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ABSTRACT 

In this work, we examine the strength of deep learning approaches for pathology detection in chest radiograph data. 

Convolutional neural networks (CNN) deep architecture classification approaches have gained popularity due to their 

ability to learn mid and high level image representations. We explore the ability of a CNN to identify different types of 

pathologies in chest x-ray images. Moreover, since very large training sets are generally not available in the medical 

domain, we explore the feasibility of using a deep learning approach based on non-medical learning. We tested our 

algorithm on a dataset of 93 images. We use a CNN that was trained with ImageNet, a well-known large scale non-

medical image database. The best performance was achieved using a combination of features extracted from the CNN 

and a set of low-level features. We obtained an area under curve (AUC) of 0.93 for Right Pleural Effusion detection, 

0.89 for Enlarged heart detection and 0.79 for classification between healthy and abnormal chest x-ray, where all 

pathologies are combined into one large class. This is a first-of-its-kind experiment that shows that deep learning with 

large scale non-medical image databases may be sufficient for general medical image recognition tasks. 
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1. INTRODUCTION 

Chest radiographs are the most common examination in radiology. They are essential for the management of various 

diseases associated with high mortality and display a wide range of potential information, many of which is subtle. Most 

of the research in computer-aided detection and diagnosis in chest radiography has focused on lung nodule detection. 

Although the target of most research attention, lung nodules are a relatively rare finding in the lungs. The most common 

findings in chest X-rays include lung infiltrates, catheters and abnormalities of the size or contour of the heart [1]. 

Distinguishing the various chest pathologies is a difficult task even to the human observer. Therefore, there is an interest 

in developing computer system diagnosis to assist radiologists in reading chest images. 

Deep neural networks have recently gained considerable interest due to the development of new variants of CNNs and 

the advent of efficient parallel solvers optimized for modern GPUs. Deep learning refers to machine learning models 

such as Convolutional Neural Networks (CNNs) that represent mid-level and high-level abstractions obtained from raw 

data (e.g. images) [2]. Recent results indicate that the generic descriptors extracted from CNNs are extremely effective in 

object recognition, and are currently the leading technology [3,4]. Deep learning methods are most effective when 

applied on large training sets. In the medical field such large datasets are usually not available. Initial studies can be 

found in the medical field that use deep architecture methods [5,6]. However, we are not aware of any works that use 

generic, non-medical training sets in order to address a medical imaging task. Moreover, we are not aware of any deep 

architecture methods for the specific task of pathology detection in chest radiographs. 

In this work, we examine the strength of deep learning approaches for pathology detection in chest radiograph data. We 

also explore categorization of healthy versus pathology which is an important screening task. In our experiments we 

explore the possibility to use convolutional neural networks (CNNs) that are learned from ImageNet, a large scale non-

medical image database, for the task of medical image analysis.  

https://plus.google.com/u/0/114572833782308972723?prsrc=4


2. METHODS 

The strength of deep networks is in learning multiple layers of concept representation, corresponding to different levels 

of abstraction. For visual datasets, the low levels of abstraction might describe edges in the image, while high layers in 

the network refer to object parts and even the category of the object viewed. 

CNNs constitute a feed-forward family of deep networks, where intermediate layers receive as input the features 

generated by the former layer, and pass their outputs to the next layer. Two popular choices are CNNs suggested by [7] 

and [8] for the Large Scale Visual Recognition Challenge of ImageNet [9]. ImageNet is a comprehensive real-life non-

medical large scale image database consisting of approximately 15 Million images with more than 20,000 categories 

(e.g. musical instrument, tool, fruit). The CNNs described in [7] and [8] are constructed of a few layers that learn 

convolutions, interleaved with non-linear and pooling operations, followed by locally or fully connected layers. The 

features extracted from intermediate layers of these networks produce highly discriminative features that achieve state of 

the art performance in visual classification tasks [3].  

In this work we tested the deep learning networks capabilities in chest pathology detection. We extracted several 

different descriptors and compared among them. Our main descriptor is extracted using the Decaf implementation of a 

CNN [10] which follows the CNN in [7]. The CNN in [10] was trained over a subset of images from ImageNet of more 

than one million images that are categorized into 1000 categories. Using the notation of [10] to denote the activations of 

the n-th hidden layer of the obtained network as Decafn, the 5th layer (Decaf5), 6th layer (Decaf6) and 7th layer (Decaf7) 

features were extracted. DeCAF5 contains 9216 activations of the last convolutional layer and is the first set of 

activations that has been fully propagated through the convolutional layers of the network, DeCAF6 contains 4096 

activations of the first fully-connected layer and DeCAF7 denotes features taken from the final hidden layer - i.e., just 

before propagating through the final fully connected layer to produce the class predictions. Figure 1 illustrates a 

schematic view of the Decaf implementation of the CNN in [10].  

A second baseline descriptor covered in this work is the "Picture Codes" (PiCoDes) descriptor [9]. PiCoDes is a compact 

high level representation of popular low-level features (SIFTs, GIST, PHOG, and SSIM) which is optimized over a 

subset of the ImageNet dataset containing approximately 70,000 images. For PiCoDes, a preliminary offline stage is 

performed which constructs a classification basis consisting of kernels that are learned over the low-level visual features 

obtained from ImageNet subset. PiCodes then uses this classification basis to define a recognition model for object 

category recognition by transforming an image data using the classification basis such that the entries in the image 

descriptor are thresholded projections of the low-level visual features extracted from the image. This encoding schema 

yields a binary image descriptor with high performance rates on object category recognition. As a benchmark for our 

approach we have tested several common descriptors. These include Local Binary Patterns (LBP) [12] and GIST [13]. 

The GIST descriptor, initially proposed for scene recognition [13], is derived by the concatenation of orientation, color 

and intensity histograms over different scales and cells segmentation. 

The algorithm flowchart is described in Figure 2. Classification was performed using SVM with linear kernel using 

leave-one-out-cross-validation. Three accuracy measurements were examined: Sensitivity, Specificity and the area under 

the ROC curve (AUC). Sensitivity and Specificity are derived based on the optimal cut point on the ROC – that is the 

point on the curve closest to (0,1). For all features except binary ones, values are standardized: each column has its mean 

subtracted, and is divided by its standard deviation. 



 
 

Figure 1: CNN schematic view of the Decaf CNN described in [11]. 

 

 

 
 
Figure 2: Algorithm flowchart. 

 

 

3. EXPERIMENTS AND RESULTS 

Our Dataset consists of 93 frontal chest x-ray images that were acquired from Sheba Medical Center. The digitized 

images are of variable size. They are cropped, centered and contain several artifacts such as reading directives (e.g. 

arrows, left/right indicators) and medical equipment. X-ray interpretations were conducted by two radiologists. First, the 

radiologists examined all of the images independently. They then discussed and reached a consensus regarding the label 



of every image. For each image and pathology type, a positive or negative label was assigned. The images depict 2 chest 

pathology conditions including enlarged heart (24 images) and right pleural effusion (14 images) as well as a healthy 

chest x-rays (37 images). Figure 3 shows examples of healthy and pathological chest X-rays. 

Tables 1-3 present the experimental results. We note the boost in performance following the introduction of deep 

architecture descriptors. For all cases the deep architecture descriptors outperforms all low-level descriptors and matches 

or outperform the high level PiCoDes representation. Another improvement is gained by applying fusion on both 

baseline descriptors, DeCAF5 and PiCoDes. This is done by concatenating the baseline descriptors before the 

classification is taking place. Empirically, we claim that fusing these two baseline descriptors (Decaf5 and PiCodes) 

captures the salient information that allows a more accurate separation between an individual pathology set and its 

complement set. It seems that due to the different nature of both baseline descriptors, the combination of the two 

captures information that eludes each one of the descriptors alone. Figure 4 depicts a comparative ROC curves analysis 

for all examined conditions.  It is evident that our fused method outperforms all other tested methods.  
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Figure 3: Chest x-rays categories examples: (a)-(c) healthy; (d)-(f) enlarged heart; (g)-(i) right effusion; (j) multiple pathologies: 

enlarged heart and right effusion. 



 

Table 1. Right Pleural Effusion Condition. 

 Low Level High Level Deep Fusion 

 LBP GIST PiCoDes Decaf L5 Decaf L6 Decaf L7 PiCoDes+Decaf L5 

Sensitivity 0.71 0.79 0.79 0.93 0.86 0.86 0.93 

Specificity 0.77 0.92 0.91 0.84 0.86 0.80 0.84 

AUC 0.75 0.93 0.91 0.92 0.91 0.84 0.93 

 

Table 2. Healthy vs. Pathology. 

 Low Level High Level Deep Fusion 

 LBP GIST PiCoDes Decaf L5 Decaf L6 Decaf L7 PiCoDes+Decaf L5 

Sensitivity 0.65 0.68 0.59 0.73 0.89 0.76 0.81 

Specificity 0.61 0.66 0.79 0.80 0.64 0.64 0.79 

AUC 0.63 0.72 0.72 0.78 0.79 0.72 0.79 

 

Table 3. Enlarged Heart Condition. 

 Low Level High Level Deep Fusion 

 LBP GIST PiCoDes Decaf L5 Decaf L6 Decaf L7 PiCoDes+Decaf L5 

Sensitivity 0.75 0.79 0.79 0.88 0.79 0.79 0.83 

Specificity 0.78 0.81 0.84 0.78 0.88 0.77 0.84 

AUC 0.80 0.82 0.87 0.87 0.84 0.79 0.89 

 

 

 
 



 
 
Figure 4: (Top) Healthy vs. Pathology condition ROC; (Middle) Enlarged heart condition ROC; (Bottom) Right pleural effusion 

condition ROC. 

 

4. DISCUSSION AND CONCLUSIONS 

In this work we present a system for medical application of chest pathology detection in x-rays which uses convolutional 

neural networks that are learned from a non-medical archive (ImageNet). We show that a combination of deep learning 

(Decaf) and PiCodes features achieves the best performance. Additionally we show that Decaf layer 5 achieves better 

results compared to layers 6 and 7. Our results demonstrate the feasibility of detecting pathology in chest x-ray using 

deep learning approaches based on non-medical learning. Deep learning methods have not been tested for chest 

pathology detection for our knowledge, especially not with non-medical archive learning. This is a first-of-its-kind 

experiment that shows that Deep learning with ImageNet training may be sufficient for general medical image 

recognition tasks. 

 

REFERENCES 

[1] Ginneken, B. van, Hogeweg, L., and Prokop, M., “Computer-aided diagnosis in chest radiography: Beyond 

nodules,” Eur. J. Radiol., 72(2), 226–230, (2009). 

[2] LeCun, Yann, Koray Kavukcuoglu, Clément Farabet, "Convolutional networks and applications in vision," In 

International Symposium on Circuits and Systems (ISCAS), 253-256, (2010). 

[3]   Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S.,. "CNN Features off-the-shelf: an Astounding Baseline  

for Recognition," In Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on 

(pp. 512-519). IEEE, (2014). 

[4]   Oquab, M., Bottou, L., Laptev, I., and Sivic, J., "Learning and transferring mid-level image  

representations using convolutional neural networks," In Computer Vision and Pattern Recognition (CVPR), 2014  

IEEE Conference on (pp. 1717-1724). IEEE, (2014). 

[5] Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., and Nielsen, M., "Deep feature learning for knee cartilage 

segmentation using a triplanar convolutional neural network," In Medical Image Computing and Computer-Assisted 

Intervention–MICCAI 2013 (pp. 246-253). Springer Berlin Heidelberg, (2013). 

[6] Dan Claudiu Ciresan, Alessandro Giusti, Luca Maria Gambardella, Jürgen Schmidhuber, "Mitosis Detection in 

Breast Cancer Histology Images using Deep Neural Networks," MICCAI (2013). 

[7] Krizhevsky, A., Sutskever, I., Hinton, G.E., "Imagenet classification with deep convolutional neural networks," In: 

Advances in neural information processing systems, 1097-1105, (2012). 

[8] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., & LeCun, Y., "Overfeat: Integrated recognition, 

localization and detection using convolutional networks," arXiv preprint arXiv:1312.6229, (2013). 

 

http://www.idsia.ch/~ciresan/
http://www.idsia.ch/~giusti/
http://www.idsia.ch/~juergen
http://www.idsia.ch/~juergen


[9] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., "Imagenet: A large-scale hierarchical image database," 

In: IEEE Conference on Computer Vision and Pattern Recognition, 248-255, (2009). 

[10] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., & Darrell, T., "Decaf: A deep convolutional 

activation feature for generic visual recognition," arXiv preprint arXiv:1310.1531, (2013). 

[11] Bergamo, A., Torresani, L., Fitzgibbon, A.W., "Picodes: Learning a compact code for novel-category recognition," 

In: Advances in Neural Information Processing Systems, 2088-2096, (2011).  

[12] Ojala, T., Pietikäinen, M., Harwood, D., "A comparative study of texture measures with classification based on 

featured distributions," Pattern recognition, 29(1), 51-59, (1996). 

[13] Oliva, A., Torralba, A., "Modeling the shape of the scene: A holistic representation of the spatial envelope," 

International journal of computer vision, 42(3), 145-175, (2001). 

 


