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Abstract—A major challenge in biometrics is performing the
test at the client side, where hardware resources are often limited.
Deep learning approaches pose a unique challenge: while such
architectures dominate the field of face recognition with regards
to accuracy, they require elaborate, multi-stage computations.
Recently, there has been some work on compressing networks for
the purpose of reducing run time and network size. However, it
is not clear that these compression methods would work in deep
face nets, which are, generally speaking, less redundant than
the object recognition networks, i.e., they are already relatively
lean. We propose two novel methods for compression: one based
on eliminating lowly active channels and the other on coupling
pruning with repeated use of already computed elements. Pruning
of entire channels is an appealing idea, since it leads to direct
saving in run-time in almost every reasonable architecture.

I. INTRODUCTION

FACE-based authentication has several advantages for mo-
bile applications, compared, for example, to fingerprint

readers. First, it does not require a specialized hardware.
Second, as a non-contact biometric it can be collected without
requiring an active cooperation. Third, it is suitable as a
continuous biometrics i.e., periodically performing recognition
in order to maintain a level of confidence regarding the user’s
identity. Done locally, on the mobile device, it enables a
secure authentication that promotes privacy while reducing the
amount of network usage.

Recently, deep learning approaches have shown an impres-
sive level of face recognition performance that is significantly
better than other available methods. As a result, deep learning
methods hold the promise of being robust enough to the chal-
lenges of mobile authentication, including extreme pose and
illumination. The prominent component of deep learning in
current computer vision is the Convolutional Neural Network
(CNN) [1], and the main goal of this work is to enable the
efficient usage of such networks on mobile devices.

In CNNs, the weights connecting one layer to the next are
shared across spatial locations and are given as convolution
masks. Specifically, a convolution layer transforms a three di-
mensional input tensor X ∈ Rm×h×w into a three dimensional
output tensor Y ∈ Rn×h×w where m,n are the number of
channels in each tensor. This is done by applying n filters
of spatial size k × k on a stack of m input channels of size
h×w. In general, the spatial domains might change between
layers. However, for notational simplicity we assume that the
spatial domain is fixed. The weights of a convolutional layer,
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combining all filters together, form a single tensor denoted W
of size n×m× k × k.

Since CNNs employ shared filters over local receptive fields,
they enjoy a relatively compact representation. This compact-
ness, in turn, enables the construction of deeper models. Such
models would not be feasible using fully connected layers
since they rapidly increase the number of network parameters
beyond the capabilities of even modern hardware.

Despite their compactness, convolutional layers require a
great number of computations. For example, consider the layer
configuration given above – for each of the h×w output pixels
a filter of size mk2 is applied. Since there are n filters, a total
of nmk2hw multiplications are required.

In most desktop-computer implementations of CNNs, ma-
trix multiplications are used to perform the convolutions. The
matrices involved are: (i) a filter matrix - which contains
the layer weights, and (ii) a patch matrix - which contains
the input. Taking the layer described above as an example,
the filter matrix is generated by reshaping the layer weights
tensor from n × m × k × k to n × mk2 by flattening each
filter to a single matrix row. The patch matrix is generated
by unfolding (using an im2col operation) the input tensor.
The unfold operation extracts m patches of spatial size k× k
taken from all spatial locations, resulting in a matrix of size
mk2 × hw. Finally, the activations of this layer are obtained
by multiplying the filter matrix of size n × mk2 with the
patch matrix of size mk2 × hw. While matrix multiplication
is implemented very efficiently, it remains the main source of
computational complexity. Reducing the number of input and
output channels leads to an utilizable decrease in complexity
by decreasing the size of the multiplied matrices.

Other platforms, specifically mobile platforms, do not sup-
port modern linear algebra libraries. As a result, convolutions
are computed by directly computing each filter instead of
converting the computation to matrix multiplication. In our
implementation, we use the android port of a deep learning
framework called Torch7 [2], in which computation is opti-
mized using vectorized convolution code. Such implementa-
tions do not enjoy the optimization found in modern linear
algebra libraries such as memory utilization. However, here
too, reducing the number of channels is directly translated into
an improvement in runtime through a reduction in the depth
of each convolution and in the number of convolutions.

These improvements in performance are, therefore, platform
independent and are readily achievable using the existing deep
learning implementations. This is a result of eliminating entire
channels and is in contrast to other methods of sparsification
whose contribution requires specialized software or futuristic
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hardware.

II. PREVIOUS WORK

A prominent example of deep learning success can be seen
in the task of face recognition. Starting with the work of
Taigman et al. [3], a neural network has been employed for
extracting representations from face images that are shown
to outperform humans. Sun et al. [4]–[7] further improve
the state-of-art by employing various methods: (i) extrac-
tion of features from multiple face patches, (ii) combination
of classification and contrastive loss and (iii) incorporating
architectures into the domain of deep face recognition that
are inspired by recent architectures that are used for object
recognition [8], [9]. A recent work [10] further improves
the training criterion by using triplet cost to increase the
discriminability between identities. Although [10] trains a
secondary model for mobile execution, the reported results of
this model are significantly below the state of the art. Another
contribution [11] suggests first training a feature extraction
network followed by a metric learning network to reduce the
feature to a low dimension.

The deep networks mentioned above, are all trained on large
scale proprietary datasets, which are not publicly available. Yi
et al. [12] built a publicly available dataset by mining images
from the internet. Furthermore, they demonstrated the quality
of the data collected by training a state-of-the-art network on
it. Their network architecture is similar to that of the VGG
model [8]. In our work, we use the same architecture suggested
in [12] and accelerate it for usage on mobile platforms.

CNNs acceleration is of great interest in deep learning re-
search. Acceleration methods can be split into two categories:
(i) the creation of an approximated model either by training a
new model or by modifying the existing one or (ii) the speedup
of the computation without modification by improving the
calculation method or better utilization of hardware.

Network mimicking by training a “shallow network” [13]
or “fitnet” [14] trains a new model, called the student model,
from scratch to mimic the original model, called the teacher
model. Ba et al. [13] do so by setting the learning objective of
the new network as a regression problem striving to replicate
the teacher’s output log probabilities by the student network.
Romero et al. [14], train deeper student models with less
filters in each layer (”fit”), suggesting that network depth can
improve the model performance despite the overall reduction
in size. In order to overcome the overall difficulty of deep
network training, a multiple step training process is suggested.
First, half of the student is trained, by solving a regression
problem minimizing the difference between the teacher’s and
the student’s activations. Afterwards, the entire student net-
work is trained to mimic the teacher by using a combination
of the classification loss and knowledge distillation [15].

Network decomposition [16]–[18], is another type of ap-
proximation, which exploits the low-rank structure of neural
networks in order to perform filter decomposition that speeds
up overall performance. Such factorization is done in a manner
that reduces the computational complexity of the layer while
well approximating the original layer. Recently, Zhang et

al. [18] developed a decomposition method that utilizes low-
rank assumptions in both the network input and the network
filters.

Consider, as above, a layer with n filters operating on an
input of a spatial size of h × w that follows a layer with m
channels. Let the spatial size of the filters be k × k.

Let X̂, Ŷ and Ŵ be the flattened version of the tensors
defined above i.e. X̂ ∈ R(k2m+1)×hw, Ŷ ∈ Rn×hw and Ŵ ∈
Rn×(k2m+1). One additional row was added for bias. Using
this flattened matrix notation, the layer activation is Ŷ = Ŵ X̂ .

The low rank assumption implies that there exists a matrix
M ∈ Rn×n of rank n′ < n such that

Ŷ − Y = M(Ŷ − Y ) ,

where Y is the mean matrix of Ŷ . This is done by solving

min
M

∑
i

‖(Ŷi − Yi)−M(Ŷi − Yi)‖

s.t. rank(M) < n′

M is then decomposed to M = PQT . This results in
the decomposition W ′ = QTW and P . Put back into a
CNN notation, the decomposition results in the splitting of
the original layer (based on W ) into two layers: one is a
convolutional layer with filters of size 1× 1 that is based on
P ; the other is a convolutional layer with filters of size k× k
that implements W ′. In comparison to the original layer, the
second layer has only n′ filters instead of the initial n.

The method proposed by us also uses 1 × 1 convolutions,
see also Network In Network [19]. However, we reduce the
layer dimension by pruning rather than decomposition.

Earlier implementations of network pruning [20]–[23] are
used to improve model generalization and size while not
targeting CNN run-time. By pruning network connections at
the single neuron, i.e. single weights in each filter thus cre-
ating sparsification, such methods reduce the overall network
complexity. The pruning we perform in the study presented
here also removes some of the network connections. How-
ever, we target entire channels and therefore achieve run-time
improvements.

Other pruning methods are motivated by run-time, however
the gains are not realized in current deep learning architectures.
Han et al. [24] propose a method to learn both the connections
and weights of a network. This is done by pruning weights
whose magnitude is under a given threshold followed by fine-
tuning the pruned model. As a result, in the learned network,
many of the weights are zeroed out. Unfortunately, the level
of sparsification obtained is not enough to justify the usage of
sparse matrix multiplications. The authors of [24] suggest that
acceleration may be achieved using suitable future hardware
designs. In contrast, our solution, which effectively reduces
the number of required multiplications is software based, and
the improvements in run-time are easily measured.

Lebedev et al. [25] speedup network inference time by prun-
ing each filter in a group-wise manner generating sparse sub-
filters. The induced sparse structure allows the computation
of the convolutions via a dense ”thin” matrix multiplication.
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The sparse sub-filter, Qi is defined for each input channel as
a subset of the full filter i.e. Qi ⊂ {1...k} ⊗ {1...k}. Instead
of computing the activations of the layer by multiplying a
matrix of size n×mk2 with a matrix of size mk2 × hw, the
computation is reduced to matrices of size n×

∑m
i=1 |Qi| and∑m

i=1 |Qi| × hw. This results a speedup of mk2/
∑m

i=1 |Qi|.
In contrast, our methods prune layers at the channel level

without changing the filter sizes. Our inbound prune reduces
the number of incoming channels that each filter uses, while
our reduce and reuse method prunes entire filters.

In [26] convolutions are computed on a sparse subset of each
channel while restoring the non-computed convolutions via
interpolation. Thus, it prunes a permanent subset of each filter
connections to incoming channels. Our methods, by contrast,
perform a much more aggressive pruning which removes the
filter computation over entire channels or the filter itself.

In addition to the merit of improved runtime, pruning serves
as a regularizer during neural network training [27]–[29].
Dropout [27] technique zeros network activations with prob-
ability pdrop. Then, during inference, all network activations
are multiplied by 1/(1−pdrop), to maintain the same level of
expected activation. DropConnect [28] generalizes Dropout by
pruning network connections instead of output units. Spatial-
Dropout [29] extends Dropout to entire feature maps instead
of single neurons, which was shown to be effective for fully-
convolutional networks. However, the methods mentioned do
not target the network inference time as they prune the network
only during training.

Additional methods accelerate the neural network without
modifying the network structure. One family of methods
targets the way in which the layer output is calculated by using
FFT based convolutions [30], [31]. Another family of methods
improves hardware utilization [32], [33] employing various
techniques such as low-level parallelism, effective memory
usage and low precision arithmetic. The gains of such methods
can be added to the gains that are made possible by our
method.

III. METHOD OVERVIEW

In this section, we provide an overview of our methods for
accelerating deep convolutional neural networks; the following
sections would provide the necessary details. In terms of
positioning, the suggested methods continue a recent line of
work [24]–[26] that utilizes pruning schemes, as opposed to
retraining a mimicking network such as [13], [14]. Specifically,
we reduce the network inference time by pruning either the
input or the output channels of each layer. This is unlike
previous work [20]–[23] on network pruning, which typically
focuses on the neuron level.

A. The scratch face recognition model

While a number of network architectures have been pro-
posed for deep representation of faces, the scratch net-
work [12] has a few significant advantages, which make it
suitable for our study. First, it relies solely on convolutions,
and does not employ fully connected layers, which burden
the size of the network and create a hefty memory footprint.

Second, and more importantly, this architecture was shown
to be able to train well on the relatively noisy CASIA
dataset [12]. While other networks [3], [7], [10] have exhibited
somewhat better performance, they were trained on proprietary
datasets of better quality and larger cardinality.

The architecture of the scratch feature extraction network is
detailed in Table I. Note that suitable padding is applied such
that convolutional layers do not change the spatial dimensions
from one layer to the next. Only max- and average-pooling
reduce the size of the activation maps. The table also reports
the percent of the total network runtime devoted to each layer.

For the purpose of benchmarking on the LFW bench-
mark [34], we use the scratch network in order to extract face
feature representation. This representation is the collection of
the 320 activations of the Avg Pool layer. Afterwards, we train
a Joint Bayesian model [35] based on these extracted features
for the face verification task.

B. The experimental pipeline

Training is done on the public dataset published in [12]
which contains 494,414 images of 10,575 identities. A com-
mon practice in face recognition is to preprocess the data
prior to feature extraction. As suggested by previous work [3],
[7], [10], [12], for each image the face are detected and 2D-
aligned. Specifically, we use the method proposed by [36],
which detects 9 facial features followed by an affine transform
to place the detected features at 9 anchor points. We further
augment the data set by flipping each image horizontally. This
increases the size of the training set by 2. Finally, 10% of the
data is used for validation during the network training. The
other 90% are used to train the network. All reported models
were trained on the same data partition.

During training, on top of the model, we used a fully
connected layer together with a soft max activation to generate
a distribution over the dataset identities. The model was trained
using Stochastic Gradient Descent (SGD) with a momentum
parameter of 0.9, a learning rate 0.01, and with a batch
size of 128. We also applied weight decay of 0.0005 on the
fully connected layer. As is commonly done, the learning
rate was manually reduced once the network improvement
reached saturation. To ensure simplicity, we trained the model
using classification criterion only as opposed to the contrastive
criterion combination employed in the original paper.

The model training and pruning was done using Torch7 [37].
We used a port of Torch7 [2] for the deployment and bench-
marking of the various models on mobile.

C. Pruning

Once we train a model with satisfying accuracy, we opt to
speed the model without loss of accuracy while avoiding the
need to train it from scratch. For the task at hand, pruning is
an appealing method due to the heavy reliance on training that
was already performed, as long as the pruning is done without
reducing the model accuracy.

The Inbound Prune approach that we suggest focuses on
reducing the number of channels each filter uses by eliminating
channels that do not contribute significantly to the information
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TABLE I
THE SCRATCH MODEL BY THE AUTHORS OF [12], WHICH IS THE BASELINE MODEL IN OUR EXPERIMENTS. THE NETWORK STARTS WITH A GRAY SCALE

INPUT IMAGE OF SIZE 1× 100× 100 PIXELS, AND RUNS THROUGH 10 CONVOLUTIONAL LAYERS INTERLEAVED WITH MAX POOLING LAYERS.
FOLLOWING A SPATIAL AVERAGE POOLING AT THE END OF THE PROCESS, A REPRESENTATION OF SIZE 320 IS OBTAINED.

Layer Filter size / Stride # Channels # Filters Output size Runtime (%)
Conv11 3× 3 / 1 1 32 100× 100 1.2
Conv12 3× 3 / 1 32 64 100× 100 19.6
Max Pool 2× 2 / 2 64 – 50× 50 –
Conv21 3× 3 / 1 64 64 50× 50 9.2
Conv22 3× 3 / 1 64 128 50× 50 25.9
Max Pool 2× 2 / 2 128 – 25× 25 –
Conv31 3× 3 / 1 128 96 25× 25 10.7
Conv32 3× 3 / 1 96 192 25× 25 14.3
Max Pool 2× 2 / 2 192 – 12× 12 –
Conv41 3× 3 / 1 192 128 12× 12 5.0
Conv42 3× 3 / 1 128 256 12× 12 6.9
Max Pool 2× 2 / 2 256 – 6× 6 –
Conv51 3× 3 / 1 256 160 6× 6 3.5
Conv52 3× 3 / 1 160 320 6× 6 3.6
Avg Pool 6× 6 / 1 320 – 1× 1 –

the filter extracts. The amount of information each channel
contributes is measured by the variance of the specific channel
activation output. We do not consider directly the model
accuracy during the pruning process. Instead, we fine-tune the
model obtained after each prune in order to allow it to adapt.
The pruning of the entire network is done sequentially on the
network layers: from lower layers to the top ones, pruning
is followed by fine-tuning, which is followed by pruning of
the next layer. The speedup of the inbound pruning scheme
is achieved directly by reducing the amount of computation
that each filter performs. While originally, each filter required
O(mk2) multiplications, after pruning only O(ck2) multipli-
cations are required, where c < m is the number of channels
used by the filter. Fig. 1(b) illustrates the inbound pruning
process.

The second method suggested in our work is Reduce and
Reuse. While the previous method targets the inbound connec-
tions of a convolution layer, this method prunes the number
of channels outputted. Such pruning results in the removal of
some of the layer filters. The same variance-based criterion
as before is used, this time on the output of each filter. The
method utilizes the fact that there is sufficient information in
a subset of the layer output to allow the next layer filters
to extract important features. Following the prune, we reuse
the output left to reconstruct the pruned channels. Fig. 1(c)
illustrates the pruning process.

IV. INBOUND PRUNE

The inbound prune method targets the number of channels
that each filter operates on. Our hypothesis is that each input
channel has a different level of contribution to the feature
map outputted by each filter. As a result, we may omit the
computation of the filter on channels with low contribution,
and suffer only a minor decrease in accuracy.

In order to detect such low importance channels, we lever-
age the pruning scheme used previously on single connec-
tions [22]. Specifically, the notion of smallest contribution
variance – min(σ) is used. Originally, [22] define scores for
the contribution of a single weight to the activation of a single

neuron. Below, we generalize this measure to the contribution
of each channel to the filter activation by using the notion of
channel activation.

Recall that X,Y are the 3-dimensional input and output
tensors of a convolutional layer with 4-dimensional weight
tensor W . The activation of filter t is

Yt =
∑m

s=1Wts ∗Xs

Therefore, the activation of channel s of filter t is defined by
Wts ∗Xs.

The contribution variance of channel s in filter t is defined
to be

σts = var(||Wts ∗Xs||F )

where Xs is the s channel of the input, sampled from the
training dataset.

Typically, the variance score is distributed in a bi-modal
manner: some channels are scored highly, while some present
activations that result in low scores. Fig. 2 shows the distri-
bution of channel scores for 3 randomly sampled filters from
layers Conv12,Conv21 and Conv22 (as defined in Table I), i.e.,
for each of the depicted layers, we plot results for three random
t. As can be seen, the contribution of a specific channel s is
not uniform between filters, which explains why each filter has
different channels pruned. To verify, we tested an alternative
method in which we pruned the same channels from all filters
and the results achieved by this method were less satisfying.

Once we compute the contribution variance for all channels
in all filters, we prune all filter connections to a given channel
where the contribution variance is below a threshold τ (see
below). As a result, the pruned layer operation is defined by

Yt =
∑

s∈Λt
Wts ∗Xs

where Λt is the set of channels filter t operates on after the
prune operation.

The number of multiplications performed by the pruned
layer is less than that of W . More concretely, the complexity of
the original layer is O(nmk2) while the pruned layer requires
O(ck2) where c =

∑n
t=1 |Λt| is the number of channels left
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(a) Original layer

(b) Inbound prune (c) Reduce and reuse

Fig. 1. Illustration of pruning schemes. (a) The original convolution layer, each of the n output channels is computed using all m input channels. (b) The
layer produced by inbound prune. The number of input channels for each filter is reduced, such that each filter employs a suitable subset of the channels.
(c) The layer produced by reduce and reuse. Here, the number of filters is reduced from n to n′ followed by a new layer that reconstructs back the original
channels.

(a) (b) (c) (d)
-

Fig. 2. Distribution of channel contributions. Depict score distributions for layers Conv12,Conv21,Conv22 by order in rows. (a-c) Show (y-axis) the standard
deviation score

√
σts of each channel contribution for three random filter outputs. Each of the subplots shows results for one random t, and the x-axis are

the indices of s. (d) A histogram of the score for the entire layer in log scale, created by pooling the scores from all channels and all filters. Channels with
zero standard deviation are depicted as the bar on the far left side of each distribution.

after pruning. Therefore, we achieve a theoretical speedup of
O(nm

c ).

A. Fine-tuning

Even though pruning aims to inflict only a minor decrease
in accuracy, we found in our experiments that fine-tuning
the pruned model, after each layer was pruned, allows it to
adapt to the modified activations of the pruned layer. More

specifically, fine-tuning allows us to achieve three goals: (i)
Prior to pruning, the model is at a local optima in parameter
space. Once pruned, the model is no longer at a local optima
in the parameter space. By fine-tuning, we search a new
local optima while retaining the pruned model structure. (ii)
Although we attempt to prune layers with minimal effect, the
output of pruned layers is still changed. Fine-tuning allows the
next layer in line to adapt to the pruned layer output. (iii) In
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Algorithm 1 The inbound pruning scheme
The algorithm receives as input the sampled channel activation
for each channel of each filter given as a tensor ∆ ∈
RN×n×m×h×w, N being the size sampled, and a threshold τ .
The algorithm outputs Λ - a set of channels left after pruning
for each filter.
Input: ∆, τ
Output: Λ

1: For each filter t and each channel s, compute over ∆ the
contribution variance σts .

2: For each filter t and each channel s if σts ≥ τ then Λt ← s

our method, pruning is done sequentially. Therefore, adapting
the model after each modification is crucial in order to reduce
the accumulated error.

The inbound pruning scheme for a single layer is sum-
marized in Algorithm 1. As mentioned, for whole model
acceleration, we prune each layer sequentially from the lowest
layers to the topmost layers.

V. REDUCE AND REUSE

Our second scheme targets the outbound channels of a layer.
Our hypothesis is that in a convolution layer, a subset of its
output contains enough information to allow the next layer
in line to extract the viable features with minor classification
loss.

a) Reduce: In order to find candidates for pruning, we
compute the variance of each filter output over a sample of
the training set. Formally, using the same annotation as before,
the activation of a given channel is denoted by Wi ∗ X and
the variance is

σt = var(||Wt ∗X||F )

where X is the layer input, and Wt is one of the filters of
the layer. Next, we prune all filters whose score is below the
percentile µ. In other words, we decide beforehand what would
be the number of the channels n′ = µn that we keep. As a
result, the pruned layer weight tensor is W ∈ Rn′×m×k×k

where n′ < n is the number of channels outputted by the
pruned layer.

b) Reuse: The performed pruning requires adaptation
since the next layer expects to receive input in the size prior to
the pruning and with similar patterns of activations. Therefore,
we reuse the remaining output channels to reconstruct each
pruned channel, by the use of linear combinations. Formally,
let Yi ∈ Rn×hw be the output of a layer with n filters,
where each row is an output of a filter. Let Y ′i ∈ Rn′×hw be
the output of the pruned layer with the remaining n′ layers,
as observed on the ith sample. By reusing, we seek to find
A ∈ Rn×n′

such that

minA
∑
i

‖Yi −AY ′i ‖22 (1)

The operation of A is added to the network by introducing
a convolution layer with filters of size 1 × 1, which holds
the elements of A. Note that 1× 1 convolution layers, which
can be seen as dimensionality rearrangement methods, were

Algorithm 2 The reduce and reuse pruning scheme
The algorithm receives as input the sampled channel activation
filter activation given as a tensor ∆ ∈ RN×n×h×w, where
N is the size sampled, and a percentile µ. The algorithm
outputs Λ, which is the set of channels remaining after
pruning.
Input: ∆, µ
Output: Λ

1: For each channel t ∈ [1..n] compute the activation
variance - σt over ∆.

2: υ ← µ-th percentile of {σt}ni=1

3: For each filter t if σt ≥ υ then Λ← t

introduced recently by [19] and, as mentioned, were used
by [18] as part of the decomposition process.

Once A is recovered, AY ′i is used in lieu of the original Yi.
The speedup achieved is based on the number of filters

removed and the overhead required to restore those channels.
The theoretical computational complexity of a layer with n fil-
ters of size m×k×k is O(nmk2). Once the layer is pruned to
n′ filters, it will require O(n′mk2) operations. The additional
layer of 1 × 1 convolutions will require O(n′n) operations.
Therefore, the total speedup ratio is O( nmk2

n′n+n′mk2 ). As before,
we fine-tune the entire model before pruning the next layer in
order to allow the next layer to adapt. The reduce and reuse
pruning scheme is summarized by Algorithm 2.

It is important to note the overall memory footprint of the
network does not increase due to the added 1×1 convolutional
layer. Considering the layer described above, the added layer
will have n′n parameters. However, the number of parameters
in the convolutional layer is reduced to n′mk2, whereas before
reduction the size is nmk2. For n′ � n, the pruning scheme
will still reduce the size of the network and as a result the
model memory footprint.

A. Hybrid pruning

We also consider the notion of combining the two schemes.
Such a combination is plausible, since each of our pruning
schemes targets different sections of a layer - inbound or
outbound. The hybrid method is performed by first applying
reduce and reuse followed by inbound pruning. This combina-
tion allowed us to achieve an acceleration of ×2.65. We note
that the speedup ratio from applying inbound prune on an
already pruned model (by reduce and reuse) is less effective
than when applied on the original model. Nevertheless, we
show in our experiments that we are able to achieve a greater
speedup by combining the two methods.

VI. IMPLEMENTATION

In this section, we elaborate on the architectures and training
procedures used to train the reported models.

A. Inbound prune

The model was pruned sequentially, one layer at a time
from bottom to top. Each filter operating on an input stack
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TABLE II
INCOMING PRUNE ARCHITECTURES PRODUCED BY THE PRUNING
SCHEME. WE REPORT THE NUMBER OF INPUT CHANNELS TO FILTER
CONNECTIONS IN BASELINE AND IN THE PRUNED MODEL. WE ALSO

REPORT THE PERCENT OF SURVIVING CHANNELS/FILTER INTERACTIONS.

Layer #channels #channels percent in-channels
in baseline after prune left after prune

Conv11 32 32 100
Conv12 2048 941 45.9
Conv21 4096 2213 54.0
Conv22 8192 5199 63.4
Conv31 12288 8857 72.0
Conv32 18432 13847 75.1
Conv41 24576 17212 70.0

of m channels was split into m convolution layers with a
single filter of size 1×3×3. Those layers operated in parallel
on the input channels. As a result, each layer computes the
activation of a single channel. Next, the contribution variance
of each channel was calculated. The variance was calculated
over 3,000 samples drawn randomly from the training set.

During our experiments, the threshold τ was chosen empir-
ically based on the accuracy achieved after pruning the model,
prior to fine-tuning. We do not let the validation accuracy on
the CASIA dataset drop below 84%. The model was fine-
tuned using SGD with a learning rate of 0.01, momentum of
0.9 and batch size of 128. Each model was fine-tuned for a
maximum of 30 epochs or until there were 5 successive epochs
of no error improvement. Table II shows the architecture of the
pruned models, each column reports the number of inbound
channels per layer.

B. Reduce and reuse

Table III depicts the architecture produced by the sec-
ond pruning scheme. There are three architectures: RR50%,
RR75%, and RR90%-50%. The top layers for these architec-
tures are the same as in the baseline model, since their prune
resulted in a sharp decrease in model accuracy. The RR50%
and the RR75% architectures denote a cut of 50/75% of the
layers. Since cutting more than 50% after a certain layer is
highly detrimental (as discussed below), the third architecture
cuts by 90% up to layer Conv32, and only by 50% afterwards.

As with inbound prune, the scheme is employed sequen-
tially, one layer at a time from bottom to top. The contribution
variance of each filter is computed by calculating the variance
of the layer output channel norm. Given a percentile µ, we
prune all filters below this percentile. The variance based score
was calculated over 1,000 samples from the training set. Next,
we solved the minimization problem described in Eq. 1. The
solutions are the weights of the 1 × 1 layer. The resulting
model is fine-tuned using SGD with an initial learning rate of
0.01, a momentum 0.9, and a batch size of 128. We applied
the same stopping condition as in the inbound prune method.

C. Fitnets

Next, we describe the architectures and training of the
fitnet models [14], which were used as a recent literature
baseline. As the teacher model, we used the full scratch

TABLE III
REDUCE AND REUSE ARCHITECTURES

RR50% RR75% RR90%-50%
conv 3× 3× 32
conv 3× 3× 32
conv 1× 1× 64
pool 2× 2

conv 3× 3× 32
conv 3× 3× 16
conv 1× 1× 64
pool 2× 2

conv 3× 3× 32
conv 3× 3× 7
conv 1× 1× 64
pool 2× 2

conv 3× 3× 32
conv 1× 1× 64
conv 3× 3× 64
conv 1× 1× 128
pool 2× 2

conv 3× 3× 16
conv 1× 1× 64
conv 3× 3× 32
conv 1× 1× 128
pool 2× 2

conv 3× 3× 7
conv 1× 1× 64
conv 3× 3× 13
conv 1× 1× 128
pool 2× 2

conv 3× 3× 48
conv 1× 1× 96
conv 3× 3× 96
conv 1× 1× 192
pool 2× 2

conv 3× 3× 24
conv 1× 1× 96
conv 3× 3× 48
conv 1× 1× 192
pool 2× 2

conv 3× 3× 10
conv 1× 1× 96
conv 3× 3× 20
conv 1× 1× 192
pool 2× 2

conv 3× 3× 128
conv 3× 3× 256
pool 2× 2

conv 3× 3× 128
conv 3× 3× 256
pool 2× 2

conv 3× 3× 64
1× 1× 128
conv 3× 3× 128
1× 1× 256
pool 2× 2

conv 3× 3× 160
conv 3× 3× 320
pool 2× 2

conv 3× 3× 160
conv 3× 3× 320
pool 2× 2

conv 3× 3× 80
conv 1× 1× 160
conv 3× 3× 160
conv 1× 1× 320
pool 2× 2

avg 6× 6 avg 6× 6 avg 6× 6

model as described in Table I. The fit models architectures
are detailed in Table IV. The models follow a similar structure
of consecutive convolution layers with a spatial filter size of
3× 3 with a stride of 1. After each convolution, we used the
parametric rectified linear activation [38]. The convolutions
are zero padded to retain the input spatial size. Each stack
of convolution layers is followed by a non-overlapping max
pooling layer with a spatial size of 2 × 2. On top of the last
convolution layer, an average pool of spatial size 6 × 6 is
used in order to reduce each feature map to 1× 1 generating
the facial representation vector. During training, each model is
followed by a fully connected layer together with a soft max
activation layer to produce class probabilities.

The models were trained using the scheme presented in [14].
We used exactly the same data split used in the baseline model
training i.e. 90-10 for train and test. The model weights were
initialized using the scheme reported in [38], which leads to
a faster convergence. For both stages of the fitnet training
process, we trained the models with SGD, annealing the
learning manually, once we detected that the model accuracy
had stopped improving. We used an initial learning rate of
0.001 and batch size of 128 throughout all of the training
phase with a momentum of 0.9.

During the hint-based training phase, each model was
trained for 170 epochs or until the model accuracy stopped
improving. Next, we trained the model using knowledge
distillation. λ was initialized to 4 and was decayed linearly
for 150 epochs to 1. In the following epochs, λ was remained
unchanged. The temperature parameter was set to 3. We
stopped the knowledge distillation phase when we detected
that the model improvement rate slowed down considerably.
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TABLE IV
FITNET ARCHITECTURES. FROM LEFT TO RIGHT THE ARCHITECTURES

BECOME DEEPER.

Fitnet 1 Fitnet 2 Fitnet 3

conv 3× 3× 16
conv 3× 3× 16
conv 3× 3× 16
pool 2× 2

conv 3× 3× 16
conv 3× 3× 16
conv 3× 3× 16
conv 3× 3× 16
pool 2× 2

conv 3× 3× 16
conv 3× 3× 16
conv 3× 3× 32
conv 3× 3× 32
pool 2× 2

conv 3× 3× 32
conv 3× 3× 32
conv 3× 3× 48
pool 2× 2

conv 3× 3× 32
conv 3× 3× 32
conv 3× 3× 32
conv 3× 3× 48
pool 2× 2

conv 3× 3× 32
conv 3× 3× 48
conv 3× 3× 48
conv 3× 3× 64
pool 2× 2

conv 3× 3× 64
conv 3× 3× 64
conv 3× 3× 80
pool 2× 2

conv 3× 3× 48
conv 3× 3× 64
conv 3× 3× 64
conv 3× 3× 80
pool 2× 2

conv 3× 3× 80
conv 3× 3× 80
conv 3× 3× 96
conv 3× 3× 112
pool 2× 2

conv 3× 3× 96
conv 3× 3× 96
conv 3× 3× 112
pool 2× 2

conv 3× 3× 96
conv 3× 3× 96
conv 3× 3× 112
conv 3× 3× 112
pool 2× 2

conv 3× 3× 96
conv 3× 3× 128
conv 3× 3× 112
conv 3× 3× 144
pool 2× 2

conv 3× 3× 128
conv 3× 3× 160
conv 3× 3× 320
pool 2× 2

conv 3× 3× 96
conv 3× 3× 128
conv 3× 3× 144
conv 3× 3× 160
pool 2× 2

conv 3× 3× 112
conv 3× 3× 128
conv 3× 3× 144
conv 3× 3× 160
pool 2× 2

avg 6× 6 avg 6× 6 avg 6× 6

D. Low-rank network decomposition

We next describe the architectures and decomposition
scheme of the models generated by our implementation
of [18], which is another very recent baseline method.

We used the “Asymmetric non-linear reconstruction”
method suggested in [18], which seems better than the alter-
natives in that paper. This method decomposes each convolu-
tional layer of size n×m×k×k into two convolutional layers
of size n′×m×k×k and n×n′×1×1. In order to evaluate
our method, we chose n′

n = 0.5, n′

n = 0.25 and n′

n = 0.1
for each layer we decomposed, keeping the channel-reduction
ratio the same as in the methods that we suggested. In our
experiments, we decompose each layer using 1,000 samples
from our dataset which contains 494,414 images. This is a
similar ratio to the original paper, which sampled 3,000 from
the imagenet dataset which contains 1.2 million images. The
”non-linear” optimization problem

min
M,b

∑
i

‖r(yi)− r(Myi + b)‖22

s.t. rank(M) ≤ n′

where M ∈ Rn×n is the low-rank matrix discussed above,
b is the bias of the added 1x1 convolutional layer and
r(·) = max(·, 0) is the rectified linear unit (ReLU) used
between the network convolutional layers. {y}Ni=1 are the
sampled activations of the layer that is being decomposed.
As mentioned above, the convolutional layer is split to two
convolutional layers by the M = PQT decomposition.

We solved the latter optimization problem using the iterative
solver employed by [18]. In our implementation of the solver
we used the same number of iterations and hyper parameters.

The architecture produced by this method is identical to the
ones produced by the RR method, which are displayed in
Table III. As before, we do not decompose the top layers
of the network since that degraded the network performance
beyond an acceptable ratio. The writers of [18] claim that
the approximated model is very sensitive to fine-tuning (i.e.
sensitive to the selection of a learning rate) and show that they
are able to achieve “very good accuracy even without fine-
tuning” - therefore in our implementation we do not apply
fine-tuning.

VII. RESULTS

We use the scratch model [12], as depicted in Table I,
as our baseline for the evaluation of our methods. Models
are evaluated in two different ways. First, we measure the
model accuracy by the classification accuracy on the CASIA
dataset which we split to 90% training and 10% test. Second,
we measure the score on the LFW benchmark [34] in the
unrestricted mode. LFW results are mean and Standard Error
estimated over fixed ten cross-validation splits. In addition, the
model efficiency is captured by measuring the running time on
a Samsung Galaxy S6 device which is our target platform. The
time results are reported in seconds; Run time was measured
as the mean of 100 forward passes of a single image. The
baseline network achieves the accuracy of 95.12%±1.53 on
LFW and 86.04% classification accuracy on CASIA with an
execution time of 0.512 seconds.

In all of our experiments, pruning is done from the layer
Conv12 until a certain layer. Hence, when we report the
pruning of Conv22, we mean that Conv12, Conv21, and
Conv22 were all pruned. This makes sense since pruning the
lower layers is more beneficial and less detrimental to the
overall performance.

A. Inbound pruning

We conduct a few experiments using the first pruning
method that verify the effectiveness of the used criterion as
well as the overall performance.
Random vs variance based. In the first experiment, we
verify that the filter input variance score is a good measure
for pruning the incoming channels of a convolution layer.
We do so by removing a fixed 50% of incoming channels
without fine-tuning the network after each prune. Fig. 3 shows
accuracy on the CASIA and LFW datasets after each prune.
The CASIA validation success rate after pruning the first three
layers stands at 82% using the variance based measure while
the random pruning collapses to 14.5%. We also note that the
rate of accuracy drop is dramatically faster when using random
pruning.
The effect of fine-tuning. Next, we verify that fine-tuning
reduces the accumulation of error rate between layers by com-
paring the accuracy of the models with and without fine-tuning
after prune. Indeed, Table V shows that the detrimental effect
of pruning is mitigated by performing fine-tuning. However,
this effect is visible only in higher layers. At layer Conv21,
post pruning results are 94% on the LFW benchmark for both
methods. At Conv41, fine-tuning results are 93% compared to
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TABLE V
INBOUND PRUNING SUMMARY. FOR EACH PRUNED MODEL WE REPORT MODEL CLASSIFICATION ACCURACY BEFORE AND AFTER FINE-TUNING,

RUNNING TIME IN SECONDS, NUMBER OF MULTIPLICATIONS IN G-OPS AND PARAMETERS. EACH ROW INDICATES PRUNING DONE UP TO THE INDICATED
LAYER.

No FT With FT
Model CASIA LFW CASIA LFW Time # params # mults
Original 86.04 95.12±1.53 – – 0.512 1752768 1.48
Conv12 85.07 94.15±1.99 85.97 94.50±1.88 0.415 1742805 1.29
Conv21 84.17 94.00±1.94 86.07 94.55±1.86 0.393 1725858 1.20
Conv22 82.01 93.95±1.82 86.02 94.41±1.87 0.376 1698921 1.07
Conv31 75.20 93.06±1.95 85.88 94.26±1.65 0.352 1668042 1.03
Conv32 59.25 91.91±2.09 85.60 94.01±1.80 0.338 1626777 0.98
Conv41 32.90 88.43±1.77 84.74 93.92±1.87 0.322 1560501 0.96

Fig. 3. Random vs. Variance. We compare the results of variance based
inbound pruning to random selection. From each layer, we prune 50% of the
input channels and report the accuracy for CASIA (top) and LFW (bottom).
Full bars depict variance based pruning; empty bars depict the accuracy for
random based prune. For the random selection, we average the accuracy over
10 experiments. As can be seen, pruning by the variance score is preferable
by a large gap.

88.43% – a difference of 4.5% in error rate. The increasing gap
can be explained by the accumulated error caused by pruning
all previous layers.
Model acceleration. Finally, we evaluate the effect of pruning
each layer sequentially on the speed of representing a facial
image. The accuracy and performance results are summarized
in Table V. The percentage of pruning for each layer was
chosen empirically based on the model’s CASIA accuracy
(prior to fine-tuning) so that the accuracy threshold was chosen
to be above 84%. We note that we cannot apply our method on
layer Conv11 since it operates on a single channel gray scale
image. In addition, since the contribution variance of channels
between filters is not uniform, the number of channels pruned
from each filter is different. Finally, we achieved a speedup of

roughly ×1.5 with an accuracy drop of 1.11% on LFW.
Note that the reduction in the number of multiplications is

not fully realized in the actual run time. In order to separate
the contribution of the channels, such that different channels
contribute to different filters, we had to separate the channels,
which created an additional overhead. Put differently, the
software package is optimized for the case in which it is
assumed that all channels contribute to all filters.

B. Reduce and reuse

Table VI summarizes our results for the reduce and reuse
pruning method. In this experiment we reduce and reused the
model layers sequentially using different settings. First, we
evaluated random pruning where we randomly pruned each
layer. Second, we apply variance based reduce and reuse.
Third, we add fine-tuning after each layer. In addition, we
compare our results with the decomposition suggested by
Zhang et al. [18]. We do not reduce and reuse layer Conv11
since the amount of reduction required in order to achieve a
speedup results in a major decrease in accuracy.

Reduce and reuse is evaluated in three models: RR50%,
RR75% and RR90%-50%. RR50% and RR75% are models
generated by applying the same reduce ratio to all layers. RR-
90%-50% is the model generated by applying 90% prune up to
Conv32 and continuing with 50% prune afterwards. We chose
this ratio empirically by observing that either 75% or 90%
degraded the accuracy significantly after Conv32.

Initially, we compare the variance based RR with random
based. While there is not much difference in accuracy when
pruning 50% of each layer, the advantage becomes clear in
75% pruning. When comparing 75% prune of Conv22, the
LFW accuracy of variance based RR is 94.02% and for the
random RR it is 93.6%. In addition, the accuracy drop with
random pruning is faster. Random RR75% CASIA accuracy
drops from 81.78% to 52.40% between Conv22 to Conv32
while variance based RR75% drops from 82.32% to 59.26%.

As with inbound prune, fine-tuning improves the prune
scheme effectiveness in two ways. First, it improves the
accuracy achieved post pruning. For example, when 75% of
the filters up to layer Conv22 are pruned we are able to
increase the model LFW accuracy by 0.4%. Furthermore, fine-
tuning allows the model to adapt to the pruning process, and as
a result the subsequent error accumulates much more slowly.

In the table, we refer to the method proposed by Zhang
et al. [18] as “low-rank approximation”. We compare their
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TABLE VI
RR ACCURACY: ACCURACY FOR RR METHODS AND OTHER METHODS OF THE SAME ARCHITECTURE. WE EVALUATE RANDOM, VARIANCE BASED,

VARIANCE BASED AND FINE-TUNED. WE ALSO COMPARE IT WITH LOW-RANK APPROXIMATION. FOR THE FT APPROACH, WE ALSO REPORT THE
ACCURACY PRIOR TO FT. THE MODEL IS PRUNED SEQUENTIALLY, I.E. THE RESULTS ARE INDICATED FOR PRUNING UP TO THE INDICATED LAYER. LOW

INDICATES RESULTS THAT WERE CLEARLY NON-COMPETITIVE AND WERE, THEREFORE, NOT PRIORITIZED FOR EXACT ESTIMATION.

Reduction Layer Random RR Variance based RR Variance based RR followed by FT Low-rank approximation [18]
CASIA LFW CASIA LFW CASIA LFW CASIA LFW

50%

Conv12 86.039 94.55±1.71 86 94.52±1.85 86.05 (86.01) 94.45±1.79 85.97 94.58±1.63
Conv21 85.788 94.45±1.78 85.95 94.38±1.94 86.02 (85.95) 94.55±1.82 85.96 94.38±1.75
Conv22 85.604 94.28±1.96 85.64 94.25±2.01 85.92 (85.64) 94.45±1.78 85.88 94.35±1.81
Conv31 83.170 94.01±1.91 83.14 93.80±1.79 84.87 (83.14) 94.33±1.80 85.05 94.26±1.85
Conv32 81.151 93.45±1.90 80.93 93.86±1.58 84.67 (81.93) 94.40±1.80 84.79 93.90±2.00
Conv41 59.241 91.18±2.03 56.77 90.75±1.65 82.07 (63.22) 93.11±1.61 79.55 93.06±1.75
Conv42 44.96 89.23±2.01 46.12 89.25±1.44 81.27 (64.81) 93.01±1.95 78.69 92.96±2.12

75%

Conv12 85.89 94.48±1.82 85.49 94.28±1.69 85.60 (85.49) 94.53±1.96 84.47 94.13±1.61
Conv21 81.51 93.71±2.04 83.69 94.03±1.81 85.45 (83.77) 94.41±1.80 82.25 93.80±1.70
Conv22 81.78 93.60±1.98 82.32 94.02±2.00 85.32 (83.18) 94.41±1.69 80.44 93.71±2.09
Conv31 64.26 91.13±1.63 66.015 91.76±2.07 85.15 (67.99) 94.18±1.49 78.81 93.28±2.31
Conv32 52.40 89.31±1.99 59.26 90.25±2.20 85.18 (72.84) 94.12±1.60 78.82 93.00±2.01
Conv41 LOW LOW LOW LOW 84.26 (15.98) 93.38±1.71 51.13 90.45±1.97
Conv42 LOW LOW LOW LOW 84.69 (33.94) 93.61±1.74 50.55 89.38±1.86

90%-50%

Conv12 79.23 93.41±1.73 81.70 93.65±1.61 85.71 (81.34) 94.50±1.78 14.00 86.71±1.54
Conv21 43.76 88.71±1.93 56.67 91±1.82 84.23 (51.82) 94.30±1.47 32.53 88.60±1.66
Conv22 47.06 88.68±2.24 60.58 90.4±1.81 84.72 (63.76) 93.96±1.89 47.98 90.03±1.90
Conv31 39.97 79.1±2.23 11.24 80.76±2.84 84.54 (17.75) 94.28±1.61 20.25 86.85±2.06
Conv32 20.82 73.45±2.43 11.22 82.35±2.43 85.99 (27.63) 94.05±1.63 42.78 88.21±2.29
Conv41 LOW LOW LOW LOW 85.84 (85.60) 93.76±1.49 LOW LOW
Conv42 LOW LOW LOW LOW 85.75 (66.77) 93.70±1.70 LOW LOW
Conv51 LOW LOW LOW LOW 85.33 (84.69) 93.55±1.69 LOW LOW
Conv52 LOW LOW LOW LOW 85.09 (76.40) 93.60±1.79 LOW LOW

method to ours by reducing each layer by the same scale for
both settings - 50%,75% and 90%-50%. Evidently, the error
accumulation is somewhat less harsh in comparison to the
variance based RR prior to fine-tuning. Nonetheless, following
the fine-tuning our method is superior. This can be seen in the
results of the layer Conv32, 75% setting. Our method achieved
94.1% on LFW compared with 93%. Fine-tuning is a crucial
part of our method since it allows the network to adapt after
each prune.

An interesting property that we found is the rapid increase in
error, the deeper the network is pruned. This can be explained
by the fact that modern architectures, such as in our baseline
model, follow the scheme of increasing the number of output
channels as the feature maps size decreases. Since our method
prunes the number of channels - the amount of information
loss in the deeper layers is more prominent resulting in the
increased error.

We also note that in the reduce and reuse method, random
pruning does almost as well as variance based RR. However, in
the inbound method, it performs poorly. The inbound method
is inherently more sensitive to pruning, since during the reduce
and reuse method, the pruned layer output is reconstructed.
The optimization performed during the reuse phase reduces
the error - even for the random pruning.
Model acceleration. We report the performance and size of
the models produced by this method in Table VII, VIII, and
IX. As before, we specify the number of parameters and
multiplication required by the model for extracting features
from a single face image. Using the reduce and reuse scheme,
we were able to speed-up the model by ×2.37 with an LFW
accuracy loss of 1.52%.

We note that the theoretical speed-up, O( nmk2

n′n+n′mk2 ), is

TABLE VII
50% REDUCE PERFORMANCE: TIME IS REPORTED IN SECONDS; THE

NUMBER OF MULTIPLICATIONS IS REPORTED IN G-OPS. WE ALSO REPORT
THE AMOUNT OF PARAMETERS THAT THE MODEL CONTAINS. THE LAYER

COLUMN REPORTS THE LAYER THE NETWORK WAS PRUNED UP TO.

Layer Time # params # mults
Conv12 0.434 1745632 1.34
Conv21 0.419 1729280 1.26
Conv22 0.393 1700672 1.12
Conv31 0.387 1650032 1.05
Conv32 0.379 1585616 0.97

TABLE VIII
75% REDUCE PERFORMANCE: TIME IS REPORTED IN SECONDS; THE

NUMBER OF MULTIPLICATIONS IS REPORTED IN G-OPS. WE ALSO REPORT
THE NUMBER OF PARAMETERS THAT THE MODEL CONTAINS. THE LAYER

COLUMN REPORTS THE LAYER THE NETWORK WAS PRUNED UP TO.

Layer Time # params # mults
Conv12 0.413 1739984 1.23
Conv21 0.403 1713376 1.10
Conv22 0.352 1662208 0.84
Conv31 0.330 1581592 0.74
Conv32 0.294 1466440 0.60

not fully realized and the actual speed-up seen during our
evaluation is considerably lower. We attribute this to the fact
that the underling mobile implementation of the computation
of each layer is already optimized using vectorized operations.
The added overhead of adding additional layers adds to the
runtime beyond the layer’s multiplications. We verified this by
comparing various architectures of different depths, in which
the total number of multiplications is the same. The shallower
the architecture, the shorter the run time using the existing
deep frameworks.
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TABLE IX
90%-50% REDUCE PERFORMANCE: TIME IS REPORTED IN SECONDS;
THE NUMBER OF MULTIPLICATIONS IS REPORTED IN G-OPS. WE ALSO

REPORT THE NUMBER OF PARAMETERS THAT THE MODEL CONTAINS. THE
LAYER COLUMN REPORTS THE LAYER THE NETWORK WAS PRUNED UP TO.

Layer Time # params # mults
Conv12 0.377 1736807 1.17
Conv21 0.349 1704430 1.00
Conv22 0.292 1639867 0.68
Conv31 0.272 1541765 0.56
Conv32 0.255 1397017 0.38
Conv41 0.245 1294681 0.35
Conv42 0.237 1180121 0.31
Conv51 0.229 1008681 0.30
Conv52 0.216 829641 0.29

TABLE X
HYBRID METHOD. THE RUNNING TIME IS IN SECONDS. WE COUNT THE
NUMBER OF MULTIPLICATIONS AND PARAMETERS IN EACH NETWORK.

THE AMOUNT OF MULTIPLICATIONS IS GIVEN IN G-OPS.

Method CASIA LFW Time # params # mults
Hyb. 50% 84.80 94.08±1.70 0.323 1534928 0.81
Hyb. 75% 85.23 94.05±1.57 0.269 1441096 0.52

Hyb. 90%-50% 85.32 93.35±1.71 0.193 819057 0.26

C. Hybrid pruning

In Table X, we show the results for employing bi-directional
pruning of the baseline model. We start with the RR version of
the baseline model which achieved satisfying accuracy results,
i.e. a LFW score of above 94% and apply inbound prune on
that model.

Specifically, we perform inbound prune of the models
produced by RR50% and RR75%, pruned up to layer Conv32
using reduce and reuse, and RR90%-50% up to Conv52. In all
three cases, we further prune 25% of incoming channels up to
Conv32. In Table X we show the accuracy and performance
of the bi-directional prune products. By pruning RR90%-50%
we were able to speed-up the baseline model by more than
×2.65 with a minor reduction in accuracy.

D. Method comparison

In addition to low rank approximation, we also compare
our method to the fitnet method, which unlike the low-rank
method, produces a different network architecture. Table XI
reports the accuracy and timing of the models that we trained
using this fitnet method. Our hybrid method produced faster
and more accurate models than the models produced by the
fitnet method.

Moreover, the training time required for our hybrid method
was less than that of the fitnet method. Although our method
is composed of multiple fine-tuning steps, the total amount of
epochs required is less than 400 epochs. On the other hand, the
fitnet method which is based on two training steps: hint-based
and knowledge distillation, required more than 600 epochs.
During the knowledge distillation phase, the fitnet model is
trained by optimizing two loss function which requires more
epochs to converge.

We conclude this section by comparing all of the models
generated in our study. In Table XII we report the best model
per method. Our hybrid method achieves better accuracy than

TABLE XI
FITNET ACCURACY: THE RUNNING TIME IS IN SECONDS. WE COUNT THE

NUMBER OF MULTIPLICATIONS AND PARAMETERS IN EACH NETWORK.
THE AMOUNT OF MULTIPLICATIONS IS GIVEN IN G-OPS.

Model CASIA LFW Time # params # mults
Fitnet 1 82.08 92.61±1.73 0.207 1167262 0.50
Fitnet 2 75.03 92.28±1.53 0.228 1119011 0.64
Fitnet 3 77.68 93.26±1.11 0.347 1487923 1.21

that of fitnet and is faster. Our method accelerated the baseline
model by more than ×2.5 with a drop of 1.77% in accuracy.

VIII. CONCLUSION

We describe two methods for network compression that are
specifically suited for CNNs. The methods employ a simple
variance-based criterion which is readily computed. Therefore,
the pruning process does not require solving an optimization
problem.

We propose two methods: in one, we selectively remove
input channels from the computation of the channels of the
next layer. This makes use of the fact that the computation
of each channel is influenced to a different degree from the
channels of the previous layers. However, this pattern of
influence varies between the computed channels and therefore
requires a per-channel selection process. In the second method,
we eliminate entire channels making use of the redundancy in
the representation. However, in order to not affect subsequent
layers, we reconstruct back the removed channels.

While the compression method introduces a few extra
parameters such as the number of channels to prune (µ),
pruning threshold (τ ) and the size of the sample set, the
number of additional parameters is small compared to the
entire set of parameters, and the system does not seem to
be overly sensitive to these parameters. In addition, searching
over the space of these parameters, if one chooses to do so,
is much faster than optimizing the convnet itself.

We compare our method to recent work in the field of
network compression. This is done to the low rank approxima-
tion of [18] and to fitnet [14]. We demonstrate convincingly
that the suggested pruning methods are more effective in the
compression of the scratch face recognition network. Overall,
without modifying the software to the structure of the new
network, we are able to obtain a run time improvement of up
to 2.65 times while suffering a very moderate loss of accuracy.
This run time improvement is significant since the overall
network structure, the software modules, and the performance
remain unchanged.
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TABLE XII
METHOD COMPARISON: THE TABLE REPORTS THE BEST MODEL FOR EACH METHOD DISCUSSED: RR, INBOUND PRUNE, HYBRID, FITNET AND

LOW-RANK APPROXIMATION. THE LAYER COLUMN SPECIFIES THE LAYER THAT EACH MODEL WAS PRUNED UP TO. TIME IS REPORTED IN SECONDS.
SPEEDUP IS REPORTED RELATIVE TO BASELINE MODEL TIME. THE NUMBER OF MULTIPLICATIONS IS REPORTED IN G-OPS. FINALLY, THE PARAMETER

REDUCTION DEPICTS THE NUMBER OF PARAMETERS RELATIVE TO BASELINE.

Layer CASIA LFW Time Speedup Mults Param
Reduct.

Baseline N\A 86.04 95.12 0.512 1.00 1.48 1.00
Fitnet 1 N\A 82.08 92.61 0.207 2.47 0.50 1.50
Fitnet 2 N\A 75.03 92.28 0.228 2.25 0.64 1.57
Fitnet 3 N\A 77.68 93.26 0.348 1.47 1.21 1.18
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