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Content aware video manipulation (CAVM) is a method for the analysis and recomposition of video foot-
age, by means of content analysis and adaptive video warping.

One main motivation of CAVM is “video retargeting”, a process that visually alters an existing video
while considering the relative importance of its various regions. CAVM video retargeting aims at preserv-
ing the viewers’ experience by maintaining the information content of important regions in the frame,
while altering the video dimensions. Other applications include commercial real-estate allocations, time
and space content summary, and content deletion (in both time and spatial domain).

In this paper we introduce an efficient algorithm for the implementation of CAVM. It consists of two
stages. First, the video is analyzed to detect the importance of each pixel in the frame, based on local sal-
iency, motion detection and object detectors. Then, a transformation manipulates the video content
according to the aforementioned analysis and application dependent constraints. The visual performance
of the proposed algorithm is demonstrated on a variety of video sequences, and compared to the
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state-of-the-art in image retargeting.

© 2011 Published by Elsevier Inc.

1. Introduction

With the increasing flexibility of video usage, the need for
content based video manipulation arises. For example, mobile
LCD displays of various dimensions are now ubiquitous, and there
is an acute need for conversion systems that can alter video con-
tent to fit a variety of displays, which are smaller than originally
intendant by the creators of the video.!

These mobile displays come at many aspect ratios. The current
industry solutions for video aspect ratio altering are basic and not
very effective. They include: blunt aspect ratio free resizing; crop-
ping the middle of the video; resizing while preserving the aspect
ratio by adding black stripes above and below the frame; and keep-
ing the center of the frame untouched while warping the sides. In
fact, it is common nowadays to have printed lines on movie-cam-
eras’ screens that mark the region that will be visible in the frame
after it would be cropped to the aspect ratio of a regular 4:3/16:9
TV screen. No commercial solution exists which examines the con-
tent of the video.

Our CAVM system examines the footage, and assigns a saliency
score to each pixel in the video. An optimized transformation of the
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input video to a manipulated version is then calculated. The trans-
formation adheres to the application-based constraints and
respects the saliency score. The algorithm is designed to work effi-
ciently in an online manner, and performs in real-time on live
streaming video input. The saliency score is composed of three ba-
sic components: spatial gradient magnitude, a face detector and a
block-based motion detector. The optimization stage amounts to
solving a sparse linear system of equations. It considers spatial
constraints as well as temporal ones, leading to a smooth coherent
user experience.

1.1. Previous work

In previous decades, vast image processing research tackled the
down-sampling and up-sampling problem. These classical meth-
ods, however, are not “content aware”—they apply the same local
operator everywhere across the image, oblivious to the semantics
of the image and to the varying importance and sensitivity to dis-
tortion of each image region.

Recently, with the ever increasing need to alter the dimensions
and aspect ratio of images and videos, the subject of retargeting
has regained an increased academic attention, and a number of
contributions have been published. Suh et al. [2] considered the
problem of cropping optimal thumbnails from an input image.
Although the task is different from that of retargeting (thumbnails
are used for easy access, not to convey the entire content of an im-
age), some of the components in their system have reappeared in
later retargeting systems. Most notably, defining an importance
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measure based on both a local low-level saliency measures, such as
the one introduced by Itti and Koch [3], and on high level object
detectors, such as the face detector of Viola and Jones [4].

An extended cropping mechanism, applied to video is presented
by Liu and Gleicher [5]. They propose a per-frame score for crop-
ping windows that also takes into account aspect ratio distortions
and information lose due to down-sampling. Time-wise, they
penalize cropping window shifts that do not correspond to plausi-
ble camera motion. Compared to our system their system is limited
to displaying a sequence of cropped windows.

A non-photorealistic solution for retargeting stills is proposed
by Setlur et al. [6]. Their system is based on the background/fore-
ground separation, and relies heavily on their capability to solve
the separation problem. In their system the foreground is clipped
on the resized background, where the missing background regions
are filled using inpainting. Another non-photorealistic system is
the one of Liu and Gleicher [7], where an optimal fish-eye transfor-
mation is computed based on the image content.

Several recent systems introduce photorealistic solutions for
content-aware warping of still images, see [8] for a survey. Gal et
al. [9] present a method to modify an arbitrarily image warp while
preserving the shape of important region by constraining their
deformation to be a similarity/rigidity transformation. Inspired
by their system, we introduced a content aware video retargeting
system [1] that defines the video warping as a solution of a sparse
linear system of equations. Unlike Gal et al.’s our innovative sys-
tem is fully automatic. Following these two [10] introduced a local
solver for image warping somewhat close in spirit to the solution
of [1] with an added local saliency measure (gradient based). Un-
like [1], their system cannot separate between the warping of the
X and Y axis. While this is desirable, it does limit the applicability
and robustness of the solution. The work of [11] extends the sys-
tem proposed by [1] into the realm of scalable video retargeting,
i.e. an expensive preprocessing is performed on an input video,
and then only a fast efficient computation is needed for a specific
retargeting task. They present comparable visual results to [1]
while their storage expenses are greatly reduced (due to the scal-
able manner of their preprocessing system).

A different, discrete, approach is proposed by Avidan and
Shamir [12], where the retargeting is applied by reducing the
width (or the height) of the image by one pixel at a time, through
the deletion of a vertical (horizontal) connected path of low impor-
tance pixels. An extension to video retargeting using graph-cuts
was introduced by Rubinstein et al. [13]. They consider the video
sequence as a 3D space-time cube, where the goal is to remove
2D seams from the 3D-cube to achieve a video retargeting solution.
Similar to the original “Seam Carving” work [12] it is a discrete
solution, and in addition to necessitating the entire shot, it is also
computationally expensive. In contrast, our system is designed in
a scalable manner for online video, and in particular for streaming
video, and allows the implementation of real-time video manipu-
lating systems.

Following the optimization approach introduced by [1], [14]
suggests a more elaborated linear system for retargeting that in-
cludes added manual saliency constraints and introduces an im-
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age-processing enhancements in the warping stage. [15] and
later [16] address the important temporal coherence problem of
retargeting video. In [15] the motion constraints are constructed
based on camera motion estimation and added to the linear system
to ensure frame aliment; Later on in [16] a similar concept is used,
however, instead of a simple mesh based warping, the optimal
cropped window over the entire video is also computed. Later we
show that our camera motion extension manages camera motion
scenarios in a related way.

2. System overview

Our CAVM system, described in Fig. 1, consists of two main
stages. A computation of the saliency matrix and a mapping calcu-
lation stage. Then, the calculated warping is rendered by a for-
ward-mapping technique.

Given a new frame we compute a per-pixel importance mea-
sure. This measure (see Section 3) is a combination of three factors:
A simple, gradient based, local saliency; an off-the-shelf face detec-
tor; and a high-end motion detector.

The optimization of the mapping function from the source
frame to the manipulated target frame is set through a linear sys-
tem of equations. Each pixel (i,j) at frame t is associated with two
variable x;;, yij that determines its location on the manipulated
frame. Horizontal and vertical warps are optimized independently
using the same technique. In order to persevere content integrity,
and to avoid distortion, the horizontal post-warp location is first
encouraged to have the same coordinates as the warp of the pixel
just below it (X;:1,), and the pixel preceding it (x;;,_1). Penalties
are also placed in order to encourage a distance of 1 from the warp
of its left neighbor (x;;_1,).

For obvious reasons, it is impossible to satisfy all of the require-
ments above and still uphold the manipulated target’s specifica-
tions (e.g, fit into smaller retargeting dimensions). In order to
satisfy these specification, we add weights to these space preserv-
ing energy terms that are proportional to the pixel importance val-
ues. For example, a pixel with high importance is mapped to a
distance of approximately 1 from its left neighbor, while a pixel
of less saliency is mapped closer to its neighbor. Note that time
smoothness is taken into consideration by the above mentioned
relation between x;;, and x;;;_1, in order to generate a continuous
natural-looking video sequence.

Our algorithm is designed for streaming video. Therefore, time
smoothness and motion analysis considerations are limited to
the previous frames only. Such considerations need only apply to
frames of the same shot, and an online shot detection mechanism
is employed. We also present an extensions that manipulates a vi-
deo in an off-line manner, the entire video shot at once.

The shot-segmentation mechanism is similar in spirit to the
motion-discontinuity based method of [17], where the block
matching operation is replaced with the efficient algorithm of
[18]. First, motion estimation by the method of [18] is applied to
each 16 x 16 pixels macro-block. A shot boundary is detected
wherever the number of blocks for which the motion estimation

o O;;ﬁmizaticn Manlpulatedfram

Motion detection

Fig. 1. System overview. A saliency score is computed for each frame based on the gradient magnitude, object detection and motion detection. Next, an optimization stage

recovers the CAVM warp. The warp is then applied to the original frame.
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(b)

Fig. 2. Retargeting example on a frame from the movie (a). The saliency map, with the detected faces imposed (b). The retargeting result to half the width without face
detection (c). Retargeting with face detection (d). The entire retargeted shot compared to bicubic interpolation is available in the supplemental material [19].

fails, exceeds a threshold. This combination is efficient, robust and
uninfluenced by object and camera motion.

3. Saliency

We aim at modeling the visual attention by mapping each pixel
with a saliency measure, where € value is considered an unattrac-
tive pixel and 1 is an important pixel. In order to locate the salient
regions in the video, we construct a three way saliency measure,
combined to create the per-pixel saliency. The combined saliency
measure is then used by the optimization stage to produce a sal-
iency-preserving manipulated video. Next we describe the three
saliency measures and their linear combination.

Let S be the content preservation (saliency) matrix. Each entry
in the matrix S represents the saliency of a single pixel in the
source frame I. Values varies between ¢ and 1, where ¢ values
are, content wise, non-important pixels. the following formula is
computed elementwise:

S = max (s,min <SE+ZS"F+5MD,1>>, (1)
i
where the summation is over all detected faces in the frame.

3.1. Local saliency

We employ the simplest measure of the local information con-
tent in the frame. Namely, we use the L,-norm of the gradient

Se = (a%l)z + <a%1)2 (2)

(all gray values are scaled to be between zero and one).

Previous work, e.g. [2,12], consider several alternative energy
measures. However, we found the efficient L,-norm of the gradient
to, generally, perform no worse than other, more complex, saliency
measure functions.

3.2. Face detection

Human perception is highly sensitive to perspective changes in
faces, more specifically to frontal/profile portraits. In order to avoid
deforming frontal/profile portraits we employ the Viola and Jones
[4] face detection mechanism.

The detector returns a list of detected faces. Each detected face i
has a 2D center coordinate FL and a radius F'. The face detection
score of each pixel is a function of the distance from the faces* cen-
ter: Di(x,y) = HF;J - (x,y)Hz, and it is given by the cubic function:

—Di(x.y)’ +.5-Di(x,y)’
N\ 3 N\ 2
-(F) +5-(F)
The cubic function (normalized between 0 and 1) is used to weigh
the importance of the face as an almost constant function with a

Srixy) =1~ 3)

drastic fall near the end of the face. This allows some flexibility at
the brim of the face whilst avoiding face deformation.
We further introduce a face rescaling measure.
; F

™ max(Cwidih, Cheight) (4)
i i i\? i \?
SF(va) = SF(va)(l -25- (Frn) -25- (Frn> )

The implicit saliency of a detected face is rescaled in relation to the
area it occupies in an Cwigen % Cheigne Pixels frame. A 1 factor is used
where the size of the face is relatively small, while extremely large
faces tend to be ignored. This rescaling factor prevents a distorted
zooming effect on large faces.

In view of the fact that we constrain smoothness over columns,
a detected face also prevents thinning the regions below it. There-
fore, human bodies are shrunk less, as necessitated Fig. 2.

3.3. Motion detection

Moving objects in video draw most of the viewers’ attention
and are content-wise important. Using a motion detection mecha-
nism we mange to manipulate the video while preserving the tem-
poral context.

The motion detectors suggested by [20] is implemented. The se-
lected algorithm is efficient and effective, although little known.
Let the frame be partitioned into N x N(N = 8) pixel square blocks
and A,, denote the (u,»)th block. The pixel coordinate (x,y) is in
Ay if (u—1)N+1<x<uN and (v—1)N+1<y<VN. define x' =
(X)mod n and y= (y)rnod N-

For each block A,,, the total intensity of the block at frame ¢ is
calculated: A (u, v) := S"y_; 30 _;I:(x,y). Then, the normalized “cir-
cular shift moments” in the x and y directions mx(u, v), my,(u, )
are computed for j=0,...,N — 1.

j _ 25:1 (X _j)mod N’ Z;’V/:]It(x:y)

mx(u, v) =
EN ( - .;qt(u> U)ZN . (X ) (5)
myj(u, v) = y1V J&o(duNy) w1le (XY

A motion in block (u, v) is detected if the maximum absolute differ-
ence in any of the computed moments between two consecutive
frames is larger than a threshold. i.e., no motion is detected if for
all j, ‘mx’[(m v) —mx,, (U, v)‘ <y and )my’t(m v) —my,,(u, 11)‘ <.
In our system we set y to 0.3.

The motion based saliency Syp(x,y) is rescaled between zero
and one according to the motion in block A )y y/n))-

As can be seen in Fig. 3 moving objects gain saliency, thus seiz-
ing a larger area in the retargeted video.

4. Optimization

We cast the problem of finding the optimal mapping between
the source image and the manipulated target image as a sparse
set of linear equations, which we solve in a least squares manner.

j.cviu.2011.05.010
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Fig. 3. From left to right. Retargeting a frame taken from the MPEG committee standard benchmark video “football”. Saliency maps with (bottom) and without (top) motion
based saliency. the result of bicubic interpolation to half the width. retargeting without motion based saliency. Retargeting result of the full clip is available in the

supplemental material [19].

Fig. 4. Retargeting examples on frames from the ITU-T video “tennis” with and without time smoothness. The left image depicts the retargeting results of frame 10, and the
right of frame 15. Retargeting results are shown for bicubic interpolation (a), frame by frame retargeting (b), and time smoothed retargeting (c). Time smoothing prevents the

video from “jumping around”.

A more natural formalization is to cast the problem as a con-
strained linear system. This way one can guarantee that no pixel
falls out of bounds and that the mapping preserves the order of
the pixels along the scan lines in the image. However, the solution
to the unconstrained system is much more efficient and, in prac-
tice, the mappings recovered using an unconstrained system of
equations do not contain noticeable artifacts due to changes in
the order of the pixels.

In the manipulation process a pixel (i,j) in frame t of the video is
being mapped into a pixel in frame t of the output video with some
computed location (x;; ¥i;:)- Hence, there is twice the number of
variables (x;;, and y;;,) to solve for, as the number of pixels in
the input video. We compute the y variables separately from the
computation of the x variables, using the same linear system de-
scribe below. The mapping computation is done one frame at a
time, and so our systems of equations has approximately the same
number of unknowns as the number of pixels in one input frame.

Consider the problem of recovering the new x-axis locations x;;;
of pixels (i,j)j=1,...,Cwiath» i=1,...,Cheign, in frames t=1,...
,Cburation- The problem of determining y;j, is the transpose of this
problem and is solved similarly. Also, as a running example, we
retarget a video into a smaller display screen, i.e. a mapping of
the input frame to a smaller one, width Crargerwideh < Cwiarn. Other
applications will follow.

There are four types of constraints. First, we constrain each pix-
el to be at a fixed distance from its left and right neighbors. Second,
each pixel needs to be mapped to a location similar to the one of its
upper and lower neighbors. Third, the mapping of a pixel at time t
needs to be similar to the mapping of the same pixel at time ¢t — 1.
The forth constraint fits the warped locations to the dimensions of
the target video frames.

Importance modeling If a pixel is not “important” it can be
mapped close to its left and right neighbors hence blending with
them. An “important” pixel, however, needs to be mapped far from
its neighbors, thus a region of important pixels is best mapped into

a region of a similar size. We formulate these insights into equa-
tions stating that every pixel should be mapped at a horizontal dis-
tance of 1 from its left and right neighbors. These equations are
weighed such that equations associated with pixels with higher
importance-score are more influential on the final solution.> The
first type of equations is therefore:

Sije(Xije —Xijo1.—1) =0 6)
SijeXijre —Xije—1)=0 7

where S is the saliency matrix of Eq. (1), with explicit time index.
Note that the equation looking right from pixel (i,j — 1) can be com-
bined with the equation looking left from pixel (i,j) to form one
equation:

(Sijo1.e 4 Sije) Kije — Xijo1e—1) =0 8)

Boundary substitutions In order to make the new image fit in the
new dimensions we add a constraint defining the first pixel in each
row of each frame (i, 1,t) to be mapped to the first row in the retar-
geted video, i.e., Vi,Vt x;1 = 1. Similarly, the last pixel of each row is
mapped to the boundary of the remapped frame: Vi, Vixic,,,.c =
CTurgerWidth .

The mapping of the first and last pixel in each row is known, we
therefore eliminate the associated variables with the actual values,
wherever X;1, Of X;c,,. appear in Eq. (8).

Spatial and time smoothness. It is important to have each column
of pixels in the input image mapped within the boundaries of a
narrow strip in the retargeted image. Otherwise, the image looks
jagged and distorted . These type of constraint are weighted uni-
formly, and take the simple form of:

W*(Xis1jc — Xije) = 0 9)

2 More precisely, since we solve in a least-squayes manner an equation arising from a
pixel of importance S;;, is as influential as 52,].’,‘ equations arising from a pixel of
importance S; ; ... e
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In our system W = 1. In order to prevent drifting, we also add a sim-
ilar restriction that constraints the last pixel of each column to have
the same displacement as the first one in the column.

WS(XUJ - xCHeight-jvt) =0 (10)

Preserving the mapping function continuity between adjacent
frames is necessary, as is stated in the following constraint Fig. 4:

W (Xije — Xije1) =0 (11)

4.1. Speed optimization

Computing a per-pixel location mapping function is slow and
requires large amounts of memory, instead we represent the input
frame using a mesh, then we compute an optimally deformed
mesh Fig. 5, such that we practically solve the optimization system
on a down-sampled problem. Next we compute the per-pixel map-
ping function by interpolation of the mesh. Further more, we can
use the low-resolution mesh to perform the forward mapping on

P Retargeted Video Frame
L L T T
" SRR SR |
=1
---------------- i i
[ iy $ociit

Fig. 5. Frame from a video with a mesh grid on top. The deformed mesh in the
middle of the image reviles the retargeting process.

the GPU, saving precious CPU processing time. We were able to
achieve further performance boost by down-sampling the height
by a much larger factor than the width (in virtue of the constraint
limiting the vertical movement Eq. (10)). Practically, we down-
sampled the width by a factor of 16 while the height is down sam-
pled by a factor of 48. An image of 640 x 480 pixels is thus solved
by sampling only 40 x 10 pixels. On a Core2 Duo 2.4Ghz we were
able to solve these equation systems in 4-10 ms (C++code using
UMFPACK [21]). For comparison we refer to [13], they state that
a 400 x 300 pixels video having 400 frame, on similar hardware,
will take between 10 and 20 min, or 1500-3000 ms per frame.

4.2. off-line shot-by-shot solution

The online system proposed above may produce suboptimal
solution on complex video scenes. Consider a scene where an ob-
ject moves across the frame from one side to the other, for example
a man crossing the road, or an airplane flying across the sky. An on-
line architecture is somewhat limited to the solution found at the
beginning of the shot, in the example above the object of interest
moves across the shot, thus damaging the visual performance of
the retargeting process.

To overcomes these kind of complex scenes, an off-line (per
shot) solution can be used Fig. 6, which solves for the displacement
of the entire shot at once. Notice that replacing the per-frame sol-
ver with a per-shot solver increases the number of variables ina T
times factor (where T is the number of frames in the shot).

An online architecture solution, treats each frame as a stand-
alone problem with the addition of a time smoothness constraint
to create a continues flow between consecutive frames. The time
constraint allows only slight changes in the retarget solution
between consecutive frames Eq. (11) thus, limiting our global
retargeting solution. In our example, since in the first frame the
salient object is on one side of the frame, and in the last
frame the salient object is in the opposite side, our solution will
be sub-optimal, since it cannot adapt to the immense change in
the shot. With the introduction of the global solution solver, we
see how the globally retargeted video performs as a cropped

Fig. 6. Top: Original video from a surveillance camera. Middle: Retargeted video to quarter-width using a global solution. Bottom: Retargeted video to quarter-width using a
global solution with a pan like camera motion. The videos are available in the supplemental material [19].
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window in the middle of the frame, therefore capturing more than The constraints involved in the per-shot linear system are the
half of the mans’ walk. This in contrast of the online solver which same as in the per-frame system, where in the per-shot system
will be “stuck” on the right side of the frame due to the time- the time constraint becomes:

smoothness constraint.

(a) ® © @

Fig. 7. Retargeting example. (a) original, (b) retargeted frame, notice the utilization of the frame area, for obvious reasons it cannot be achieved using an optimal cropped
window. (c) retargeting with added saliency noise (uniform distribution, variance 0.05); (d) noise: uniform distribution, variance 0.10; (e) noise: uniform distribution,
variance 0.15.

(b)

Fig. 8. Retargeting example. (a) original frame from the ITU-T video sequence “Akiyo”; (b) the downsized frame achieved by our method; (c) a conventionally down-sampled
frame. See also supplemental material [19].

(a)

Fig. 9. (a) Retargeting a frame taken from a motion picture; (b) Retargeting a frame taken from the MPEG committee standard benchmark video “paris”; (c) Retargeting a
frame taken from a basketball video. The original frame is shown at the bottom of each triplet, and a bicubic interpolation is shown on the top-right. Our retargeting method
(top left of each triplet) prevents much of the thinning effect of rescaling and preserves the visual details. Please refer also to the supplemental material [19].
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W[(Xu:r —Xiji—1) =0 (12) 4.3. Video model-camera motion

The warping operator induces “camera motion” by shifting the
entire frame a few pixels at a time. It is desirable to employ this

that is, the position in the previous frame x;;, ; becomes an motion in a way which imitates the ego-motion of an actual
unknown.

Our Resize

Bicubic

|

(a)

Fig. 10. Three down-sizing results. A bicubic interpolation is shown at the bottom of each pair. Our retargeting method (top) applies a non-homogenous zoom on the objects
of interest.

(b) (d)

Fig. 11. Four down-sizing results from a TV series. A bicubic interpolation is shown at the bottom of each pair. Our retargeting method (top) applies a non-homogenous zoom
on the objects of interest, see also the supplemental material [19].

Fig. 12. Three down-sizing results from a movie. A bicubic interpolation is shown at the bottom of each pair. Our retargeting method (top) applies a non-homogenous zoom
on the objects of interest. The video shots are available in the online supplemental material [19].
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camera, while retaining the salient objects inside the visible
frame. To simulate a pan/tilt motion, we add one translation D,
variable per frame t. When retargeting on the x-axis, the variable
D, allows a pan like motion between two consecutive frames, for
retargeting the y-axis a tilt like motion is induced. [16] use tem-
poral coherence preservation on every mesh-vertex on their grid,
we however use one variable for the entire reposition of the
cropped and warped window. In both cases the reposition vari-
able is part of the global optimization scheme and is found auto-
matically, uniquely, our approach eludes the need for an optical
flow module.

We sustain the time smoothness by limiting the translation be-
tween two consecutive frames using a new set of soft constraint
Eq. (13), to produce a coherent output video. The rest of the con-
straints remain the same as in the per-shot system:

Vicic Cheign Xi1.t = 1+ Dy

Vi< Coeigne Xi-Cuiant = CNewwideh + Dt
D[ - Dt_] = O
Wt (X,‘J‘,[ + D[

(13)

—Xiji-1 —Di1) =0

(d)

Fig. 13. Four down-sizing results from a movie. A bicubic interpolation is shown at the bottom of each pair. Our retargeting method (top) applies a non-homogenous zoom on

the objects of interest, see also [19].

Fig. 14. Comparison with [12] Seam Carving technique. (a) Original, (b) our retarget using L1-norm to half the width, (c) retarget using L2-norm, (d) Seam Carving using
L1-Norm, (e) Seam Carving using L2-Norm. Our method is more robust to the selection of the Saliency measure (subtle difference between (a) and (b)), and because of its
continuous nature, creates less jagged lines (note the jagged lines in the Ford image and on the buildings on columns (d) and (e)). The advantages of optimizing the entire

mapping at once are also apparent when examining the flowerpot.
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5. CAVM-Applications and results to state-of-the-art in the image/video retargeting field. We also
demonstrate video expansion and real-estate creation. The applica-
The applications of our CAVM system are demonstrated next. bility of the CAVM system is exhibited on other assorted tasks,

First we review our results on video retargeting and compare it such as video abstraction, object removal and displacement (both

Fig. 15. (a) Original image. (b) Enlarged image Rubinstein et al. [13]. (c) Our retargeting method.

(Ours - CAVM)

Fig. 16. Comparison with [13] Video Seam Carving technique. Frames (1,19,40) from the video “RoadSki” used by [13]. Observe the distortion of white lines and the
disappearance of the rider in the background in [13] retargeted video. Please refer to the online supplemental material [19].
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spatial and temporal planes), and freeform image/video boundary
optimization.

5.1. Video retargeting, results and comparison

We have experimented with our algorithm on a large number of
videos, and tested several video retargeting applications.

Altering the aspect ratio. Example videos for the task of altering
the aspect ratio are shown in Figs. 9, 11, 12 (see the accompanied
supplemental material for retargeted videos [19]). The format of
the retargeted videos is as follows: each frame is divided into three

Kethenbilileral.

sub frames. The bottom one is the original video frame. The top
right sub-frame is the result of applying bicubic interpolation to
obtain a new frame of half the input width. The top-left figure is
the result of our retargeting algorithm.

Note that while our algorithm does not explicitly crop that
frame, whenever the unimportant regions in the frame lie away
from the frame’s center, an implicit cropping is applied. See for
example the retargeting results in Fig. 8. Many of the pixels at
the left and right sides of the input frames are mapped to the
first and last few columns of the retargeted frames, hence
disappear.

i

®Mammoth HD
(Original)

®Mammoth HD
(Original)

Krahenbuhl ez al.

Krahenbuhl et al.

(Ours - CAVM)

Fig. 17. Comparison with Krahenbuhl et al. [14]. Please refer to the supplemental material [19].
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Areal-time video retargeting performance (25fps) is achieved on
an Intel Core 2 Duo 2.4Ghz, running Windows XP SP2, by C++stand-
alone software that incorporates UMFPACK (sparse solver) with a
GPU based implementation to perform the forward mapping.

Saliency measure One of the biggest issues with saliency based
image/video retargeting is the selection of the saliency function.
We demonstrate the robustness of the optimization model to aux-
iliary noise in the saliency function, see Fig. at>7-9. As is evident in
this experiment, when adding to the saliency score white noise of
variance up to 0.15, the visual quality remains adequate.

Down-sizing results Examples of down-sampling while preserv-
ing the aspect ratio, are shown in Figs. 10 and 1312,13 and supple-
mental material [19]. The x and the y warps were computed
independently on the original frame and then applied together to
create the output frames. As can be seen, there is a strong zooming
in effect in our results, as necessitated by the need to display large
enough objects on a small LCD-screen.

Comparison with Seam Carving [12,13] Fig. 14 compares our im-
age retargeting method with the one of [12] while Fig. 16 compares
our video retargeting method with the one of [13]. We emphasize
the speed differences between the two methods, Rubinstein et al.
indicate a 400 x 300 pixels video takes between 1.5s and 3s
(excluding saliency computation), while we optimize a similar size
frame in 4-10 ms. We feel that in both image and video retargeting
our method is less susceptible to artifacts and produce smoother
visual results.

Comparison with optimization based video retargeting [14,16,15]
Fig. 17 compares our video retargeting method with the one of
[14] while they do have temporal constraints their system lacks
the ability to create a panning like window, and as such cannot
adapt to fast changing shots. Fig. 18 compares our video retarget-
ing method with the one of [15] and [16]. Both [15] and [16] em-
ploy an ego-motion module that allows the retargeted video to
adapt to fast changing scenes. It is interesting to see that even

(Original)

(Original)
LT b

HERE |
i « B uil-‘fl

EEEREET TT TN
(Original)

]
[2mmE.

HERE ||
ln_ -.dﬂl

41000001

(Original)

Wang et al. (Ours - CAVM)

Wang et al. (Ours - CAVM)

11 b
111

naamuil

FEARRRRIEND

Wang et al. (Ours - CAVM)

lanp™

I ni

..vl

(Ours - CAVM)

Wang et al.

Fig. 18. Comparison with Wang et al. [15] and [16] respectively. The video shots are available as part of the supplemental material [19].
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(b)

Fig. 19. Failure cases. (a) Frame 55 from the ITU-T video “tennis”. (left) Bicubic sampling to half width. (right) Our solution. The artifacts were caused by the zoom-out camera
motion. (b) A tennis sequence. (left) Bicubic interpolation to half width and height. (right) The crowd part of the frame has many large-magnitude gradients that tilted our

solution.

though our system does not incorporate a camera-motion module,
it is able to create the same panning window effect and adapt to
the changing scene.

5.2. failure cases

The saliency model we employ and the optimization may be
“fooled”. An example of a failure case due to the optimization
stage is evident in Fig. 19a. The camera zoom-out motion creates
a conflict between the need to preserve time smoothness and the
need to update the salient region. This results in a noncontinuous
warp, creating a visible artifacts. This phenomena can be detected
by analyzing the warp or using a dedicated zoom-out motion
detector, when occurs, the continuity constraints (Eq. (11)) should
be relaxed.

Another flaw, one which demonstrates the limitations of our
importance-measure is revealed in Fig. 19b. High energy textures
in the crowd area endorse the algorithm to give it more space in
the retargeted frame, thus taking cardinal frame area from the
tennis court. Similar problems are solved by incorporating other
object recognition techniques to the saliency score and by creating
genre-optimized scores.

The term “global motion” is used to describe occurring 2D im-
age motion caused by camera motion. Estimating accurately the af-
fine global motion is a classical task, for which efficient algorithms
exist. Currently, we chose not to incorporate it into our system.
However, having a black-box global motion estimator, it is fairly
easy to do so. Assuming a global affine motion M has been esti-
mated, it can be added to the previous frame warping result, thus
compensating for the camera motion. Then the optimization prob-
lem is solved similarly to the stationary model.

5.3. Media expansion

Video expansion is obtainable with the help of our system. In
such a case, however, the desired output depends on the applica-
tion. In one application, which is the one considered by [12] and
[13] for stills, the task is to keep the original size of the salient
objects, while enlarging the images by filling-in the less salient
areas with unnoticeable pixels. For such a task, our algorithm can
work with mild modifications Eq. (14). Fig. 15 demonstrates and
compares [13] image inflation by a fixed factor of one and a half
on the width while the height remains unchanged.

A related task is foreground emphasis through non-homoge-
nous warping in-place, where the dimensions of the video remain
the same (salient objects are increased in size on the expense of
less salient regions). To apply our method in these cases, we need
to alter Eq. (8) to have the preferred inflating ratio on the right-
hand-side. If this desired inflation is given by the user or by some
heuristic, this is a simple modification.

Sije(Xijr — Xij_1, — desiredScale) = 0 (14)

5.4. Video synopsis

Video synopsis aims at taking a step toward sorting through
video for summary and indexing and is especially beneficial for
surveillance cameras and web-cam. Classical video summarization
techniques have focused on selecting a subset of representative
key-frames or, alternatively, a collection of short video cuts. Cur-
rent research tendency is to compose new frames from the source
video [22-24]. This current trend is sometimes coupled with
mosaicing techniques to mitigate camera motion, and some of
the most recent contributions aim at generating interactive mosa-

Fig. 20. (top) Source frames from a surveillance camera video. (bottom) Frames from the time-retargeted output video.
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ics for quick and layered indexing of video content [25,26]. These
methods generate key-frames or key-clips and create a seamless
mosaic of these clips using different texture-synthesis approaches.
Below, we focus on generating the summarized clips, which can be
coupled with independent mosaicing methods.

Given a video of a certain length the task is to create a new vi-
deo of a much shorter length. We propose to tackle this task in a
similar manner to our retargeting method, i.e. to compute an opti-
mal per-pixel time warping via a linear system of equations. The
first and last frames on the input are to be mapped to the first
and last output frames. Each pixel in the input video will be
mapped to a location in the output video that is similar to that of
its spatial neighbors, where important pixels are mapped to dis-
tinct locations from their time-line neighbors.

We consider a video as a 3D spatio-temporal cube. Each pixel is
mapped to a new temporal location. Pixels of salient regions
should stay together (both on X and Y axis) and the target time is
set by constraining the last frame to be mapped to time Crargettime-

The following equation system is used to solve this time-retarget
problem. Video synopsis results are shown in Figs. 20 and 21.

V1< Coeigne V15< Cpan L1 = 1

Visic CHeighrvl << Cwideh Tij‘CDuratian = CTﬂTgEfTime

W$<TW—T,+W) 0 (1)
WS( ijt — z]+l t) —0
Sth( iggt — 1Jt 1_1) 0

Stressing the limits of the video synopsis solution is evident in
Fig. 22, where we stretched our solution to its limits. The number
of output frames required from the system is too little for this
complex video, and the outcome is a ‘ghosting’ effect on the sum-
marized video output. Future improvement of the system could
be in the form of visually pleasing stitching mechanism, maybe sim-
ilar to the one introduces by [26].

(original)

(object removed)

(original) (object removed)

Fig. 23. Object removal. On the left pair the standing man is removed. On the right pair, a woman is removed.
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5.5. Object removal

The next task we consider is the removal of a selected object
from an image or a video sequence, see Fig. 23. First, the object’s
width is estimated by: Copjectwidn :ArgMax,»ZjC:W{‘“”Mi j- Then, the
following equation system is formed, where M;; is a binary pixel
map, indicating whether the object is to be removed.
vlgig CHEigthi‘] = 1
Vi< Coeign Xi.Cuian = Cwidth — Cobjectwidth
(1 = M;j)Sij(xij —%ij-1 —1) =0
M; W' (%ij — xij-1) =0
WS(X,‘_J' — XH]J) =0
w? (Xl,i - XCHeing') =0

(original)

(repositioned)

where W, is a large weight to ensure complete removal.

The spatial object removal can be transformed into temporal
object removal by having removal constraints of the form M;j,
WiXije — Xije—1) = 0.

5.6. Object displacement

On occasion, ones needs to relocate an object in within an image
whilst minimizing the distortion caused by a standard mesh
stretching. For this purpose we revised the retargeting scheme to
allow relocation of a selected object. Let M;; be a binary per-pixel
selection mask, then the solution of the following equation system
shifts the object by D* pixels (Fig. 24). Of course relocating an ob-
ject in within a video is also possible, see for example Fig. 25 and
online supplemental material [19].

(difference)

Fig. 24. In the top image the car is repositioned. In the bottom image the girl is repositioned.

(@)

(b)

Fig. 25. (a and b) Top: frames from a movie. Bottom: The parked car is moved downwards and to the left, while avoiding visual distortion. (c) Top: a frame from a TV series.
Bottom: we moved the tree to right nonetheless the video remains undistorted. Video content is available online [19].
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(b)

Fig. 26. Left: original image. Middle: non-rectangular mask. Right: Optimized image. (a) Notice that on the optimized image the title is more apparent. (b) In the optimized
image, the two watches are squeezed towards one another making the title and indicator visible.

Fig. 27. Left: original image. Advertisement real-estate marked by a white rectangle. Right: Optimized real-estate. (a) Single frame from the MPEG committee video “Paris”.
(b) Single frame for the TV show “The daily Show”.

i A obo After EAIBcIc - unc.op *

) Ml Scam Taooer (2] Tousde o k.

| Rarder Queu 1 5t _320_240 m | SrdOnn 0.0 Y

W B aglo P
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Fig. 28. A screenshot of our “Adobe® After Effects” plugin in action. Left: The bright green area marks the salient object. Right: the retargeted video output. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Vicic CuegnXin = 1 5.7. Image boundary optimization

V1<t Gug i, = Covit In the advertisement world, “real-estate* is a free area in within
(1= Mij)Sij(Xij — Xij1 —1) =0 (17) an image, or a video, where an ad can be located. Advertisements
W'M;j(xij — ( + DX)) =0 are commonly a rectangle banner (or “flash” object) located on a
WS (xij — Xiy1j) = 0 vac:ant space of 'the web page. Unfortunately vacant real-estate
WA (%, — Xepge) = 0 on images and video are generally non-rectangular. We present a

unique approach, mapping the rectangular advertisement to a
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non-rectangular area. We demonstrate how to optimize an ad for
shapeless areas, in which we first optimize horizontally, and then
apply the same scheme for the vertical optimization. Let L; be the
left border, i.e. L; = d; implies that the left pixel in row i should be
mapped to location d; (on the X-axis). The right border R; is defined
accordingly. The following equation system solves the above opti-
mization problem.

Vi<ic Cheight Xi.1 = L;

Vii< Coeigne X1.Cign = Ri

SjJ(XiJ*X,‘J‘,]*]):O (18)
WF (xij — Xisj) =0

s
vjs.t.j>rrlax(Lj;)/\j<mir1(Rju)W (le - XCHeighrJ) =0

Fig. 26 demonstrate the technique of optimizing a non-rectangular
banner area. It is worth noting that the retargeted areas that are
most pleasing visually are natural or texture areas, while geometri-
cally structured areas are more prone to visual artifacts.

5.8. Real-estate expansion

Not always a suitable sized “real-estate* can be found, on
those occasions one needs to enlarge a small area for the favor
of a large advertisement, this without harming the salient regions
of the video. We present the following expansion scheme, that re-
spects the salient regions of the video, to solve the aggrandize-
ment problem. Assume we already have the small sized video
real-estate in a binary pixel map M;;; we want to expand the
marked regions whilst preserving the saliency S;;; in the video.
We follow with a linear system, where the target growth factor
is marked by F* A few “real-estate manipulations are shown
in Fig. 27.

Vicic Chreigne Xi,1 = 1

Vi<ic Crieight Xi.Cwiatn — Cwidth

(1 = Mije)Sijie(Xije — Xijo1e— 1) =0
Mij W' (xije — Xij-1c) = F*

W* (Xije — Xiv1c) =0

Wt(xij.t —Xijer1) =0

(19)

6. Summary

We introduced a system for content aware non-homogenous vi-
deo manipulation, whilst respecting the saliency and preserving
the user experience. The proposed system is efficient enough for
real-time processing: both the saliency and the optimization stage
are computed in under 33ms for Standard-Definition video on an
Intel Core2 duo 2.4Ghz.

The framework is flexible, and is able to provide solution for
several video manipulation tasks: video down-sampling, aspect ra-
tio alterations, non-homogenous video expansion, real-estate
optimization and creation. We also demonstrated innovative appli-
cations using the same framework to achieve video abstractions,
object removal from a video and object displacement in a video
based on respective saliency.

The optimization seems suitable and efficient for all of the
above mentioned tasks. However, it relies on the suitability of
the computed saliency measure. The components currently em-
ployed in the saliency cannot accurately capture the human sense
of importance. Therefore, the main remaining goal is finding the
salient regions in a video.

To allow professional users (e.g. video editor) to alter the
automatic saliency map, we developed an “Adobe® After Effects”
plugin. As can be seen in Fig. 28 the user can manually correct
the saliency map, thus producing a better optimized video.

The suggested framework is robust and flexible enough to
apply to a variety of real world video and image manipulation
challenges beyond saliency based manipulations. For example,
we have recently extended this framework to allow semi-
automatic conversion of conventional 2D video to stereoscopic
video [27].
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