functions
and k column wise orthogonal matrices in some layer l is
bounded by:

R(N 1
mult,L) ≤

2L−l+1
∏L
j=l

√
dj−1cj√

k
R(N 1

l−1) (16)

Proof: This result is immediate using theorem 1, lemma
1 and equation 14.

We now extend the the complexity bound to multilayer
multiverse nets. In the general case, where p layers have k
orthogonal weight matrices, an input has kp possible net con-
figurations to traverse. In the following analysis, we consider
the family of simple feed forward networks, where the top
p hidden and output layers have k orthogonal copies. Let
u = [u1, u2...up], ui ∈ [1...k] index the weight copies in the
top p layers, the output of N ∈ H for input x and weight
configuration u is therefore:

N 1
L(x, u) =Wu1>

L ...σ(W
up−1>
L−p+1σ(W

up>
L−p+1NL−p(x))) (17)

We define the Rademacher complexity R(N 1
mult,L):

R(N 1
mult,L) =

ExEρ

[
sup
W

(
1

kpm

m∑
i=1

ρi

k∑
u1...up=1

N 1
L(xi, u))|x

]
(18)

In the following theorem, we bound the Rademacher complex-
ity of N 1

mult,L.

Theorem 3: The Rademacher complexity of N 1
mult,L is

bounded by:

R(N 1
mult,L) ≤

2p−1
∏p
j=1

√
dL−jcL−j+1

k
p
2

R(N 1
L−p) (19)

Proof: We have:

R(N 1
mult,L) =

ExEρ

[
sup
W

(
1

kpm

m∑
i=1

ρi

k∑
u1...up=1

N 1
L(xi, u))|x

]
=

ExEρ

[
sup
W

(
1

kpm

k∑
u1=1

wu1>
L

m∑
i=1

ρi

k∑
u2...up=1

NL−1(xi, u))|x
]

≤ ‖
k∑

u1=1

wu1

L ‖2ExEρ
[
sup
W

(
1

kpm
sup
n
...

∣∣∣∣ m∑
i=1

ρi

k∑
u2...up=1

Nn
L−1(xi, u))

∣∣∣∣|x]
≤
√
dL−1cL√
k

ExEρ

[
sup
W

(
1

kp−1m
sup
n
...∣∣∣∣ m∑

i=1

ρi

k∑
u2...up=1

Nn
L−1(xi, u))

∣∣∣∣|x] (20)

Using lemma 1:

R(N 1
mult,L) ≤

2
√
dL−1cL√
k

ExEρ

[
sup
W

(
1

kp−1m
sup
n

∣∣∣∣ k∑
u2=1

wu2>
L−1,n

m∑
i=1

ρi...

k∑
u3...up=1

Nn
L−2(xi, u))

∣∣∣∣|x] ≤
2
√
dL−2dL−1cLcL−1

k
ExEρ

[
sup
W

(
1

kp−2m

m∑
i=1

ρi...

k∑
u3...up=1

N 1
L−2(xi, u))|x

]
(21)

Applying this procedure recursively, we get the result:

R(N 1
mult,L) ≤

2p−1
∏p
j=1

√
dL−jcL−j+1

k
p
2

R(N 1
L−p) (22)

V. THE EFFECT OF REGULARIZATION ON MULTIVERSE
NETWORKS

An especially evident property that emerges in the repre-
sentation of a multiverse network is the low rank property.
The spectrum of the representation covariance matrix seems
to drop abruptly to zero in a manner not consistent with the
familiar exponential tail that characterizes the representation
of regular networks, as illustrated in Fig. 2. It was suggested
in [7] that enforcing multiple orthogonal classifiers essentially
enforces multiple solutions to a linear set of equations, effec-
tively enforcing a non-zero kernal on the representation. This,
however, does not explain the magnitude of the drop in the
effective rank, since even a slight drop in rank can theoretically
allow multiple orthogonal solutions. Formally, we denote the
network representation in layer L−1 of input x = [x1...xm] by



(a)

(b)
Fig. 2. (a) Spectrum of the representation covariance when using multi-
plicity k=15. An effective 30-dimensional representation is acquired, without
the familiar exponential tail in the spectrum following this dimension. (b)
Effective rank as a function of k. The dimensionality converges to a constant
dimensionality as a function of k is shown.

R ∈ RdL−1×m = [r1...rm] = [NL−1(x1)...NL−1(xm)], and
the representation kernal as K = RR>. Given some classifier
w1 and a representation kernal K such that K has a kernal of
rank s U ∈ RdL−1×s : U>K = 0, it is possible to construct a
second orthogonal classifier w2 = w1 + Uγ which gives rise
to the same vector of scores for each input:

w1>R = (w1 + Uγ)>R (23)

where γ ∈ Rs is a vector of coefficients. Due to the or-
thogonality constraint, it holds that (w1 + Uγ)>w1 = 0 →
γ>U>w1 = −‖w1‖22, and so:

‖γ‖22 ≥
‖w1‖22
‖U>w1‖22

(24)

Therefore, if U is a kernal of rank 1 (i.e., K has rank dL−1−
1), then an orthogonal solution is possible by construction,
providing that ‖U>w1‖2 6= 0. However, if U is a kernal of
rank 1, then for a multiclass classification problem, it is highly
likely that for some class j, the term ‖U>w1

j‖2 is close to zero,
resulting in a classifier w of high norm. In general, the larger
the kernal U , the smaller ‖γ‖2 which, in turn, reduces the

Layer Filter/Stride #Channel #Filter
Conv11 5× 5 / 1 3 192
Conv12 1× 1 / 1 192 160
Conv13 1× 1 / 1 160 96
Pool1 3× 3 / 2 96 –
Dropout1-0.5 – – –
Conv21 5× 5 / 1 96 192
Conv22 1× 1 / 1 192 192
Conv23 1× 1 / 1 192 100
Pool2 3× 3 / 2 192 –
Dropout1-0.5 – – –
Conv31 3× 3 / 1 192 192
Conv32 1× 1 / 1 192 192
Conv33 1× 1 / 1 192 100
Avg Pool 7× 7 / 1 100 –
FC 1× 100 / 1 100 100

TABLE II
THE MODIFIED NIN [6] MODEL USED IN THE CIFAR-100 EXPERIMENTS.
THE NETWORK STARTS WITH A COLOR INPUT IMAGE OF SIZE 3× 32× 32
PIXELS, AND RUNS THROUGH 3 CONVOLUTIONAL BLOCKS INTERLEAVED

WITH RELU AND MAX POOLING LAYERS. FOLLOWING A SPATIAL
AVERAGE POOLING AT THE END OF THE PROCESS, A REPRESENTATION OF

SIZE 100 IS OBTAINED. A FC LAYER OF SIZE 100 WAS ADDED TO THE
ARCHITECTURE FOR REASONS OF IMPLEMENTATION CONVENIENCE.

norm of the weights. The regularization of the weights norm
therefore directly contributes to the dramatic decrease in the
rank of K.

VI. EXPERIMENTS

We present experiments demonstrating the use of multilayer
multiverse networks. The experiments are performed on the
CIFAR-100 dataset [5] and on the CASIA face recognition
dataset [9], where transfer is shown on LFW [3].

In our experiments, we employ two network architectures.
For the CIFAR-100 experiments, we use the architecture of
network in network [6]; for the face recognition experiments,
we use the scratch architecture [9]. The networks were trained
from scratch at each experiment, using the MatConvNet frame-
work [8].Both networks are fully convolutional, and we added
a hidden linear layer on top of the networks (no relu) in
order to apply our method on top of a vector of activations.
Furthermore, for the standard multiverse networks (only top
layer), the learning rate for each layer excluding the top
layer was divided by the multiplicity parameter k, effectively
averaging the gradients from the k losses. The architectures
used are given, for completeness, in Tab. II and Tab. III for
the network in network and scratch networks respectively.

The CIFAR-100 [5] contains 50,000 32× 32 color images,
split between 100 categories. Throughout our experiments, the
first 90 classes (class ids 0 to 89) are used as the source
domain, and the last 10 as the target domain.

Our experiments compare four architectures: a baseline with
one cross entropy loss (k = 1); two monolayer multiverse
architectures with 3 and 5 such losses, and a multilayer
multiverse network where both the last convolution layer and
fully connected layer are multiverse layers with k = 2. For
the multilayer model, the weight matrices in the multiverse
layers were averaged out at test time, which slightly improved
its overall performance.



Layer Filter/Stride #Channel #Filter
Conv11 3× 3 / 1 1 32
Conv12 3× 3 / 1 32 64
Max Pool 2× 2 / 2 64 –
Conv21 3× 3 / 1 64 64
Conv22 3× 3 / 1 64 128
Max Pool 2× 2 / 2 128 –
Conv31 3× 3 / 1 128 96
Conv32 3× 3 / 1 96 192
Max Pool 2× 2 / 2 192 –
Conv41 3× 3 / 1 192 128
Conv42 3× 3 / 1 128 256
Max Pool 2× 2 / 2 256 –
Conv51 3× 3 / 1 256 160
Conv52 3× 3 / 1 160 320
Avg Pool 6× 6 / 1 320 –
Dropout1-0.3 – – –
FC 1× 320 / 1 320 320

TABLE III
THE SCRATCH MODEL BY THE AUTHORS OF [9], WHICH IS THE FACE

RECOGNITION NETWORK IN OUR EXPERIMENTS. THE NETWORK STARTS
WITH A GRAY SCALE INPUT IMAGE OF SIZE 1× 100× 100 PIXELS, AND
RUNS THROUGH 10 CONVOLUTIONAL LAYERS INTERLEAVED RELU AND

MAX POOLING LAYERS. FOLLOWING A SPATIAL AVERAGE POOLING AT
THE END OF THE PROCESS, A REPRESENTATION OF SIZE 320 IS OBTAINED.
A FC LAYER OF SIZE 320 WAS ADDED TO THE SCRATCH ARCHITECTURE

FOR REASONS OF IMPLEMENTATION CONVENIENCE.

Domain Source Target (transfer)
Metric Val error Accuracy
Conventional (k=1,p=1) 0.342 0.785
Multiverse (k=3,p=1) 0.344 0.805
Multiverse (k=5,p=1) 0.343 0.812
Multilayer Multiverse (k=2,p=2) 0.345 0.815

TABLE IV
CIFAR-100 RESULTS. A CONVENTIONAL NETWORK IS COMPARED TO

MONOLAYER MULTIVERSE NETWORKS OF VARYING MULTIPLICITY AND
TO A MULTILAYER MULTIVERSE NETWORK. THE NUMBERS INDICATE

EITHER THE VALIDATION ERROR OR THE SAME/NOT-SAME ACCURACY IN
THE TARGET DOMAIN.

We report the validation error during training on the source
domain, and verification accuracy on the target domain. For
measuring verification accuracy, we used the cosine distance to
predict same/not-same on sampled pairs in the target domain.
Note that the cosine distance is unsupervised, and hence, no
training was done in the target domain. For the same/not-
same evaluation on the CIFAR dataset, 3000 matching and
3000 non-matching pairs were randomly sampled from the 10
classes of the target domain.

As can be seen in Tab. IV, the multilayer multiverse method
outperforms the baseline and the monolayer architectures on
the target domain. Although we are mostly concerned with
performance in the target domain, it is also evident that the
validation error on the source domain is hardly affected.

As mentioned above, for the face recognition experiments,
we use the scratch model [9]. The networks are trained on the
CASIA dataset [9]. The LFW dataset [3] is used as the target
domain.

Models are evaluated in the source domain by measuring the
classification accuracy on the CASIA dataset, which we split
to 90% training and 10% validation. For the target domain, the

Domain Source Target (transfer)
Metric Casia Val error LFW accuracy
Conventional (k=1,p=1) 0.080 0.963
Multiverse (k=3,p=1) 0.083 0.970
Multiverse (k=5,p=1) 0.084 0.972
Multilayer Multiverse (k=2,p=2) 0.084 0.971

TABLE V
FACE RECOGNITION RESULTS. SEE TAB. IV FOR DETAILS.

LFW benchmark in the unrestricted mode [4] is used (we do
not use person ID from LFW, but do use the IDs of the CASIA
dataset). The LFW results are mean accuracy estimated over
the fixed ten cross-validation splits. The cosine distance is used
to measure verification accuracy on the LFW splits.

In the LFW experiments, we also performed the monolayer
(p = 1) k = 1 (baseline), k = 3, and k = 5 experiments as
well as a multilayer multiverse (k = 2,p = 2) experiments. As
can be seen in Tab. V both the monolayer and the multilayer
multiverse outperform the baseline method.

VII. DISCUSSION AND FUTURE WORK

While we have opened the door for the study of multilayer
multiverse networks, the experiments presented only include a
small fraction of their universe. There is no principled reason
to focus, for example, on the very top layers. We are curious,
for example, in observing the outcome of applying multiplicity
to the first encoding layers in order to increase their robustness,
e.g., to image noise.

The most remarkable property of multiverse networks is the
emergence of a parameter independent dimensionality that is
dependent solely on the data itself. We are unaware of any
other methods to measure the effective dimensionality that
does not depend on an underlying parameter. For multiverse
networks, it seems that the dimensionality, given large enough
k, is extremely stable, and does not change with k or with
the regularization parameter λ. Moreover, this dimensionality
is task dependent since it is obtained in a supervised network.

REFERENCES

[1] P. L. Bartlett, and S. Mendelson. Rademacher and Gaussian Complexities:
Risk Bounds and Structural Results. Journal of Machine Learning
Research 3 463-482, 2002.

[2] D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian face revisited:
A joint formulation. In European Conf. Computer Vision, 2012.

[3] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces
in the wild: A database for studying face recognition in unconstrained
environments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007.

[4] G. B. Huang and E. Learned-Miller. Labeled faces in the wild: Updates
and new reporting procedures. UM-CS-2014-003, 2014.

[5] A. Krizhevsky. Learning Multiple Layers of Features from Tiny Images.
Master’s thesis, 2009.

[6] M. Lin, Q. Chen, and S. Yan. Network in network. In International
Conference on Learning Representations (ICLR), 2013.

[7] E. Littwin and L. Wolf. The Multiverse Loss for Robust Transfer
Learning. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), 2016. Preprint as arXiv:1511.09033.

[8] A. Vedaldi and K. Lenc. Matconvnet – convolutional neural networks for
matlab. 2015.

[9] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from
scratch. CoRR, abs/1411.7923, 2014.


