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Abstract—Our understanding of sonar based sensing is very limited in comparison to light based imaging. In this work, we synthesize
a ShapeNet variant in which echolocation replaces the role of vision. A new hypernetwork method is presented for 3D reconstruction
from a single echolocation view. The success of the method demonstrates the ability to reconstruct a 3D shape from bat-like sonar, and
not just obtain the relative position of the bat with respect to obstacles. In addition, it is shown that integrating information from multiple
orientations around the same view point helps performance.
The sonar-based method we develop is analog to the state-of-the-art single image reconstruction method, which allows us to directly
compare the two imaging modalities. Based on this analysis, we learn that while 3D can be reliably reconstructed form sonar, as far as
the current technology shows, the accuracy is lower than the one obtained based on vision, that the performance in sonar and in vision
are highly correlated, that both modalities favor shapes that are not round, and that while the current vision method is able to better
reconstruct the 3D shape, its advantage with respect to estimating the normal’s direction is much lower.

Index Terms—Sonar imaging, 3D reconstruction, hypernetworks
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1 INTRODUCTION

BATS rely on both echolocation and on sight in order to
sense nearby objects and to navigate in 3D space. Which

of the two modalities is dominant, depends on the exact
species. While most bats rely on echos, some fruit bats rely
solely on sight.

As humans, we often assume that sight is preferable to
echolocation, and that bats rely on the latter due to the
darkness of their natural habitats or the need to hunt at
night. As far as we can ascertain, no previous work has
validated this assumption and directly compared the two
modalities, which is the goal of this work.

In order to perform this comparison, we first construct
a version of the ShapeNet benchmark that is based on
sonar. In each 3D viewpoint, we simulate two adjacent bat-
like ears. We then develop a method for reconstructing the
3D shape given the sonar signal. Several architectures are
compared and we rely on a hypernetwork scheme, in which
the perceptual analysis is performed by a convolutional
recurrent neural network, and the shape itself is represented
implicitly by a classification network.

We then use the developed tools in order to directly
compare with a ShapeNet reconstruction method that is
based on a single 2D image. The reason we compare with
a single view despite using two ears, is that we are more
interested in understanding the bat capabilities, and one
ear is not analog to one eye. To understand the last point,
consider that a single ear provides distance, the second ear
adds a single angle (azimuth) based on the time difference,
i.e. two degrees of freedom, just as the case with a single
image that provides two angles (azimuth and elevation).
In addition, previous work on Shapenet has shown that
multiple viewpoints, even if well separated (unlike the small
baseline of a typical stereo pair) only contribute marginally
on this dataset [1].

The comparison between the modalities is done to a

similar implicit shape method, in which the shape is repre-
sented by a classifier that for every point in 3D determines
whether it is inside or outside the shape. Specifically, the
image based model employs a ResNet-based hypernetwork,
i.e., the weights of the network that classifies 3D points are
provided by the ResNet that processes the input image.

The similarity of the methods used in the two modalities
allows us to perform a rather direct comparison and come
up with the following conclusions:

• Vision leads, in most cases, to more accurate recon-
struction, at least under the studied conditions.

• Typically, examples that are easy to reconstruct based
on one modality are also easy to reconstruct by the
other modality.

• In shapes where both sonar and vision methods work
well, the advantage of vision over sonar is much
greater in terms of occupancy in voxel space than
in terms of estimating the normal’s direction.

• Sonar may have an advantage over vision around
the shape’s corners. However, both modalities prefer
shapes that are not round.

2 RELATED WORK

Fascinated by the bats’ ability to sense the world acous-
tically, many attempts have been made to model and
mimic their abilities. Using either real-recorded or simulated
echoes, several previous studies aimed to classify echoes
and characterize their statistics [2]. A wide range of methods
were applied either to the echo’s time, spectral or tempo-
spectral domains using different approaches including: ex-
traction of sets of acoustic features and using statistical
tests [3], [4], modeling echo formation [5], [6] and biological
processing [7] and using various types of machine learning
algorithms (e.g. SVMs as in [8]). A few recent attempts



also used artificial neural networks for echo-based object
recognition and estimation [9].

Bats’ ability to reconstruct 3D using echoes remains a
fundamental open question. There is currently a debate on
whether bats reconstruct 3D to perceive the environment, or
simply use echoes statistically, that is, without localizing the
multiple reflectors generating them (or combine both). There
is also a debate how many echoes would be required for
3D reconstruction. In this study, we address these questions
empirically, by training a neural network to reconstruct 3D
from a single echo.

2.1 3D reconstruction from single views
The availability of large scale CAD-based datasets, such as
ShapeNet [10] have led to a proliferation of deep-learning
based methods for 3D reconstruction. The deep learning
architecture is largely affected by the 3D representations
that are utilized and the literature can be divided into four
categories: (i) voxel based methods, which are 3D grids that
generalize pixels, (ii) polygon meshes and similar topology
preserving representaitons, (iii) point clouds and similar
representations of densities in 3D, and (iv) implicit surfaces.

Since the technology to generate images as pixel grids is
highly evolved, voxel based methods are highly popular.
However, due to their cubic memory to resolution ratio,
voxel solutions suffer from limited resolutions. To over-
come this, nested architectures, such as Octrees, have been
used [11], [12], [13], [14].

Mesh based representations were used in concert with a
differential renderer within an analysis by synthesis frame-
work [15], [16]. In another work, a graph neural network
was used to generate a mesh [17].

Point clouds form an efficient and scaleable represen-
tation, with the disadvantage of having to reconstruct the
topology before rendering the 3D model. From the technical
point of view, generating a set of unordered entities of an
arbitrary size may challenge training. This is overcome by
adding stochasticity to the solution and designing appropri-
ate loss functions [18] and by relying on the points of the
input image as a guide [19].

The implicit field shape representation employs a clas-
sifier to define the shape. This classifier is conditioned on
an embedding of the input image given by a learned en-
coder [20], [21], [22]. The “decoder” receives a 3D coordinate
as well as the embedding vector, and the integration of both
inputs require the usage of a relatively large network. The
methods, therefore, suffer from very long train times. It is
also not clear how these methods generalize to very large
training sets which include multiple shape classes, since
none of these publications have reported results on the com-
monly used ShapeNet ground-truth annotations and instead
opted with retraining the baseline methods on subsets of
the data. Mescheder et al. [22] is the only implicit-shape
method to report (limited) multi-class results on a dataset
that is derived from ShapeNet, but introduced additional
supervision in the form of pre-training on imagenet.

2.2 Meta functionals [1]
The term Hypernetwork is now commonly used to refer to
a technique in which one network f predicts the weights

of another network g, which is called the primary network.
During training, the weights of g are not learned directly, as
these are generated by f depeding on the latter’s input.

The first contributions to employ such a scheme relied on
a specific dynamic convolutional layer in order to transform
the input in an adaptive manner [23], [24]. Networks with
more dynamic layers were subsequently used for video
frame prediction [25]. The term hypernetwork was coined
in a work that studied RNNs in the context of NLP [26].
Since f can transfer information between related tasks, g
can adapt between tasks and hypernetworks, therefore, are
especially suitable for few-shot learning [27].

Our sonar reconstruction method employs the general
high level scheme recently proposed by Littwin and Wolf
for 3D reconstruction from a single image [1]. This scheme,
termed meta functionals, can be seen as a hypernetwork
version of the implicit shape representation [20], [21], [22].
However, while the latter methods struggle to produce com-
petitive results on ShapeNet, meta functionals are currently
the state of the art method in 3D reconstruction from a single
image.

The meta functional hypernetwork has two sub-
networks f, g with parameter values θf , θI respectively.
The weights θf are learned during the training phase. The
weights of the primary network g are a function of I , the
input image at hand, and are produced by the network f .

Similar to the implicit shape work, g is a classification
function that maps a point p with coordinates (x, y, z) in
3D into a score spI ∈ [0, 1], such that the shape is defined
by the classifier’s decision boundary, i.e., it is a mapping
from a vector in R3 to a scalar. f maps between completely
different domains: the input image I to the parameters θI of
network g, and utilizes a deep ResNet.

This hypernetwork scheme is given by:

θI = f(I, θf ) (1)
spI = g(p, θI) (2)

In the single image reconstruction task, f(I, θf ) is a deep
ResNet. The primary network g(p, θI) is a Multi-Layered
Perceptron (MLP) with four layers, in most experiments.

Since hypernetworks often struggle at initialization, the
parameterization of the weights of g slightly differs from the
conventional parameterization. Each layer n of the MLP g
performs the following computation:

y = ((θ
W (n)
I x) · θs(n)I ) + θ

b(n)
I (3)

where · denotes the Hadamard product, x is the layer’s
input, y is the layer’s computation result, θW (n)

I is the
weight matrix of layer n, θb(n)I is the bias vector of that layer,
and θs(n)I is the learned scale vector. θI , which is the output
of f , is a concatenation of θW (n)

I ,θb(n)I and θs(n)I for all layers
n ∈ [1, 4].

Note that the two networks f, g define a directed acyclic
graph and, therefore, the backpropagation algorithm can be
naturally applied (and is also easy to apply with modern
deep learning frameworks, which employ automatic differ-
entiation).

The loss is the binary cross entropy loss between spI ∈ R
(Eq. 2) and y(p) ∈ {0, 1}, which is the ground truth label of
whether the point p is inside (y(p) = 1) or outside (y(p) = 0)



the 3D shape. Formally, given the image I and the ground
truth shape y, the the loss is a function of the parameters of
f

H(θf , I) = −
∫
V
y(p) log(g(p, f(I, θf )))+

(1− y(p)) log(1− g(p, f(I, θf )))dp (4)

where V is the 3D volume in which the shapes reside. This is
minimized over θf across all pairs of images and 3D models
in the training set and over points that are sampled from the
volume V .

3 METHOD

We present a method for shape representation using bat-like
echoes. First, we create EchoNet -– a dataset of synthesized
echoes coupled with the corresponding 3D meshes that were
used to create the signals. We then develop BatNet — a
deep meta functional architecture for the reconstruction of
3D objects from a pair of echoes.

3.1 Data Generation
EchoNet was synthesized using an acoustic simulator that
calculates the acoustic impulse response of a 3D mesh. The
3D objects were taken from ShapeNet [10]. Each 3D mesh
file was processed using the acoustic simulator in order to
create two echoes at a small distance apart (baseline of 2
cm) around a specific point of view. Similar to the image
rendering of ShapeNet, the echoes were produced at 24
different points of view, equally spaced on a circle at an
elevation angle of 30 degrees, at a radius of 3m from the
model center (the model size is normalized so its longest
axis will be 1 meter long). As can be seen in Fig. 1, the
sonar sensors (ears) can be oriented arbitrarily around each
point of view (location of the emitter). This is unlike the
computer vision dataset, where the views, in most ShapeNet
benchmarks, are taken such that at least one axis is aligned.

As a requirement for the echo generation pipeline, the
input to the acoustic simulator should be a watertight 2-
manifold mesh. The 3D objects that were used do not neces-
sarily meet this criterion. In order to comply, each mesh file
was preprocessed using the method described in [28], which
generates a watertight triangular mesh. The model was then
simplified, thus keeping the acoustic simulator run-time to
the necessary minimum.
Acoustic Simulator The acoustic simulator is based on
an approximation to the Boundary Element Method [29].
Instead of solving the computationally expensive boundary
equations for each boundary element (mesh face), a raytrac-
ing like computation is performed [30]. The simulator was
compared to real object echoes and was found to be highly
accurate (see Supplementary figures in [30]).

For each frequency in the required range, a sum is
calculated over the responses of all the faces. For every face,
the response is the complex superposition of the two-way
free space propagation loss, with the reflection loss from the
face. The reflection loss changes with the angle from the
point of view to the face’s normal. The reflection loss of a
face (as a function of the impact angle and frequency) had
been calculated in advance using a full boundary element

Fig. 1. The location of the sonar sensors in 3D with respect to the object,
In blue - the location of the emitter, in red - the two “ears”. Unlike the
common vision-based Shapenet views, the axes of the sensor are not
aligned with the world coordinate system in any way.

model (BEMFA). The simulator only selects faces whose
normals point toward the hemisphere containing the point
of view. It also eliminates reflecting faces that are occluded
by other parts of the object.

Using the inverse Fourier transform, the object’s acoustic
impulse response is then acquired. Fig. 2 depicts an example
of the output of the steps of the process of capturing a 3D
object.

3.2 The sonar hypernetwork

The architecture of BatNet is based on deep meta func-
tionals shape representation [1]. The method employs two
networks f and g. f can be seen as an encoder that maps
an input echo E to an embedding θE , which is directly
utilized as the weights of network g for the reconstruction
of the shape that is captured in E. g is an MLP network that
classifies a 3D point p with coordinates (x, y, z) into a score
spE ∈ [0, 1]. Similar to Eq. 1, 2 this relation can be described
by:

θE = f(E, θf ) (5)
spE = g(p, θE). (6)

spE ∈ [0, 1] is the score that determines whether a point
p is likely to be inside (values closer to one) or outside the
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Fig. 2. The input and the output of the acoustic simulator. (a) the original
ShapeNet model, (b) the processed watertight model, and (c) the two
channel output of the acoustic simulator.

shape (values closer to zero). The shape’s surface is defined
by the decision boundary of spE .

In [1], it was shown that the MLP implementation for
g is capable of representing the 3D object well. It was also
shown that the exact architecture of g has little effect. Our
implementation employs four layers, with 32 hidden neu-
rons each, and ELU activations [31]. These are the default
parameters used in [1], which allows us to directly compare
with the shape representation employed in their image-
based hypernetwork.

Where vision and echolocation differ is, of course, in the
input signal. We, therefore, focus on the different architec-
tures of the encoders employed for the weight generating
network f , looking for the best approach to capture the
information in the echos. Two main approaches for input
representation were evaluated, the first using the 1D 2-
channel acoustic signal (wav) and the second using the Short
Time Fourier Transform (STFT) of the signal.

3.3 Architectures

As for the different input representation methods, three
encoders (network f ) were considered.

3.3.1 SoundNet
For the case of using the acoustic signal as the network
input, SoundNet [32] was chosen as the encoder; Changes
were made to the hyperparameters in order to accommodate
the smaller signal size. The encoder was applied to the two
channels separately, and then the two embeddings were

concatenated to create a single embedding vector. A single
linear layer was added to regress to θE .

The SoundNet model was constructed similarly to the
original 5-layer architecture. It consists of four 1D-conv
layers with stride 2, the base layer has 32 filters of size 64,
each consecutive layer increases the number of filters by
two and decreases the filter size by the same factor. The first
three layers are followed by a max pool of size 2, instead
of 8 in the original implementation, the last layer is a 1D-
convolution layer with 1401 filters of size 16 and stride 2
(instead of 12). After the two channels are concatenated, it
passes through two fully connected layers of size 1024 each.

3.3.2 ResNet

For the STFT version, a few encoders were tested. The base
architecture employs two spectrograms as inputs, or, more
specifically, the absolute value of the Echo’s STFT of the two
sensors. This two-channel input is processed by five ResNet
blocks, followed by two fully connected layers.

An alternative architecture is based on the same network
architecture but it also utilizes the phase of the STFT. Thus,
the input to the second variant is a 4-channel image with
two spectrograms and their phases.

In both cases, the Resnet encoder is based on the ResNet-
34 model [33]. The input conv layer has 64 filters with a
5 × 5 kernel and stride 1, followed by five residual blocks
with three layers each employing a 3 × 3 kernel. Every
block increases the number of filters and reduces the spatial
resolution by a factor of 2. Each convolutional layer is
followed by batch normalization and ReLU. The output of
the ResNet blocks is passed to a double fully connected layer
of size 1024.

3.3.3 BatNet

Finally, the chosen architecture, we term BatNet, employs
the same four channel input, but with a convolutional re-
current neural network (CRNN) [34] encoder, as previously
adapted to audio classification by SELDNet [35], which
was designed for multi-channel sound data represented as
spectrogram and phase images.

The encoder of BatNet consists of blocks of convolutional
layers, followed by bi-directional GRUs, the GRUs are fol-
lowed by fully connected layers, as can be seen in Fig. 3.
The BatNet architecture utilizes the time-frequency duality
of the spectrogram by preserving the time resolution, while
reducing the frequency resolution using an unequal Max-
Pooling strategy, then passing the resulted time series of the
extracted features through a bi-directional GRU.

Similar to what was suggested by [35], BatNet architec-
ture consists of five convolution layers, each with 64 filters
of size 3×3 and stride 1. Each convolution layer is followed
by a ReLU activation, batch normalization and uneven max-
pool of size 1× 2 . After the convolution block, the features
are reshaped, according to the unchanged axis, to a time
series that is fed to a double bi-directional GRU of size 128.
The output of the GRU block is passed to a double fully
connected layer of size 1024. Our implementation of the
encoder differs from SELDnet in a few details: (i) we use five
convolution blocks instead of three, (ii) our max pooling size
is constant in all of the blocks, and (iii) we have two fully



Fig. 3. The full architecture of BatNet. The weight generating network f
consists of a CRNN encoder. The primary network g is an MLP, which
given a point pxyz in 3D returns the prediction of whether it is inside or
outside the shape.

connected layers of size 1024, instead of one such layer with
128 hidden units.

4 EXPERIMENTAL RESULTS

Since there is no literature baseline to compare our results
to, we show the results of several alternative echo based
networks. To allow an analysis and comparison of the echo-
based results to vision-based ones, we use the data split
Choy et al [36] of ShapeNet. We further split the train set to
a train-validation set using a ratio of 80%− 20% .

4.1 Training parameters

During training, a set of 10K pre-sampled points were used
as an input for g . In order to sample more points around
the boundary surface, which will be more informative in
training, points were taken from multiple size models, the
original scale, and two other scales, one larger one smaller
by approximately 3% of the original, see Fig. 4. During train-
ing, a white Gaussian noise was added to the points, and,
in addition to the boundary points, another 1k uniformly
distributed points in 3D were also included.

The SoundNet and ResNet-based models were trained
for approximately 180K iterations using Adam optimizer
with a batch size of 64 and a learning rate of 10−5 , the
BatNet architecture was trained similarly but started with a
learning rate of 5×10−5 which was dropped during the last
two epochs to 10−5.

Fig. 4. Point sampling in three scales, as can be seen on an airplane
model.

Fig. 5. Visualization of the learned embedding of the 13 different cate-
gories using t-SNE.

4.2 Quantitative results

The results of the different architectures are presented in
Tab. 1. The first two results in the table are of leading image
based architecture. The rest are based on echos.

The SoundNet based model achieves a mean IOU of
43.1%. This is 1.3% more than the base ResNet model,
which uses only the absolute value of the STFT without
the phase, and achieves the lowest performance of all the
implementations that were tested - a mean IOU of 41.8%.
The fact that the exact same architecture, but with the phase
data added to the network input, achieves a mean IOU of
49.6%, suggests that the phase holds additional data that
has a major contribution to the ability of the network to
reconstruct the 3D model.

BatNet, with the time-freq influenced architecture, was
trained and tested on both horizontal and vertical data (as
seen in the lower image of Fig. 1), both achieved highest
results of 52.0% and 51.6% accordingly, which shows the
strengths of the architecture. In addition to obtaining the
highest mean IOU results for echos, BatNet models also
achieved the best per class IOU in 12/13 classes.



TABLE 1
Reconstruction results (IOU) for the different networks. Bold indicates the best out of the sonar networks.
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Images - 3D-R2N2 [36] 51.3 42.1 71.6 79.8 66.1 46.6 62.8 54.4 38.1 46.8 66.2 51.3 51.3 56.0
Images - Meta functional [1] 71.4 65.9 79.3 87.1 79.1 60.7 74.8 68.0 48.6 61.7 73.8 62.8 65.4 69.1
Echo -SoundNet 48.9 24.3 52.6 75.1 60.2 29.9 50.0 46.7 21.5 37.3 46.4 29.8 37.9 43.1
Echo – base ResNet 51.5 27.8 49.4 72.3 59.9 28.3 46.2 46.3 19.4 33.7 42.8 27.8 37.5 41.8
Echo – ResNet+phase 51.7 38.9 58.5 78.9 63.2 37.8 55.9 53.9 29.6 37.9 53.0 38.9 46.1 49.6
Echo – SELDnet original 50.2 32.3 48.8 71.3 63.1 30.7 51.3 55.1 25.5 40.4 43.2 32.3 43.7 45.2
Echo - BatNet - Vertical 55.2 42.0 59.6 78.7 67.4 39.1 58.2 54.6 30.1 42.0 53.5 41.3 48.7 51.6
Echo - BatNet - Horizontal 56.4 41.1 60.4 74.5 71.7 38.4 58.9 56.1 29.7 52.2 52.3 36.1 47.7 52.0

As mentioned, the BatNet architecture is based on that of
SELDnet. It is evident from Tab. 1 that the original SELDnet
obtains a considerably lower IOU (45.2%).

In Fig. 6 the per class IOU - distribution of vision
(“Images - Meta functional”) vs BatNet is presented. One
can observe that a correlation exists between the IOU
results of the two modalities. The Pearson correlation is
R=0.97 when correlating the mean IoU of the image-based
and the audition-based hypernetworks. When correlating
at the single test sample level, the correlation is also very
high (R=0.75). These numbers are remarkable given that
the modalities are vastly different and that the data went
through some preprocessing prior to the sonar signal being
computed.

Although from Tab. 1 it is clear that the overall per class
IOU is always better using vision, from the scatter results
that are summarized in Tab. 2, we can see that BatNet is
able to achieve as good or better results than the vision
hypernetwork on 25.5% of the models. Examples for BatNet
successful reconstruction over vision are presented in Fig. 8.

4.2.1 Normal direction distribution
In order to check the capability of the different modalities,
vision-based deep functionals and BatNet, to reconstruct the
normal’s direction accurately, we focus on a subset of the
models with a high IOU (over 0.7) in both modalities. For
those models, we computed the shape’s normal for each
face, and consider the two angles that represent the normal
direction Φ and Θ. Since matching the 3D model to the
reconstructed one is a challenging problem by itself, we
constructed 2D histograms to capture the distribution of the
normal’s direction.

Once obtained, it is possible to compare, using a corre-
lation score, the resemblance of the histograms produced
by the network of each of the modalities to the histogram
of normals that was created using the original model. We
define this correlation value as Normal-Corr. By comparing
the number of times BatNet wins (achieve better results)
based on the Normal-Corr to the number of wins using
IOU values for the same set of models, we can verify which
network is able to generate the normals more intuitively.

As shown in Fig. 7 BatNet achieves far more wins (or
draws) with Normal-Corr than with IOU. From the sum-
mary in Tab. 3 we can observe that for 11/13 classes the
win ratio for BatNet using Normal-Corr vs IOU is more

than double. For four classes, BatNet has more wins using
Normal-Corr than the vision based network.

4.3 Qualitative results

First we would like to verify that the BatNet encoder is
capable of distinguishing between the different classes in
an unsupervised manner, despite training a single network
f for all classes, without conditioning on the class in any
way. To do that, we employ t-SNE [37] in order to capture
in 2D the activations of the penultimate layer of f (1024
dimensions) of the test data.

The results are depicted in Fig. 5. It is evident that the
encoder is able to separate most of the 13 classes well.
Second, the most difficult to learn class, “lamp”, as can be
seen from the IOU value in Tab. 1, is spread over a large
part of the graph and divided into multiple sub groups.
This implies that the class is not uniform, and thus hard to
generalize and reconstruct.

4.4 Jacobian norm

We wish to evaluate the uncertainty of the network’s bound-
ary reconstruction. This can be done by examining the value
of the network’s gradients norm calculated at the 3D shape
boundary, which is the norm of the Jacobian of the network
w.r.t the 3D point pxyz .

Jxyz =
(∂(g(pxyz, f(E)) )

(∂ pxyz )
(7)

Examples of different jacobians extracted using BatNet
and vision networks is presented in Fig. 9. A yellower color
represents a higher Jacibian norm, which is equivalent to a
sharper decision boundary and lower uncertainty.

Qualitatively, (see examples in Fig. 9) it seems that the
BatNet displays a higher certainty for 3D corners in com-
parison to the vision network. This is probably due to the
fact that BatNet perceives normals more direclty than the
overall shape, and corners are the singularity points of the
normals.

However, verifying this quantitatively did not show
different patters between vision and audition and both the
visual and acoustic networks showed increased errors in
classes of objects that are more round (have fewer corners).
For this purpose, the roundness of the object was estimated



TABLE 2
Model based BatNet Vs. Vision IOU.
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Vision Wins [%] 81.5 74.6 78.8 81.6 62 82.1 76.4 74.6 68.0 66.8 76.8 73 72.8 74.5
BatNet Wins [%] 8.5 12.1 10.1 7.8 17 8.4 10.7 11.4 14.8 16.4 10.9 13.0 13.0 11.9
Even [%] 10 13.3 11 10.6 21 9.5 12.9 14 17.2 16.8 12.3 14 14.2 13.6

TABLE 3
IOU Vs. Normal-Corr BatNet wins ratio for models with IOU > 0.7.
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BatNet Wins IOU [%] 6.49 19.05 14.04 8.59 19.15 14.55 15.38 13.95 13.79 23.35 9.3 18.25 25 15.45
BatNet Wins Normal-Corr [%] 48.92 14.29 31.58 23.38 57.45 30.91 33.14 34.88 34.48 64.71 25.58 23.81 57.14 36.94
Normal-Corr to IOU win ratio 7.54 0.75 2.25 2.72 3.00 2.12 2.15 2.50 2.50 2.77 2.75 1.30 2.29 2.67

TABLE 4
BatNet IOU results, using one or three pairs of ears for the reconstruction.
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Echo - BatNet 56.4 41.1 60.4 74.5 71.7 38.4 58.9 56.1 29.7 52.2 52.3 36.1 47.7 52.0
BatNet - 3 pairs 61.9 49.7 67.4 78.2 76.9 46.3 65.2 62.4 37.2 55.8 61.8 48.3 57.3 59.1

by considering the variance of the normal directions in the
ground truth data.

As can be seen in Fig. 10, there was a significant negative
correlation between the average roundness of the object
(which was assessed using the variance of point-norms)
and the network’s performance (IOU) in six classes (’lamp’,
’speaker’, ’couch’, ’table’, ’cellphone’, ’watercraft’); Pearson
correlation, p < 0.05 after a Bonferroni correction. Globally,
over all test samples, the Pearson correlation is −0.12 for
audition and −0.05 for vision. In the case of sonar, this
negative correlation is probably due to the difficulty of
measuring the distance to a round surface. In the case of
vision, the cause may be that corners (edges) provide more
spatial information than round surfaces.

4.5 Multiple sensor pairs
The BatNet experiments above utilize two echoes that were
created using a single pair of “ears”, as shown in Fig. 1.
It is, however, possible to record the echos from additional
angles for a single point of view, i.e. setting the point of
view (the emitter location) and measuring the echos using
multiple pairs of ears at different orientations relative to the
object. This, to some approximation, mimics the integration
of information that a moving bat can obtain, since the
translation of the emitter is slower than the head’s rotation.

Technically, the multi sensor pairs network is identical
to the single pair BatNet, except that the number of input
channels has increased: in the new network, the input
consists of the data of the three pairs concatenated along
the channel dimension.

As shown in Table. 4, using BatNet with 3 pairs of
ears, it is possible to improve the mean IOU by 7.1%. The
improvement is due to the fact that the rotation of the ears
produces sampling along a different plane, which adds data
to the reconstruction.

5 CONCLUSION

Computational models have been used in order to shed
light on biological vision systems and a large body of
literature has evolved specifically on the topic of comparing
deep neural networks to vision in primates. However, the
potential of deep learning in promoting the understanding
of other sensory modalities and species that are more distant
from us has been largely untapped.

Bat echolocation is a prime example of such a sensory
system that could benefit from the revolution in deep learn-
ing. Many questions regarding the processing of echoloca-
tion echoes remain open, such as the fundamental question
regarding bats’ ability to build a 3D image of the world from
the acquired echoes. Using deep learning on input data that
is restricted to what is available to the bat, can shed light on
what type of information can be extracted from this input.

In order to address these fundamental questions in
echolocation processing , we design a sonar-based 3D re-
construction, such that it is directly comparable to the state-
of-the-art single image 3D reconstruction networks. By com-
paring the performance of the two models, we come to mul-
tiple conclusions. First, echoes can be used to reconstruct the
3D shape of an object with surprising performance that, in



Fig. 6. IoU of Vision Vs. Sonar for the different classes

some cases, does not fall from that of vision. Furthermore, it
is possible that some of the gap between the two modalities
is due to the extensive research done with Vision and that
as sonar and audio research evolve, this gap would be
eliminated. Second, this can be done with a single echo (and
two ears). Third, the 3D reconstruction can be used for echo-
based object classification, showing how bats could perceive
the world.

As future work, we would attempt to incorporate into
the sonar, modeling mechanisms that are known to play
a part in bat sensing, such as the spatial filtering of the
external ear. We expect such mechanisms to further improve
the reconstruction results.



(a) (b) (a) (b)

Fig. 7. IOU (a) and normal correlation score (b) for models with IOU > 0.7.
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