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Figure 1. Our method provides automatic image retouching. It is a learning-based technique that can be trained using either paired or
unpaired images. Once learned, the input image is fed to a CNN that determines the coefficients of a parametric color transformation that
is applied to the input image. The channel curves are shown in a simplified way as a mapping of R,G,B values.

Abstract

We treat the problem of color enhancement as an im-
age translation task, which we tackle using both supervised
and unsupervised learning. Unlike traditional image to im-
age generators, our translation is performed using a global
parameterized color transformation instead of learning to
directly map image information. In the supervised case, ev-
ery training image is paired with a desired target image and
a convolutional neural network (CNN) learns from the ex-
pert retouched images the parameters of the transformation.
In the unpaired case, we employ two-way generative ad-
versarial networks (GANs) to learn these parameters and
apply a circularity constraint. We achieve state-of-the-art
results compared to both supervised (paired data) and un-
supervised (unpaired data) image enhancement methods on
the MIT-Adobe FiveK benchmark. Moreover, we show the
generalization capability of our method, by applying it on
photos from the early 20th century and to dark video frames.

1. Introduction

The number of captured photos has grown steadily since
the advent of phone cameras. In many cases, casual photos
require additional editing in order to enhance their quality.
While photo editing programs provide various retouching
operations, they require expertise. In addition, the manual
editing process may become time-consuming, depending on
the initial quality.

In this work, we focus on the task of color enhancement.
Color enhancement of raw images significantly improves
the quality for an observer [1]. Yet, an automatic color en-
hancement is a non-trivial task because it depends on con-
tent, context and color distribution.

Color enhancement transformations can be performed by
a global parameterized transformation or by local modifica-
tions. A global transformation applies the same operation to
the whole image and usually uses a smooth function to pre-
serve the quality of the image. Its advantage is the support
of an arbitrary image resolution in a coherent manner. Lo-
cal operations depend on the local content of the image and
often use highly non-linear mappings that lead to artifacts.

Contributions. In this work, we pursue an image en-



hancement transformation which enjoys the following de-
sired properties: (i) preservation of the quality of the im-
age; (ii) possibility to be applied to an arbitrary resolution
and specifically, high-resolution images; (iii) consumption
of minimal computational resources; (iv) flexibility in train-
ing: the method can be applied with and without paired data
samples. While some of these characteristics are present in
the existing solutions, we are not aware of any work that
incorporates them all together. Our method obtains state-
of-the-art results on the existing image enhancement bench-
marks in both the supervised and unsupervised cases. Par-
ticularly, we show through a user study that our strategy out-
performs the leading techniques in the MIT-Adobe FiveK
raw-images enhancement task and a commercial software
on the enhancement of old color photos.

In the case of supervised learning, one benefits from the
existence of a pair of an input and a retouched image. In the
unsupervised case, training is based on two unmatched sets:
a set of input images and a set of retouched (high quality)
images. Unsupervised learning has the advantage that the
two sets can be collected independently. For example, the
input images can be taken from collections of casual pho-
tography, while high quality images can be collected from
stock photo websites.

The color transformation we use is parameterized as a
quadratic mapping of the color information, i.e., as a lin-
ear mapping of the set of all second order monomials of the
RGB values. The coefficients of this mapping are estimated
with a CNN. One can thus view our CNN as a function that
maps images to quadratic functions. In the supervised case,
this function is optimized with a direct loss. In the unsu-
pervised case, it learns the mapping in both directions, and
employs a circularity constraint. To improve the training
in the latter case, we introduce to it several improvements,
such as weight sharing between the two generators but with-
out sharing the Batch Normalization [10] parameters, and a
novel multi-phase training technique.

Unlike previous GAN-based image-to-image enhance-
ment techniques, e.g., [4], our generator can enhance im-
ages for an arbitrary resolution without suffering from ar-
tifacts that appear in previous GAN based solutions. This
is achieved because our network determine the parameters
of a global adjustment operation from a low-resolution ver-
sion of the image and apply it on the full-resolution im-
age, instead of being applied directly as an image to image
mapping. Compared to reinforcement learning methods that
have been used for image enhancement [17, 8], and require
a sequential application of a deep network, we need just a
single pass of a relatively simple CNN. The gain in effi-
ciency that arises from these advantages makes our method
especially suitable for running on limited resource devices,
such as low-end smart-phones and on the camera itself.

2. Related Work
Several research works considered the problem of auto-

matic color enhancement. They may be divided into two
types: (i) Example-based methods transferring the color of
an example image to a given input image; and (ii) Learning-
based techniques that use a training data to find a mapping
function from the input image to a target image. Some of
these works can be trained only in the presence of paired
data, which limits their usage to the supervised case.

Among the example-based methods, Reinhard et al. [18]
and Faridu et al. [6] present a method where the global color
distribution of an input image is warped to mimic an ex-
ample style. Some recent works use image retrieval meth-
ods to achieve a (semi-)automate exemplar selection, which
improves the matching [9],[14], [15]. While the example-
based strategy can provide expressive enhancement and
diverse stylizations, the results greatly depend on having
proper example images. Moreover, even if they are given,
the matching of input images to good example images is a
challenging task.

We focus here mainly on learning based methods, which
lead to improved results [4, 17, 23, 7, 2, 8]. Many of these
contributions, especially those applying supervised learn-
ing, employ the MIT-adobe FiveK dataset presented by By-
chkovsky et al. [3]. It contains retouched pairs of images
which are created by five professional experts.

Among the learning-based color enhancement methods,
there are learned local transformations [23, 7, 4]. Yan et
al. [23] have proposed a model that given the color, global
and local features of an image, such as semantic content and
object detection, a deep neural network maps each pixel to
achieve the desired style. Gharbi et al. [7] have trained a
model to predict local affine transforms in the edge/color bi-
lateral space, which can serve as an approximation to edge-
aware image filters and color/tone adjustments for real-time
image enhancement.

In the more general field of cross-domain image trans-
lation, Isola et al. [11] proposed a conditional adversarial
network as a general-purpose solution to image-to-image
translation problems, converting from one representation of
a scene to another, e.g., from a semantic label map to a
realistic image or from a day image to its night counter-
part. Although generating very good results, their method
requires paired images for training. Two-ways GANs were
later proposed and introduced cycle consistency to address
this problem. Examples of such GAN based solutions in-
clude CycleGAN [25], DiscoGAN [12] and DualGAN [24].

Based on these strategies, Chen et al. [4] train a one-
way and two way ”traditional” GAN for image to image
enhancement with 512×512 resolution images. However, it
fails to perform enhancement on arbitrary resolutions, since
an image enhancement operation needs to be determined
by examining the content and context of the entire image.



While their generator is fully convolutional, since it has a
limited receptive field it does not capture the whole image
when it is of high resolution. Another drawback of such a
local color operation is the possible artifacts and relatively
high memory consumption it has when applied to a high
resolution image.

As an alternative, global parameterized transformations
have been recently proposed for color enhancement [17, 8,
2] and image processing [19]. Hu et al. [8] learn a one-
way GAN based agent, which is trained using reinforce-
ment learning (RL) with an adversarial reward to perform a
sequence of image enhancement operations such as modi-
fying the contrast or the brightness.

Park et al. [17] train an agent using RL to enhance the
input image using similar image enhancement operations
in both the supervised and unsupervised cases. For un-
paired learning, they propose the distort and recover train-
ing scheme, which generates an input image for training
by distorting retouched images. The model is trained to
map the distorted images back to the originally retouched
ones. Although achieving improved results, given an un-
paired training set, the scheme requires adjustment of the
distortion procedure such that it produces distorted images
with similar characteristics as the input images in the set.

Bianco et al. [2] recently proposed a different enhance-
ment method, which generates a series of parametric oper-
ations in color space such as polynomial, piecewise linear,
cosine, and radial functions, where the CNN network deter-
mines how they are applied in order to perform the desired
color transformations.

3. Method
Our photo enhancer model GX takes an input image x

and generates an output image GX(x) as the enhanced ver-
sion of it. The model is a per-pixel color transformation
designed to preserve the quality of the image and requires
limited computation at full resolution. To enhance the color
of an input image, a fixed sized down-sample version of an
input image x is forwarded to a CNN H to infer the pa-
rameter matrix θx of the color transformation. The color
transformation is applied independently to each pixel in x.

3.1. Parametrized Quadratic Transformer

The image enhancement method we propose is based on
a CNN, defined as H , which determines the coefficients of
a global image enhancement operation. We formulate H as
a parametric function θx = H(θ, x), where θ represents the
CNN parameters, x the input image, and θx the parameters
of the transformation of the color space for image x.

To get a transformation that preserves the image high
frequencies and content without artifacts but yet is pow-
erful enough to mimic the image enhancement transfor-
mation produced by image editing software, we use color

basis vectors. Let V (p) be the color basis vector for a
pixel with RGB values p = [R,G,B]. In our work, we
define V (p) to be a 1 × 10 quadratic color basis vector
[R,G,B,R2, G2, B2, R ·G,G ·B,B ·R, 1], where R,G,B
are the corresponding RGB values at pixel p.

For an input image x, H outputs a matrix θx ∈ R10×3,
which contains the coefficients of the quadratic transforma-
tion applied to each pixel in x. We perform an additive
correction, and learn the residual transformation, which is
known to speed up training, compared to learning the target
function from scratch. Thus, the RGB value in the output
image ȳk of same location as pixel p in the input image xk
is:

p̄ =H(θ, xk)V (p) + p. (1)

In order to be invariant to the resolution of the input im-
age, we use a 256 × 256 scaled (typically down-sampled)
version of the images as the input of the CNN, H . The
color transformation is then applied to all image pixels of
the original image, regardless of its resolution. The abil-
ity to perform the transformation at every image resolution
is a clear advantage in comparison to other literature ap-
proaches, some of which rely on an encoder-decoder archi-
tecture with a fixed output resolution.

3.2. Training for paired data

For paired learning, we used a five-branch processing
network. Each branch consists of a stack of convolutional
layers that ends by average pooling as a feature extractor
and two linear layers. We further process the output of the
five branches with another linear layer. Due to the relatively
small size of the paired training set, we add Dropout [20] to
the network to prevent over-fitting. A figure presents the ar-
chitecture of our generator for the paired model attached in
supplementary material

Figure 2 depicts our paired training scheme. We opti-
mize the output of the transformer with the mean L2-loss
CIELab color space between the transformed image and the
expert retouched image. L2 in CIELab color space is de-
fined as the Euclidean distance:

L2 =
√

(l1 − l2)2 + (a1 − a2)2 + (b1 + b2)2, (2)

where (l1; a1; b1) and (l2; a2; b2) are the coordinates of a
pixel in the two images after their conversion from RGB to
CIELab. In our case, the two images are ȳk = G(xk) and
yk.

3.3. Training for unpaired data

For unpaired data, the problem can be naturally formu-
lated using the framework of two-way GANs, which learn
the embedding of the input samples and generate output
samples located within the distribution of the target sam-
ples. Such frameworks have been frequently used to address



Figure 2. Pipeline of the proposed method for paired training. The
input image is down-sampled and fed to a CNN that determines
the coefficients for our quadratic parameterized color transforma-
tion to be applied to the input image. At test time, the quadratic
transformation is applied to the full resolution image.

Figure 3. The architecture of our two-way GANs.

the image-to-image translation problem, which transforms
an input image from the source domain X to an output im-
age in the target domain Y . Each GAN model often consists
of a discriminator D and a generator G. In our case, G has
a specific parametric form.

Recall that the source domain X contains the input im-
ages, while the target domain Y contains unmatched im-
ages with the desired characteristics. To match between
the two in the absence of direct pairing, two-way GANs
such as CycleGAN [25] and DualGAN [24] enforce cycle
consistency, which creates a pairing between the sets X
and Y . Two-way GANs often contain a forward mapping
GX : X → Y and a backward mappingGY : Y → X . The
cycle consistency conditions require that GY (GX(x)) = x
andGX(GY (y)) = y, where the generatorGY takes aGX -
generated sample and maps it back to the source domainX ,
while the generator GX takes a GY -generated sample and
maps it back to the target domain Y .

Figure 3 describes the architecture of a two-way GAN.

The discriminator DY aims at distinguishing between the
samples in the target domain Y and the generated sam-
ples y′ = GX(x), while the discriminator DX aims at dis-
tinguishing between the samples in the target domain X
and the generated samples x′ = GY (y). We define by
x′′ = GY (GX(x)) the output for a training image x ∈ X ,
which passes through both generators, and in a similar way
we define y′′ = GX(GY (y)) for an image y ∈ Y .

The cycle consistency losses are given by:

LcycleX = ||x
′′
− x||2

LcycleY = ||y
′′
− y||2,

(3)

where || · ||2 is the Euclidean L2 norm (see Eq. (2)).
The adversarial loss is given by

LGAN (Gx, DY , X, Y ) =Ey∼pdata(y)
)[logDY (y)]+

Ex∼pdata(x)
[1− logDY (Gx(x))].

(4)

We did not employ the identity term used in many image to
image translation frameworks, due to the different distribu-
tion characteristics of the datasets X and Y and the usage
of Batch Normalization in our networks.

To summarize, the loss we use for the unpaired training
is

αLcycleX + αLcycleY + (5)
LGAN (Gx, DY , X, Y ) + LGAN (Gy, DX , Y,X),

where α is a scaling parameter.
The generator architecture for unpaired learning is simi-

lar to the one used for paired learning but is deeper and with
only one branch to reduce the overall number of parameters
in it. Moreover, in the training of the network, we do not
use the Dropout layer at the initial training (we add another
training phase described in Section 3.4, where we do apply
the Dropout).

Our discriminator architecture is the same one used in
CycleGAN [25]. It consists of a stack of convolutional lay-
ers followed by Batch Normalization, a Leaky rectified lin-
ear unit (ReLU) [16] and Dropout. A figure describes both
the generator and the discriminator architectures used in our
unpaired model attached in supplementary material.

3.4. Improving unpaired training

In order to improve the result of the unsupervised
method, we use the following modifications. First, we share
the feature extractor weights of the generators GX and GY ,
except of the linear layers and the Batch Normalization pa-
rameters, which should be different due to the different dis-
tribution characteristics of the datasets X and Y . Figure 4
describes the transformers’ shared parameters.



Figure 4. Illustration of the shared weights in the generators GX

(left) and GY (rigth) in the unpaired case. Notice that the param-
eters of Batch Normalization and the linear layers are not shared.

In addition, we introduce a novel cycle-consistency
training, which we refer to as the second phase. In this
phase, we apply the Dropout in GX and GY (the location
of the Dropout layers described in the architecture figure
in supplementary material), but do not share their weights
and use only the cycle-consistency losses. The motivation
is to increase the generalization of the generator to random
perturbation generated by Dropout. Due to using the cycle-
consistency losses exclusively (without the regular GAN
loss), we train only GX and freeze GY . Training both gen-
erators simultaneously, without the GAN losses, will end up
by simply outputting the input image as this leads to a zero
loss. Thus, when training GX we use only the loss term
||y′′ − y||2 (see part A in Figure 3).

This training technique can be seen as an improvement of
the distort and recover scheme proposed by [17], but unlike
them we learn the “distortion” (mapping from retouched
images to the raw images) and ”recovery” (mapping from
the raw to the retouched) using the first phase and our sec-
ond phase optimizes the generator to perform these tasks
with some random perturbations.

4. Experiment

We evaluate our model’s ability to reproduce human-
annotated retouches through extensive experiments: (1)
Evaluation on input-retouched paired dataset in Sec-
tion. 4.1. (2) Evaluation on input-retouched unpaired
dataset in Section 4.2. (3) Ablation study of our proposed
training techniques in Section 4.1.1 and Section 4.2.1. (4)
Evaluation of the paired and unpaired method with a user
study in Section 4.3.

To assess the accuracy of our proposed method, we used
the MIT-Adobe FiveK dataset, which contains 5,000 high

resolution raw images in DNG format, and their corre-
sponding manually retouched images by five variants; each
retouched by a different expert A/B/C/D/E. Expert C got the
highest Mean Opinion Score(MOS), so we follow the com-
mon practice and use the images created by this expert as
the target.

We use the procedure described by [8] to preprocess the
raw images and export them to the SRGB format [21]. As
a performance measure, we calculate the mean L2 on the
CIELab color space [5], and the SSIM [22] and PSNR in
the RGB color space. All the errors are with respect to the
results of expert C on the test set images.

4.1. Paired data

We split the MIT-adobe FiveK dataset into train and test
images. Each literature method splits the data differently
and the train-test split of some leading methods is not avail-
able. For a fair comparison, we chose a train-test split that
contains the smallest amount of training images in the liter-
ature, which is 4000. To reduce the randomness that arises
from the splitting process, we randomly split the data five
times, trained our model and averaged the measured perfor-
mance. We also show our result on the exact same train-test
split used by Chen et al. [4].

We trained the model with a batch size of 50 and the
Adam optimizer [13] for 500 epochs. We used a base learn-
ing rate 9 · 10−4 and linearly decayed it every 30 epochs up
to 2 ·10−6 at epoch 300. We used rotations and vertical flips
as augmentation.

Table 1 compares our method with all leading paired
training methods. Since not all experiments in the litera-
ture are done under the same conditions, we detail in the
table, the transformation method, train-test split, and the im-
age resolution used for evaluation, in addition to the mean
L2 in CIELab color space, SSIM and PSNR in RGB color
space. Our method achieves better prediction performance
in terms of mean L2, SSIM and PSNR than all the other
methods. When comparing to global transformation tech-
niques, our margin is even higher. When comparing to local
approaches, the L2 measure does not capture the local arti-
facts created by these methods, which is a known limitation
they have [23, 7, 4].

4.1.1 Alternative architectures

In order to evaluate our multi-branch processing architec-
ture for paired learning as detailed in Sec. 3.2, we report
the performance of the following setups. Complete Method:
our proposed model; Three branches generator: our model
but with three branches; Single branch generator our best
single branch architecture for paired learning, which we
also use for unpaired learning.

We evaluated the result on a train-test split 4000-1000



input expert ours ours DPE Exposure HDR-net
paired unpaired unpaired unpaired paired

[4] [8] [7]
Figure 5. Qualitative comparison with [4, 8, 7]. We compare both full image and the zoom-in version of the image.

method ↓mean L2 ↑SSIM ↑PSNR color Train-Test split Resolution number of
operation forward path

Ours 9.40 0.920 23.93 global 4000-1000 Full-Size 1
Learning Parametric 10.36 NA NA global 4000-1000 Full-Size 1
Functions [2]
Distort-and-Recover [17] 10.99 0.905 NA global 4750-250 NA multiple
Automatic Photo [23] 9.85 NA NA local 4750-250 Full-Size per pixel
HDR-Net [7] 12.14 NA NA local 4750-250 Full-Size 1

Ours, splits of [4] 9.05 0.937 24.11 global 4500-500 512 long side 1
Photo Enhancer [4] NA NA 23.8 local 4500-500 512 long side 1

Table 1. Comparison of leading paired base methods evaluated by the mean L2, SSIM and PSNR with respect to the expert target using
the MIT-Adobe FiveK dataset.

using 256 × 256 resolution image from the MIT-Adobe
FiveK dataset. Table 2 demonstrates the effect of the multi-
branch processing.

4.2. Unpaired Data

We split the MIT-adobe FiveK dataset into n training im-
ages and 5000 − n test images. The training images split
into n/2 unpaired raw images and n/2 different target im-
ages. Thus, we make sure that the training dataset does not

contain a pair of both raw and the corresponding retouched
image. Without this separation, an unsupervised method
may implicitly match the images and then rely on a form
of supervised training. For a fair comparison, we use the
exact same train-test split as in [17, 4], which are the cur-
rent leading methods for global and local transformation for
unpaired learning, respectively. We also use a random split
of the same size reported by [8], in the absence to the exact
splits.



method ↓mean L2

Complete Method 9.05
Three branches generator 9.15
Single branch generator 9.40

Table 2. Evaluation of our multi-branch processing for paired
learning. We report the mean L2 for the three architectures on
the 1000 testing images from the MIT-Adobe FiveK dataset using
256 × 256 image resolution. Note that the results of Tab. 1 are
given for the full resolution.

The first phase was trained with batch size of 20 with
the Adam optimizer for 200 epochs. We kept the learning
rate at 10−4 for the first 100 epochs and linearly decayed the
rate to zero over the next 100 epochs. We used rotations and
vertical flips for augmentation. The discriminator Dropout
value was set to 0.12 and α was set to 0.02.

For the second phase, we trained using batch size of
50. We kept the learning rate at 5 · 10−6 for the first 100
epochs and linearly decayed the rate to zero over the next
100 epochs. The generators Dropout value was set to 0.15,
while other hyper-parameters remained unchanged.

Table 3 compares our method with all leading image
enhancement methods that are trained with unpaired data.
Comparison is done with mean L2 in LAB space, SSIM
and PSNR in RGB space. In addition, we detail the trans-
formation method, train-test split, and the image resolution
used for evaluation. Our method achieves better predic-
tion performance in terms of L2, SSIM, and PSNR, and
presents our flexibility for arbitrary resolutions, and specif-
ically, high resolution outputs.

Figures 5 show examples of our method, in both the
paired and unpaired training scenarios, compared with ex-
pert C and the leading enhancement methods available,
more results attached as supplementary material.

4.2.1 Ablation Study

In order to evaluate our training techniques, as detailed
in Section 3.4, we report the following setups: Complete
Method: our full model as described; No shared weights:
GX and GY do not share their weights; First phase only:
training with only the first phase (without the second cycle-
consistency phase); First phase only with Dropout: train-
ing only the first phase, but adding dropout, similar to the
second phase; Complete Method without Dropout: perfor-
mance of our full model but without adding dropout to the
second phase; Raw method: a single phase training, with-
out dropout and without weight sharing.

We evaluated the result on train-test split 2000-2000-
1000 using 256 × 256 image resolution from MIT-Adobe
FiveK dataset. Table 4 demonstrates the effect of the in-
dividual components to the success of the training process.

Figure 6. User study results. Top: comparison to [4] in both the
paired (left) and unpaired cases (right). Bottom-left: a comparison
to [7] in the unpaired case. Bottom-right: a comparison to Adobe
lightroom on old color photos. Both [4] and our methods were
both trained with the same train-test split on MIT-ADOBE FiveK
dataset. For comparing to [7], we used images from the test set of
both methods.

Sharing weights seem to have the largest effect, especially
when training in two phases. The second phase of training
contributes a relatively small improvement.

4.3. User study

We conducted a user study to compare our retouching
results to other leading methods with available code. The
user study was conducted on Amazon Mechanical Turk us-
ing pairwise comparisons and included 20 participants and
50 images. We presented to the users the images next to a
zoom-in crop in a fixed location for each method. The users
were asked to rate based on the visual colors and quality of
the images, which image is better or if they are the same if
they cannot decide. The images were randomly taken from
the intersection of the method’s test set. Figure 6 describes
the results of the user study. Both of our paired and un-
paired models are clearly preferred by the users over the
other tested methods.

4.4. Applications

Although our model was trained only on RAW input im-
ages, we checked its generalization using some of the first
color photos from the early 20th century1 and for a video
scene from Game of Thrones, an American TV series.
Color photos from the early 20th: In order to evaluate
our result, we randomly picked 50 images out of the avail-
able 116 images and compared them to the results of Adobe
Lightroom, a leading commercial software. We used the
Lightroom Auto-Tune feature to enhance the images. Sam-
ples of the enhancement results of both methods attached in

1https://www.boredpanda.com/first-color-photos-vintage-old-
autochrome-lumiere-auguste-louis/

https://www.boredpanda.com/first-color-photos-vintage-old-autochrome-lumiere-auguste-louis/?utm_source=google&utm_medium=organic&utm_campaign=organic
https://www.boredpanda.com/first-color-photos-vintage-old-autochrome-lumiere-auguste-louis/?utm_source=google&utm_medium=organic&utm_campaign=organic


method ↓mean L2 ↑SSIM ↑PSNR color Train-Test split Resolution number of
operation forward path

Ours 10.97 0.91 22.95 global 2375-2375-250 Full-Size 1
Distort-and-Recover [17] 12.15 0.91 NA global 4750-250 NA multiple

Ours 10.86 0.91 22.67 global 2000-2000-1000 Full-Size 1
Exposure [8] 16.98 NA NA global 2000-2000-1000 Full-Size multiple

Ours 10.38 0.93 23.07 global 2250-2250-500 512 long side 1
Deep Photo Enhancer [4] NA NA 22.37 local 2250-2250-500 512 long side 1

Table 3. A comparison of image enhancement methods trained with unpaired data. Results are evaluated by mean L2, SSIM, and PSNR
with respect to the expert target using the MIT-Adobe FiveK dataset.

method ↓mean L2

Complete Method 10.43
No shared weights 17.58
First phase only 10.75
First phase only with Dropout 10.74
Complete Method without Dropout 10.76
Raw method 15.32

Table 4. Evaluation of our unpaired training techniques. The
mean L2 for different training procedures on the 1000 testing im-
ages from the MIT-Adobe FiveK dataset using 256 × 256 image
resolution. Note that the results of Tab. 3 are given for the full
resolution.

supplementary materials.
We conducted a user study with 20 participants and 50

images using pairwise comparisons. We presented to the
users the output of our method next to the Lightroom result.
The users were asked to rate them based on the visual colors
by selecting which image is better or stating that they are the
same if they cannot decide. Samples of the enhancement re-
sults of both methods attached in supplementary materials.
Figure 6 shows our superiority through the user study result.
Game of Thrones: Game of Thrones recently released an
episode that quickly became known as “the dark episode”
since it consisted of dark and muddy scenes. To evaluate the
ability of our method to perform a correction out of the box,
we apply it to each frame individually, without any modifi-
cation. For comparison, we also enhanced the video frames
using Adobe Lightroom. Video results and sample images
are attached as supplementary materials. As can be seen,
our method outputs a natural looking frame, while Light-
room emphasizes the artifact in the coded video.

5. Conclusions
We presented an automatic photo enhancer, which trans-

forms input images to be with the characteristics of a given
target set. Our method employed a parameterized color
mapping and can be trained using either supervised or un-
supervised learning. To improve performance in the unsu-

pervised case, we introduced multiple training techniques
such as weight sharing with individual Batch Normalization
and a two-phase training process. In both types of super-
vision, the method achieves state-of-the-art results on the
MIT-adobe FiveK dataset and shows superiority in a user
study comparing it to literature methods as well as to a com-
mercial software.

Applying our method, once trained, requires only one
forward pass, unlike the reinforcement learning methods [8,
17]. Moreover, its transformation is determined from a low-
resolution version of the input image, which leads to low
computational demands. Yet, it can be applied to arbitrary
resolutions, unlike [4] who require an input with a given
resolution. Moreover, it employs a smooth global mapping
function that prevents artifacts, which is advantageous over
all the local modification methods [4, 7, 23], which report
artifacts in their limitation.

Our method deviates from the current trend of learning
complex mappings between the input domain and the out-
put domain, with an ever increasing capacity, which is bal-
anced by regularization and skip connections. Instead, we
apply a simple parametric transformation and couple it with
a learned mechanism that provides the precise transforma-
tion parameters to every input image.
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