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ABSTRACT 

Aberrant metabolism is a hallmark of cancer but whole metabolomic flux 

measurements remain scarce. To bridge this gap we developed a novel metabolic 

phenotypic analysis (MPA) method that infers metabolic phenotypes based on the 

integration of transcriptomics or proteomics data within a human genome-scale 

metabolic model (GSMM). MPA was applied to conduct the first genome-scale study 

of breast cancer (BC) metabolism based on the gene expression of a large cohort of 

clinical samples. The modeling correctly predicted cell lines' growth rates, tumor lipid 

levels and amino acid biomarkers, outperforming extant metabolic modeling methods. 

Experimental validation was obtained in vitro. The analysis revealed a subtype-

independent "go or grow" dichotomy in BC, where proliferation decreases as tumor 

evolve metastatic capability. MPA also identified a stoichiometric tradeoff that links 

the reduction in proliferation observed to the growing need to detoxify reactive 

oxygen species (ROS). Finally, a fundamental stoichiometric tradeoff between serine 

and glutamine metabolism was found, presenting a novel hallmark of ER+ vs. ER- 

tumor metabolism. Together, our findings greatly extend insights into core metabolic 

aberrations and their impact in BC.  

PRÉCIS  

This study presents the first genome-scale study of breast cancer metabolism, 

providing new system-level insights into the metabolic progression of BC, at both 

general and subtype-specific metabolic characteristics.  

  

 American Association for Cancer Research Copyright © 2012 
 on September 23, 2012cancerres.aacrjournals.orgDownloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Author Manuscript Published OnlineFirst on September 17, 2012; DOI:10.1158/0008-5472.CAN-12-2215

http://cancerres.aacrjournals.org/
http://www.aacr.org/


3 
 

INTRODUCTION 

The metabolism of cancer cells is fundamentally different from that of normal 

cells.  The tumor's micro-environment, the activation of oncogenes, the need to avoid 

apoptosis, and high energetic demands – these are only some of the selective 

pressures that alter the metabolism of cells during carcinogenesis (1-3). Several recent 

studies have shown the involvement of metabolic remodeling in breast cancer (BC) 

(4-8). It has been recently demonstrated that targeting metabolic genes hampers BC 

tumorgenesis in-vivo, and that the key enzyme in serine metabolism, 

phosphoglycerate dehydrogenase (PHGDH), is exclusively essential for Estrogen 

Receptor negative (ER-) BC (7). Further highlighting the heterogeneity of BC 

metabolism, another study has recently shown that basal cells are glutamine 

auxotrophs, while luminal cells produce glutamine and secrete it (8). These findings 

demonstrate the potential clinical implications and importance of studying BC 

metabolism. However, as yet, there is a dire lack of accurate flux rate and metabolite 

concentration measurements in cancer cells. In contrast, there are relatively ample 

genome-wide measurements of gene expression, both from cancer cell lines and from 

clinical samples. This gap creates a growing need to develop methods for 

approximating the metabolic phenotype based on transcriptomics or proteomics. 

Tackling this challenge to further elucidate the metabolic aspects of BC, we present a 

novel computational method, termed Metabolic Phenotypic Analysis (MPA).  

The methodological basis of MPA is Constraint-Based Modeling (CBM), a 

genome-scale approach to study metabolism. CBM metabolic models have been 

shown to provide an appropriate context for analyzing high-throughput omics datasets 

and to elucidate the genotype to phenotype relationship (9). The approach has been 
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extensively applied to study the metabolism of various organisms, from microbes (10-

12) to humans (13, 14). The potential clinical utility of modeling human metabolism 

has been previously demonstrated across numerous studies, including the 

identification of hypercholesterolemia drug-targets (9), reactions related to hemolytic 

anemia (9), and metabolic biomarkers of inborn errors of metabolism (15). Recently, 

a generic genome-scale metabolic model (GSMM) of cancer has been developed and 

employed to predict selective drug-targets by identifying synthetic lethal gene pairs 

(16). A cell line specific GSMM of Hereditary Leiomyomatosis and Renal-Cell 

Cancer (HLRCC) has been developed to study this particular pathology. It predicted 

selective drug-targets for HLRCC that have been validated experimentally (17), 

demonstrating the potency of studying cancer metabolism on a genome-scale. 

However, these studies, as many others, were based on data from cancer cell lines, 

which might fail to depict the metabolism of the cancer in-vivo. Here, with the 

introduction and application of MPA, our study, based on data of clinical samples, 

provides a system level view of BC metabolism in-vivo.  

MATERIALS AND METHODS 

Metabolic Phenotypic Analysis (MPA) 

Given gene expression or protein abundance profiles, a set of metabolic processes 

(Supplementary Table 1), and a GSMM, MPA generates for each sample its metabolic 

profile as explained hereinafter. First, the expression of a gene or protein is defined as 

high or low, if it is α standard deviation higher or lower than the mean expression of 

the genes or proteins within the same sample, respectively. Otherwise, it is considered 

moderate. In the current analysis α was set to 0.5. Robustness analysis was performed 
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to ensure that the method is not sensitive to the selection of α (Supplementary 

Material, Supplementary Figure 1). 

Based on the Gene-Protein-Reaction (GPR) associations of (9) this ternary gene or 

protein profile is transformed to reaction expression, as done in (18). The expression 

of a reaction reflects the expression state of its enzymes or enzyme-encoding genes, if 

it is inferred from proteomics or transcriptomics, respectively. Based on the reaction 

expression profile, an MPA score is computed for each metabolic process. A 

metabolic process is defined by its medium (i.e., which metabolites can be secreted or 

absorbed), and its end-reaction, which often produces the target metabolite of that 

process. For example, for the process of gluconeogenesis from lactate, the medium is 

defined such that lactate is the only carbon source to produce glucose, and the end-

reaction is the one that produces glucose. The medium is set by dividing the reactions 

that transport metabolites in and out of the cell, termed exchange reactions, into three 

groups: Rsecrete, Ruptake, Rboth. The first two, Rsecrete and Ruptake, consist of exchange 

reactions that should only perform secretion or uptake, respectively. Rboth consists of 

all other exchange reactions. To constrain the model according to the medium, 

constraints (1)-(3) are imposed: 

(1) max0 , i secretev v i R� � �  

(2) min 0, i i uptakev v i R� � �  

(3) min max , i i i bothv v v i R� � �  

(4) � �max  ,  0,1  end reaction end reactionv v� �� �� � �  

where a positive (negative) flux through an exchange reaction denotes the secretion 

(uptake) of the metabolite, and iv is the flux through reaction i, having min
iv and max

iv as 
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its minimal and maximal feasible flux rates, respectively. Both min
iv and max

iv are found 

via Flux Variability Analysis (FVA) (19), applied considering the process at hand. A 

metabolic process is enforced to be active by constraining the lower bound of its end-

reaction to be greater than its maximal feasible value found via FVA, times β, as 

shown in equation (4). In the current analysis β was set to 0.9. Robustness analysis 

was performed to ensure that the method is not sensitive to this setting 

(Supplementary Material, Supplementary Figure 1). The MPA score of a process P is 

Opt*/Opt, where  

� Opt* = the maximal fit to the expression under the medium constraints of P 

when enforcing P to be active; that is, under the constraints (1)-(4).  

� Opt = the maximal fit to the expression under the medium constraints of P; 

that is, under the constraints (1)-(3).  

The fit to the expression is computed as the number of reactions whose activity is 

consistent with their expression state in a steady-state flux distribution that satisfies 

stoichiometric and thermodynamic constraints. It is found by formulating a Mixed-

Integer Linear Programming (MILP) problem as defined in (18). The MPA score is 

hence a value between 0 and 1. The higher it is, the more probable the process is 

active. However, each process has a different bound to its minimal MPA score, which 

is determined by the number of reactions it depends on for its activity. If a given 

process depends on x reactions for its activity, then the MPA score of this process has 

a lower bound: 

*
*  = MPA scoreOpt x OptOpt x Opt

Opt Opt
�

� � 	 �  
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Therefore, the MPA values of a given process are treated as relative rather than 

absolute indications of the process' activity across different samples. The 

implementation of the MPA code in MATLAB is accessible through a supplementary 

website (20).  For a small-scale example of MPA's computation see Supplementary 

Figure 2.  

Multiple hypothesis correction 

As we performed multiple tests to identify metabolic processes that differentiate 

between two clinical groups of interest, we corrected for multiple hypothesis testing 

via False Discovery Rate (FDR) to obtain FDR-corrected p-values, which are 

provided in the supplementary tables (21).  
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ROS detoxification score 

The computation of the MPA ROS detoxification score was conducted by 

computing two MPA scores. One that denotes the capacity of the sample to consume 

superoxide, and another that denotes its capacity to produce it. By dividing the former 

by the latter we obtain the MPA ROS detoxification score. 

Identification of metabolic biomarkers  

A metabolic biomarker is a metabolite whose levels in the biofluids can 

differentiate between two clinical groups. Therefore, the candidate metabolic 

biomarkers are only metabolites known to be transported from the cell to the biofluids 

via exchange reactions. The identification of metabolic biomarkers is done as follows:  

1. Given the gene expression or protein abundance profiles of two clinical groups 

G1 and G2 

2. Let B be the set of candidate biomarkers 

3. For each sample  

For each metabolite  

3.1. Compute the MPA scores vij and uij – that denote the capacity of 

sample i to secrete, and uptake metabolite j, respectively. 

3.2. Let bij = vij/uij 

4. For each metabolite  

4.1. Perform Wilcoxon rank-sum test between  and 

. 

4.2. Let pj be the obtained p-value and record which of the groups (G1 or 

G2) obtained higher ranked scores. 
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5. Correct for multiple hypothesis testing with Bonfferoni, FDR or positive FDR 

(pFDR) correction.  

6. Report the metabolites that obtained significant p-values, following the 

correction (i.e., <0.05). 

To identify amino-acid biomarkers for BC we applied MPA to gene expression 

data from normal and cancer breast tissue (22-24). The predictions of metabolites 

were compared to a set of BC amino-acids biomarkers, compiled according to the 

analysis of measured plasma free amino acids profiles of BC patients and controls 

(25). The significance of the accuracy between the predictions and the measurements 

was calculated by computing the empirical p-values by randomly shuffling the 

predictions. To identify biomarkers for metastatic BC we applied MPA to gene 

expression profiles of BC clinical samples (24).  

Cell culture and proliferation experiment 

HMT-3522-S1 cells and MFM223 were obtained from the ECACC; HCC2218 

cells were obtained from the American Type Culture Collection (ATCC); HCC1599, 

HCC1143 and HCC1937 cells were obtained from the German Collection of 

Microorganisms and Cell Cultures (DSMZ); MCF10a and MDA-MB-453 were kindly 

provided by Axel Ullrich (Max-Planck Institute of Biochemistry, Martinsried). All 

cell lines that were purchased from cell banks were authenticated using short tandem 

repeat profiling. Stage III cells HCC2218 and HCC1599 and Stage II cells HCC1143 

and HCC1937 were grown in RPMI supplemented with 10% FBS. Pre-cancerous 

cells MCF10a were cultured in DMEM/F12 supplemented with 5% horse serum, 20 

ng/ml EGF, 10 µg/ml insulin, 0.5 µg/ml hydrocortisone and 0.1 µg/ml cholera toxin. 

Pre-cancerous cells HMT-3522-S1 were cultured in DMEM/F12 supplemented with 
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250 ng/ml insulin, 10 µg/ml transferrin, 0.1 µM sodium selenite, 0.1 nM 17 beta-

estradiol, 5 µg/ml ovine prolactin, 0.5 µg/ml hydrocortisone and 10 ng/ml EGF. 

Pleural effusion cells MDAMB453 were cultured in L-15 supplemented with 10% 

FBS; Pleural effusion cells MFM223 were grown in MEM supplemented with 10% 

FBS. All cells were cultured with Pen/Strep and under 5% CO2, except for MDA-

MB-453 which were cultured under 0% CO2. All cells were tested negative for 

mycoplasma using PCR tests within the 6 months before the experiments were 

conducted. 

For determination of cell growth rate cells were plated in hexaplicates in 96-well 

plates. During five days of the experiment each day plates were centrifuged and fixed 

with 2.5% glutardialdehyde. Cells were stained with methylene-blue followed by 

extraction of color with 0.1 M HCl. Absorbance was measure at 620 nm. Experiments 

were performed in three biological replicates.   

ROS measurements 

MDAMB453, MFM223, HCC1937 and HCC1143 cells were stained with Mitosox 

(Molecular Probes; Invitrogen) according to the manufacturer’s instructions. 

Quantitative measurement of fluorescence was performed by FACS analysis using 

FL2 filter and measurement of 10,000 cells per measurement. Experiments were 

performed using three biological replicates.  

RESULTS  

Metabolic Phenotypic Analysis (MPA) 

Previous methods for incorporating contextual gene expression or protein 

abundance measurements within a generic CBM metabolic model have focused on 
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describing the metabolic state by restricting the model to obtain an optimal fit to the 

data (18, 26-29). These approaches have shown much value in providing context-

dependent metabolic descriptions. However, by requiring an optimal fit they have 

ignored the ability of cells to adaptively reinstate lost functions by inducing even 

small changes in their overall gene expression. This, in turn, can potentially lead to 

false predictions of reaction-inactivity, and mask observed differences between 

metabolic states. In contradistinction, given a gene expression or protein abundance 

signature of a sample, MPA provides a genome-scale view of its metabolism by 

considering solutions that may deviate to some extent from the optimal fit – this 

yields an estimation of the adaptive potential of the sample to carry out an array of 

metabolic processes in a given context. In the model, a metabolic process is defined 

by its medium (i.e., which metabolites can be secreted or absorbed by the cell), and its 

end-reaction. Based on a curated, literature-based definition of metabolic processes 

(30), we assign each sample-process pair an MPA score (Figure 1, Supplementary 

Figure 2): First, the consistency of the sample molecular signature (mRNA 

expression, proteomics, as defined in (18)) with the metabolic state of the model is 

computed, when requiring the  activation of the given process in its medium. Then, 

this consistency score is divided by the optimal consistency that can be obtained 

between the signature and the model under the same medium, without this additional 

activation constraint. The result is the final MPA score for this sample-process pair. It 

quantifies the extent of adaptive significant flux changes that are required to carry out 

the process examined, given the observed molecular signature (see Materials and 

Methods). A high MPA score (close to 1) denotes that a given process can be carried 

out in a given context with minimal adaptive flux or transcriptional changes and is 

hence more likely to occur, while a low MPA score (close to 0) denotes the opposite.  
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MPA Validation 

MPA was validated in four different ways. First, we examined MPA's ability to 

capture known differences across three human tissues: muscle, liver, and adipose 

tissue (Supplementary Material; Supplementary Table 2).  Second, we tested whether 

MPA can approximate the lipid production capacity of tumors. We used gene 

expression data to compute the capacity of 110 BC tumors to produce lipids (31). The 

obtained lipid MPA scores were significantly positively correlated to the lipid 

measurements of these tumors (empirical p-value of 6.40e-03; Supplementary Figure 

3; Supplementary Material; Supplementary Tables 3-4). Third, we computed MPA 

profiles of clinical BC samples based on their gene expression (24, 32), and utilized 

them to predict five-year survival and metastasis-free survival via Support Vector 

Machine (SVM) classifiers. For comparison, we built an array of alternative 

predictors: the gene expression of all genes, only metabolic genes, metabolic 

pathways enrichment features, and the expression of the genes included in the BC 

prognostic signature identified by van't Veer et al. (32) (Materials and Methods). The 

MPA-based predictors yielded a mean Area Under the Curve (AUC) of 0.719, higher 

than those obtained by all other predictors (Supplementary Table 5). Improved 

performances were obtained by utilizing the lipogenesis MPA profiles (with a mean 

AUC of 0.767). These results demonstrate the prognostic relevancy of MPA profiles, 

although prognosis prediction is not the prime goal of MPA, and not necessarily 

sufficient to validate a biological model (33). 

Lastly, we demonstrate that MPA can bridge the gap between gene expression and 

protein abundance. MPA was applied to RNA-seq data of HeLa cells (34) to predict 

the activity state of the metabolic reactions (Supplementary Material). To study 
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MPA's performance, we tested predictions of post-transcriptional flux activity that do 

not arise directly from the gene expression input against the proteomics of these cells 

(34). That is, we focused on reactions in which the gene expression and predicted 

(flux) activity state differ (e.g., gene expression is low but the reaction is predicted to 

be active), and examined whether in these cases the predicted activity significantly 

fits the proteomic data. Reassuringly, reactions that were predicted as post-

transcriptionally up/down regulated had significantly higher/lower protein abundance, 

respectively (p-value of 1.38e-03 and 9.11e-03; Supplementary Material). Of special 

interest are the activity state predictions of moderately expressed reactions, whose 

activity state is left undetermined in the gene expression input provided for MPA. 

Indeed, those moderately expressed reactions that were predicted via MPA to be 

active have a significantly higher protein abundance compared to those that were 

predicted to be inactive (p-value 9.58e-04). 

BC progression is accompanied by reduced proliferation associated 

with oxidative stress  

Following its validation, we utilized MPA profiles generated for 392 BC clinical 

samples based on their gene expression (24, 32) to study the metabolic alterations that 

accompany BC progression. As expected, the MPA biomass scores, an approximation 

of the proliferation capacity of the cell, are significantly higher in advanced grades 

than in early ones (Wilcoxon rank-sum p-value of 1.088e-02). However, the MPA 

biomass scores are reduced with increased metastatic potential as depicted by the 

tumor stage (p-value 4.06e-02). Concomitantly, the capacity to biosynthesize essential 

metabolites as lipids and nucleotides is decreasing in advanced stages (Supplementary 

Table 6).  
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We turned to study this intriguing prediction of proliferation reduction in a 

combined computational-experimental manner. We utilized a panel of BC cell-lines 

that were extracted from two premalignant tumors, one stage II tumor, two stage III 

tumors and two metastasis cells from pleural-effusions. Together, this panel provides 

a view of the transformation process towards the metastatic phenotype. The elevated 

tumorigenic potential of these cells with increased stage has been previously shown 

experimentally in combination with a global proteomic analysis (35). Measurement of 

the growth rates of these cells showed statistically significant differences between 

cells from different stages (ANOVA p-value of 9.40e-04). The pre-malignant cells 

have a significantly higher growth rate compared to stage II, stage III, and the cells 

from metastases (with p-value of 1.61e-03, 7.63e-03, 6.72e-08, respectively), while 

stage II cells have a significantly higher growth rate compared to metastasis ones (p-

value 3.31e-02). We computed the MPA biomass scores for these BC cell lines based 

on their quantitative proteomics. The computational MPA biomass scores, obtained 

for the cell lines and for the clinical samples, as well as the experimental growth rate 

measurements, all exhibit the same trend: proliferation decreases with the disease 

progression. 

Experimentally measured growth rates correlated with these MPA biomass scores 

(Spearman correlation of 0.7857, p-value of 4.80e-02; Figure 2a). Notably, other 

extant CBM methods that were utilized to predict the proliferation rate (Flux Balance 

Analysis (FBA) (36) and the integrative Metabolic Analysis Tool (iMAT) (18, 27)) 

failed to predict the observed growth rates (with correlation coefficients of -0.0187 

and -0.1352, respectively). In difference from MPA, FBA does not account for the 

specific context-dependent gene expression or protein abundance of the modeled 

cells; iMAT, does not account for the cells' potential to adaptively deviate from these 

 American Association for Cancer Research Copyright © 2012 
 on September 23, 2012cancerres.aacrjournals.orgDownloaded from 

Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.
Author Manuscript Published OnlineFirst on September 17, 2012; DOI:10.1158/0008-5472.CAN-12-2215

http://cancerres.aacrjournals.org/
http://www.aacr.org/


15 
 

context-dependent transcriptomic or proteomic signatures.  Thus, iMAT may miss 

cellular metabolic responses that successfully maintain a given metabolic process but 

are infeasible while forcing a maximal fit to the given expression data. Conversely, 

MPA can successfully identify such responses by allowing for some relaxation of this 

fit. These differences might explain the superior performance of MPA in this task.  

To trace the causes for the decrease in anabolic biomass production capacity, we 

returned to the clinical samples and computed the MPA scores of metabolic reactions 

in central metabolic processes: glycolysis, Tricarboxylic Acid Cycle (TCA), and the 

Pentose Phosphate Pathway (PPP). Based on these scores we compared the metabolic 

functionality of early and late stage tumors. In accordance with the Warburg effect, 

the activity of glycolysis, lactate production and PPP was higher in late stage tumors 

(Figure 2b) (37). However, MPA showed that the products of PPP are not utilized for 

synthesizing fatty acids and nucleotides. Instead, they are diverted to the 

detoxification of Reactive Oxygen Species (ROS): late stage tumors have a higher 

capacity to detoxify ROS compared to early stage ones (one-sided Wilcoxon rank-

sum p-value of 6.161e-3), and proliferation and de-novo lipogenesis are negatively 

correlated to ROS detoxification capacity (Spearman correlation coefficient of -0.639 

and -0.574, respectively; Figure 2c-d).  

The observed tradeoff between proliferation and ROS detoxification can be 

partially explained by competition over the consumption of NADPH, which is a 

shared limiting resource for these processes (Figure 3). Following, superoxide levels 

were measured in metastatic BC cells (MDAMB453, and MFM223) and non-

metastatic cells (HCC1143, and HCC1937). The metastatic cell lines show 

significantly lower levels of superoxide, suggesting that the predicted increase in 
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shunting of NADPH to the mitochondria indeed successfully manages to counteract 

the predicted increase in ROS production (Supplementary Figure 4). Overall, these 

results indicate that as the disease progresses toward metastasis formation the 

resources of the tumor are increasingly utilized to counteract oxidative stress, limiting 

the activity of anabolic processes, and hence, hindering proliferation (Figure 3). 

ER+ metabolism vs. ER- metabolism 

While reduced proliferation and increase ROS detoxification were identified as 

general phenomena in BC progression, we sought to examine metabolic differences 

between the ER- and ER+ BC subtypes. MPA indicates that the metabolism of ER+ 

tumors is considerably different than that of ER- tumors, with ~73% of the metabolic 

processes having significantly different MPA scores (Wilcoxon p-value <0.05; 

Supplementary Table 7). In accordance with the literature we find that glutamine 

biosynthesis and secretion is significantly higher in ER+ (Wilcoxon p-value 1.84e-

02), while serine metabolism and glutamine uptake are significantly higher in ER- (p-

values of 2.41e-10 and 1.85e-17, respectively; Figure 4a) (7, 8). In addition, according 

to MPA, ER+ tumors have a higher capacity to produce lactate from glucose than ER- 

tumors (p-value 1.70e-2), probably as in ER- tumors 3-phosphoglycerate (3PG) is 

diverted towards serine metabolism via PHGDH (Figure 4b). What underlies these 

distinct metabolic `signatures'? A sampling-based stoichiometric analysis (38) of the 

generic human metabolic model (9) reveals a fundamental tradeoff between serine 

and glutamine metabolism that arises due to pure stoichiometric constraints – the 

latter results in a negative correlation of -0.6636 between the flux rates of glutamine 

secretion and serine metabolism (Figure 4; Supplementary Material), in agreement 

with recent findings, showing that glutamine is the nitrogen donor for serine 
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biosynthesis (phosphohydroxythreonine aminotransferase (PSAT1)  transamination 

activity) (7).  

Biomarker identification in metastatic BC 

MPA was employed to predict biomarkers for metastatic BC. Initially, its ability to 

perform this task was validated by applying it to predict amino-acids biomarkers for 

BC, based on the gene expression of BC patients and controls (22-24). The 

predictions were compared to a set of BC amino-acid biomarkers (25). In accordance 

with the measurement, MPA's predictions showed the reduction in the level of 

tyrosine, phenylalanine, histidine, and tryptophan, and the increase in the level of 

proline and glycine in the plasma of BC patients. MPA's predictions matched the 

experimental measurements (accuracy of 0.588, with an empirical p-value of 0.048), 

while those obtained using iMAT did not (accuracy of 0.235, p-value 0.8432). We 

then applied MPA to identify potential biomarkers for metastatic BC. MPA's top 

predicted biomarkers (Supplementary Table 8) are two choline-containing metabolites 

(lysophosphatidylcholine, and phosphatidylcholine, which are predicted to be highly 

consumed by the metastatic tumors compared to the non-metastatic ones (FDR-

corrected Wilcoxon rank-sum p-values of 4.45e-02). Interestingly, choline has been 

suggested as a potential PET marker for imaging BC (39), and a recent review of 

cancer biomarkers lists choline and phosphocholine as two out of the six well-

established biomarkers of BC (40). Furthermore, the rate of choline transport under 

physiological choline concentrations has been reported to be 2-fold higher in the BC 

cell lines compared to normal mammary epithelial cells (41).  
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DISSCUSSION 

Here we present the first genome-scale computational study of BC metabolism. 

The study reveals a basic distinction between the proliferative and invasive 

phenotypes.  This "go or grow" dichotomy has been previously shown in glioma (42, 

43), and melanoma (44, 45), and has been indicated by small-scale mathematical 

models of cancer behavior (46, 47). Our results suggest that this phenomenon is of 

broader context and holds also in BC. Evidently, it has been shown that BC 

subpopulations with elevated metastatic activity are not more proliferative than their 

parental population (48). In agreement, the levels of circulating but non-proliferating 

BC cells are positively correlated with bone marrow metastasis (49). Nonetheless, as 

our pertaining results were obtained in cell lines, an experimental in-vivo validation is 

still required to fully substantiate this trend. 

MPA suggests a mechanistic explanation for the "go or grow" phenomenon: The 

growing need of the metastatic cancer cells to counteract oxidative stress necessarily 

hinders their proliferation, due to the growing need to funnel NADPH from 

lipogenesis to ROS detoxification. This mechanism adds upon the ones attributed to 

the Warburg effect (37), by which the cancer cells reduce the level of ROS. The need 

to detoxify ROS can be partially explained by the non-apoptotic death process that 

prevents the survival of matrix-deprived cells (50). It has been shown that matrix-

deprived cells can be rescued either by stimulating the flux through the antioxidant-

generating PPP or through the direct administration of antioxidants (6). This selection 

for cells with improved antioxidant capacities is reflected in our results, and 

elucidates the need of the cancer cells to reduce their proliferation to survive. The 

tradeoff between ROS detoxification and proliferation highlighted here is expected to 
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be more general, as it is caused by intrinsic stoichiometric constraints of the metabolic 

network. It has been recently reported that an increase both in lipogenesis and in ROS 

levels is associated with apoptosis (51), supporting the hypothesis that overproduction 

of lipids, as required for proliferation, hampers the capacity to detoxify ROS.  

MPA's mapping of the metabolic differences between ER+ and ER- tumors mirrors 

and elucidates recent experimental observations. Serine metabolism was found here to 

be stoichiometricly coupled to glutamine uptake, providing a potential explanation for 

its exclusive essentiality in ER- tumors. In accordance, MPA indicates that ER- 

tumors have a lower capacity to produce lactate from glucose, suggesting they operate 

other mechanisms to oxidize NADH, such as glutaminolysis. These results 

demonstrate how stoichiometry can explain the different metabolic routes taken by 

ER+ and ER- tumors. It is likely that such stoichiometric couplings are more general, 

and their identification and potential role in determining specific cancer metabolic 

subtypes awaits further study.  

The computational-experimental study presented here provides new insights into 

the metabolic progression of BC, revealing both generic and sub-type specific 

metabolic characteristics. It paves the way for a system-level understanding of BC 

metabolism that is cardinal for its diagnosis and treatment. Considering the success of 

our computational approach in capturing different aspects of BC metabolism, it opens 

up many additional possibilities for the genome-scale study of BC metabolism in 

particular, and cancer metabolism in general. 
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FIGURE LEGENDS  

Figure 1. The MPA workflow. First, the gene expression or protein abundance profile of 
each sample is converted to a reaction signature according to the Gene-Protein-Reaction  
(GPR) associations. The reaction signature consists of the expression state of each metabolic 
reaction (i.e., high, low or moderate). Second, for each sample an MPA profile is generated 
by assigning each metabolic process an MPA score that denotes its activity potential. This is 
done by solving two optimization problems that maximize the fit between the model and 
the reaction signature, with and without the constraint to activate the process. By solving 
these two problems we obtain two unique fitness scores, whose ratio is the final MPA score 
of the process. The MPA profile of each sample is a collection of the MPA scores obtained 
for the different metabolic process that have been provided as input. The red and blue 
colors denote steps in which information about the metabolic process, or about the sample 
are incorporated, respectively.  

Figure 2. MPA predicts reduced proliferation and increased ROS detoxification with BC 
progression. (a) The average measured (blue bars) and MPA-predicted (red plot) growth 
rates of the different BC cell-lines, ordered according to their stage. (b) The differences 
between the central metabolism of early and late stage tumors according to MPA. The MPA 
scores of the reactions colored in azure (pink) are significantly higher in early (late) stage 
tumors. (c-d) Plots of the MPA ROS detoxification scores as a function of (c) de-novo 
lipogenesis and (d) biomass scores.  

Figure 3. A systematic view of BC metabolic progression according to MPA. A pathway-level 
description of the differences between the metabolism of early- and late-stage tumors, as 
suggested by MPA. In azure (pink) are processes that are more active in early (late) stage 
tumors. 

Figure 4. ER- and ER+ BC differ in glutamine and serine metabolism. (a) The MPA scores of 
glutamine uptake/secretion (right) and PHGDH (middle) computed for ER+ and ER- tumors. 
The flux rate of PHGDH under glutamine uptake or secretion, according to sampled flux 
distributions (right). (b) A metabolic network, depicting differences between ER+ and ER, as 
manifested in the MPA scores. α-ketoglutarate (aKG), 3-phosphohydroxypyruvate (P-PYR), 
phosphoserine (PSER). 
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