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ABSTRACT1

We present a fast and high-fidelity method for music gen-2

eration, based on specified f0 and loudness, such that3

the synthesized audio mimics the timbre and articula-4

tion of a target instrument. The generation process con-5

sists of learned source-filtering networks, which recon-6

struct the signal at increasing resolutions. The model op-7

timizes a multi-resolution spectral loss as the reconstruc-8

tion loss, an adversarial loss to make the audio sound9

more realistic, and a perceptual f0 loss to align the out-10

put to the desired input pitch contour. The proposed ar-11

chitecture enables high-quality fitting of an instrument,12

given a sample that can be as short as a few minutes,13

and the method demonstrates state-of-the-art timbre trans-14

fer capabilities. Code and audio samples are shared at15

https://github.com/mosheman5/timbre_painting.16

1. INTRODUCTION17

The melody, as depicted by a sequence of notes, or alterna-18

tively by a sequence of frequencies, is one generic aspect19

of the musical experience. The dynamic loudness signal20

is another prominent aspect that is also almost instrument-21

invariant. Due to the invariance property of these two as-22

pects, it is natural to employ them as specifications to the23

instrument-independent essence of a musical piece.24

A prominent aspect that does depend on the instrument25

is the timbre. The music-AI task of timbre-transfer consid-26

ers methods that receive, as input, an audio segment and a27

target instrument, and output the analog (melody preserv-28

ing) audio in the target domain, by replacing the timbre of29

the original audio clip with that of the specified instrument.30

Another aspect that defines a musical instrument is ar-31

ticulation, or the joining-up of notes. Timbre transfer32

methods address this implicitly with varying degrees of33

success. The physical properties of the instrument lead to34

constraints and subsequently different characteristic ways35

to move from one note to the next in a smooth manner.36

This aspect, therefore, varies considerably, e.g., between37

violin, guitar, and trumpet.38

While this interpolation process is second nature for39

trained musicians, it can be sophisticated and involves the40
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introduction of new frequencies that are not part of the41

original notes. See Fig. 1.42

In this work, we build a hierarchical music generator43

network. Given a fundamental frequency (f0) and loud-44

ness inputs, the network generates audio in four different45

scales. While the different scales share the same architec-46

ture, they have different roles. The first (lower) scale intro-47

duce the articulation, while the top scales introduce much48

of the timbre and the final audio-spectrum quality, which49

we call timbre-painting. See Fig. 2.50

The model is trained on a relatively short sample from51

the target instrument, typically consisting of few minutes.52

The network is trained to minimize multiple losses: an ad-53

versarial loss encourages the output to be indistinguishable54

from audio in the output domain, multi-scale reconstruc-55

tion losses in the frequency domain are used to ensure that56

the network can recreate the training sample, and the f0 of57

the output is compared to the specifications.58

One possible application of the network is for the task of59

music domain transfer, similar to the application of other60

timbre-transfer methods. In this case, the f0 and loud-61

ness inputs are extracted from an existing audio clip and62

the network generates the analog music in the target do-63

main. Our experiments show that our method generates64

audio that sounds more realistic and is perceived to be of65

a better fit to the original melody than the recent state-of-66

the-art method DDSP [3].67

2. RELATED WORK68

The task of timbre-transfer was tackled by [6]. An image-69

to-image pipeline that uses cycle consistency losses [23] is70

applied to the audio domain by representing audio signals71

as 2D images with the Constant-Q-Transform (CQT). To72

move back from the CQT representation, a WaveNet [15]73

synthesizer that is conditioned on CQT representation was74

used. Another prominent work [14] suggested to learn75

the audio melody by using a WaveNet Autoencoder ar-76

chitecture [4]. One “universal” encoder is used to repre-77

sent melody from raw data, and multiple domain-specific78

decoders are used for audio generation. By presenting79

domain-adversarial loss on the encoding, this method rep-80

resents only the domain-invariant data needed for genera-81

tion, which is predominantly the melody. Even though this82

method presents impressive results on timbre transfer and83

audio translation, it has few major disadvantages: the re-84

liance on large amounts of data, and the heavy computation85

resources required (tens of GPUs).86
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Figure 1. An illustration of our method’s articulation capabilities. (a) The spectrogram of a violin audio. (b) The extracted
fundamental frequency (f0) of the violin. (c) The results of our method. Both the timbre and the articulations were
manipulated. See arrows for a few specific locations where the violin’s articulation is demonstrated.

The differentiable digital signal processing (DDSP)87

method [3], which was proposed recently, is much more ef-88

ficient with regards to both data and computational needs.89

The method presents a DSP hybrid model in which a syn-90

thesizer with learned parameters is used. Like our method,91

DDSP conditions the signal generation on f0 and the loud-92

ness signal. Therefore, it can apply timbre-transfer to any93

audio for which a pitch tracker, e.g., CREPE [9], can suc-94

cessfully extract the f0 signal.95

DDSP and other methods [22] follow the high fidelity96

speech synthesizer of [20] in employing convolutional neu-97

ral networks as shape-shifting filters to a sine-wave input.98

While many speech generation techniques condition the99

network on the f0 signal, this line of methods employ the100

corresponding sine-wave.101

Hierarchical generation was shown to be effective for102

image generation tasks. The progressive GAN method [8]103

breaks down the generation scheme into cascading gener-104

ators and discriminators, improving the image generation105

quality and stabilizing the training process. The SinGAN106

method [17] performs convincing image-retargeting and107

image generation, using multi-scales learning from a sin-108

gle input image.109

3. METHOD110

Our method is hierarchical and consists of generators in111

four different scales. All generators have the same archi-112

tecture of a non-autoregressive WaveNet applied on (scale-113

dependent) input and conditioned on extracted audio fea-114

tures on each scale. The learning process is optimized to:115

(i) decrease the distance between the spectral representa-116

tions of the generated and the target audio, (ii) minimize117

pitch perceptual loss in order to improve pitch coherence,118

and (iii) create realistically sounding examples by the us-119

age of an adversarial loss.120

3.1 Input Features121

An audio sample is denoted by xn = (xn1 , . . . , x
n
T ), where122

T is the length of the signal and n is the finest scale we123

consider. The scaled version of it are denoted by xn−1,124

xn−2, up to x0, which is the coarsest scale. The scaling is125

carried out by down-sampling,126

xn−1[t] =

K−1∑
k=0

xn[tM − k]h[k] (1)

WhereM is the reduction factor, h a FIR anti-aliasing filter127

and K the length of the filter.128

In our experiments, we use four scales j = 0..3. The129

finest generates audio in 16 kHz, while the coarsest gener-130

ates audio in 2 kHz. We chose the coarsest scale to be as131

small as possible on the articulation generation phase, yet132

to include the f0 signal of our target instruments (max of133

1kHz as given by Nyquist rule)134

In our method, audio is generated based on the speci-135

fications of the loudness of the output audio and its pitch.136

The other characteristics (timbre, articulation, and spectral137

quality) are being added by the model, based on the train-138

ing sample. The loudness is given, following [13], by the139

A-Weighting scheme, which is a weighted sum of the log140

of the power spectrum. We denote the loudness extraction141

computation by loud(xj), which is a 1D signal of a length142

that is 32 times shorter than the length of the input xj ,143

j = 0..3, due to the power spectrum extraction.144

The fundamental frequency f0, which is also a 1D145

signal, is extracted using the CREPE pitch tracking net-146

work [9], as is done in [3, 5]. We denote the extracted sig-147

nal by f0(xn) and compute it only at the finest-resolution148

scale. The CREPE network has a resolution of 250Hz,149

which differs from the sampling rate of our network. How-150

ever, this conditioning is provided as a sine-wave at the151

resolution of the coarsest layer (2kHz).152

Specifically, following previous work in speech [20]153

and music synthesis [3, 22], we apply what is known as154

“neural source-filtering”. In this technique, instead of con-155

ditioning the generated sample directly on the extracted f0156

signal, the generator is conditioned on a raw waveform that157

is synthesized via a single sinusoid sine-excitation, calcu-158

lated from upsampled f0(xn). The f0 is downsampled by159

32 from the input signal xn and the coarsest scales j = 0,160

which is generated first, has a frequency that is one eighth161
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Figure 2. An illustration of the hierarchical generation process. (a) A spectrogram depicting the original melody as sang
by a male singer. (b) The extracted fundamental frequency (f0) of the melody. (c-f) The generated audio for a saxophone
from the coarsest scale x0 to the finest x3, respectively. While articulation-based manipulations are already seen in x0, the
full effect of the timbre and spectral-quality is only observed at the final output x3.

of the original audio. Scaling is, therefore, by a factor of 4.162

We denote the generated waveform by η(f0(xn)).163

η(f0(xn)) = sin(

T∑
k=0

2π↑f0(xn)k/fs), (2)

where fs is the sample rate of the audio and ↑ denotes an164

upsampling operator.165

3.2 Hierarchical Generation166

The generated waveform η(f0(xn)) serves as the input to167

the lowest scale generator in the hierarchy, which is de-168

noted by G0. Similarly to our other generators and unlike169

conventional GAN generators, the generator does not re-170

ceive random noise as input.171
In our method, we propose a conceptual relaxation to172

the audio generation task, and divide the generation into173

two distinct phases: timbre painting and articulation on174

the lowest scale, followed by upsampling networks which175

learn to generate higher resolution audio based on the pre-176

vious scale. By doing so, we separate what we consider the177

most difficult part in the generation, namely converting a178

sine wave into well-articulated music, from the aspects of179

timbre painting and spectral quality adjustment. Therefore,180

fewer errors are introduced during the generation process181

and the method produces more coherent audio samples.182
Denote by zj = loud(xj). A set of input encoding183

networks Ej transforms the raw input signal zj into a se-184

quence of vectors, which G is conditioned upon.185

The lowest scale generator operates as follows:186

x̂0 = G0(η(f0(xn)), E0(z0)) , (3)

where the second input is the conditioning signal.187

The following generation steps receive as input the out-188

put of the previous scale generator:189

x̂j = Gn(↑(x̂j−1), zj), (4)

where ↑(x̂n−1) is an upsampled signal that matches the190

next scale. An illustration of the generation process is191

given in Fig. 3.192

3.2.1 Architecture193

The architecture of the generators and discriminators is194

similar to that of [21]. Each generator is composed of 30195

layers stacked into three stacks. The kernel size is 3, using196

64 residual channels and 64 skip channels. The dilation is197

exponentially growing in each stack, providing a receptive198

field of 3072 samples, which translates to a window size of199

1.5sec on the lowest scale and 192ms on the finest.200

The input encoder Ej is composed of instance normal-201

ization, followed by 1D-convolution with kernel size of 1202

that is applied on the condition input z. The number of203

output channels is 80. The output of Ej is provided after204

upsampling via convolutional layers and nearest neighbor205

interpolation to the temporal dimension of the input signal.206



Figure 3. An illustration of the generation process. The generator of the coarsest scale receives as input a sine-wave that
is based on the fundamental frequency of the input sample. All generators are conditioned on the loudness signal of the
appropriate scale. The output of the first generator G0 serves as the input for the subsequent generator G1 and so on.

Training involves a set of discriminators Dj , one per207

scale. Each discriminator is composed of 10 layers of 1D-208

convolution, followed by leakyReLU with negative slope209

of 0.2. The kernel size is 3, and 64 channels are used per210

layer. The dilation is growing linearly. Weight normaliza-211

tion is applied both on the generator and the discriminator.212

3.3 Training213

The learning setup and objective functions are the same for214

all the scales, with respect to the target audio signal. Con-215

veniently, each generator Gj is trained separately, after the216

previous generator Gj−1 is completely trained. We found217

that using the weights of the previous scale generatorGj−1218

to initialize the weights of Gj leads to faster convergence219

than random initialization on every scale. Similarly, the220

discriminator Dj that provides the adversarial training sig-221

nal to the generator Gj is initialized based on Dj−1.222
At each scale j, we obtain a training set Sj by dividing223

the training sample, after it has been downsampled to scale224

j to audio clips xj of length 2sec.225

3.3.1 Objective function226

A time-frequency reconstruction loss is used to align to the
generated audio sample with the target audio. Specifically,
the spectral amplitude distance loss [1,16], in multiple FFT
resolutions [3, 20, 21] is used. For a given FFT size m, the
spectral amplitude distance loss is defined as follows:

L(m,j)
recon =

∑
xj∈Sj

(
‖|STFT(xj)| − |STFT(x̂j)|‖F

‖STFT(xj)‖F

+
‖ log |STFT(xj)| − log |STFT(x̂j)|‖1

N

)
(5)

where x̂j is given by Eq. 3 and Eq 4, ‖·‖F and ‖·‖1 denotes227

the Frobenius and the L1 norms, respectively. The first ele-228

ment in the sum penalizes dominant bins in the magnitude229

while the second penalizes the silent parts. STFT denotes230

the magnitude of a Short-time Fourier transform with N231

elements in the spectrogram.232
The multi-resolution loss is defined as the mean of the233

above loss for multiple scales:234

Lj
recon =

1

NM

∑
m∈M

L(m,j)
recon (6)

where M = [2048, 1024, 512, 256, 128, 64] and NM = 6235

is the number of FFT scales. Using the multi-resolution236

loss, we implicitly constrain the phase of the output signal237

to be correct and prevent artifact noises.238

To make the generated quality of the audio signals239

sound realistic, we introduce an adversarial loss. On each240

scale, we apply a different discriminator Dj to account for241

different statistics between scales. We follow the least-242

squares GAN [12], where the discriminator minimizes the243

loss244

Lj
D =

∑
x∈Sj

[||1−Dj(xj)||22 + ||Dj(x̂j)||22] (7)

Each trained generator Gj minimizes the adversarial245

loss (recall that x̂j is computed with Gj):246

Lj
adv =

∑
xj∈Sj

||1−Dj(x̂j)||22 (8)

To further improve the generation quality, we add a per-247

ceptual loss [7] on the generator output, using the CREPE248

network [9]. Denoting the mapping between the input sig-249

nal x and the intermediate activations the CREPE network250

as h(↑x), which requires an upsampling to 16kHz, this loss251

takes the form:252

Lj
percep =

∑
xj∈Sj

‖h(↑xj)− h(↑x̂j)‖1 . (9)

The optimization with this loss requires the upsampling253

operator to be differentiable.254

In order to support a more direct comparison of the255

methods, following DDSP [3], the fifth max-pool layer of256

the small CREPE model is employed.257

Overall, the optimization loss for a generator Gj , is de-258

fined as:259

Lj
G = Lj

recon + αLj
adv + βLj

percep (10)

where α, β are weight factors that balance the contribution260

of each loss term.261

4. EXPERIMENTS262

We conduct timbre-transfer experiments for multiple in-263

struments, and compare the results to the state-of-the-art264

timbre transfer method DDSP [3].265



Target Similarity Melody Similarity

Instrument/Method DDSP Our DDSP Our

Cello 4.11 ± 0.16 4.24 ± 0.16 4.00 ± 0.32 4.01 ± 0.49
Saxophone 3.09 ± 0.53 3.47 ± 0.54 3.87 ± 0.41 3.91 ± 0.53
Trumpet 3.29 ± 0.45 4.01 ± 0.33 3.99 ± 0.29 4.11 ± 0.51
Violin 4.02 ± 0.35 4.13 ± 0.27 4.13 ± 0.39 4.22 ± 0.39

All samples 3.63 ± 0.60 3.96 ± 0.46 4.00 ± 0.36 4.06 ± 0.50

Table 1. MOS evaluation for the timbre transfer task for multiple target instruments.

4.1 Datasets266

We used the University of Rochester Music Performance267

(URMP) dataset [11], a multi-modal audio-visual dataset268

containing classical music pieces. The music is assembled269

from separately recorded audio stems of various mono-270

phonic instruments. For our experiments, we used only the271

separated audio stems for each instrument. f0 extraction272

was carried out by CREPE [9], although the URMP dataset273

provides ground truth melody signals, since we wanted to274

apply similar methods during train and test.275

We trained both the baseline DDSP [3] method and our276

model on generating four different instruments from the277

URMP dataset: cello, saxophone, trumpet and violin. As a278

prerocessing step the audio files were resampled to 16kHz.279

To improve the ability of learning meaningful f0 represen-280

tation we removed in each dataset samples which achieved281

less than 0.85 mean confidence on CREPE extractor. Each282

dataset was separated into a training and evaluation set by283

0.85/0.15 split. After the preprocessing, we ended up with284

small dataset sizes: 6.5 minutes of cello, 6 minutes of sax-285

ophone, 17 minutes of trumpet and 39 minutes of violin.286

4.2 Experiment Setup287

Our models were trained with α=1 and β=1. We used the288

Adam optimizer [10] with a learning rate of 0.0005 for the289

generators and 0.0001 for the discriminators. Each scale290

was trained for 120K iterations, with batch sizes of 32, 16,291

8 and 4, from coarsest to finest. The learning rates were292

halved after 60K iterations. The discriminators were intro-293

duced to the training process on iteration 30K. To improve294

the robustness of our method we added a random Gaussian295

noise with a standard deviation of 0.003 to the η(f0(xn))296

signal, inspired by [20].297

For the baseline evaluation of the DDSP method, the298

open source GitHub implementation 1 provided by the au-299

thors of [3] was used. The experiments were carried out300

for 100K iterations with a batch size of 16. The hyper-301

parameters used are the ones provided by the recipe avail-302

able in that repository.303

4.3 User Study304

To inspect the results of the timbre transfer experiments we305

carried out a mean opinion scores (MOS) evaluation. We306

sampled six audio clips varying from 5-10s, long enough307

1 https://github.com/magenta/ddsp

for good evaluation. The origin instruments are: clarinet,308

saxophone, female singer, male singer, trumpet and vio-309

lin. For each audio sample, we conducted timbre transfer310

using the four models of the target instruments, resulting311

in a matrix of 24 inspection files for our method and 24312

for the baseline. The timbre-transfer was done by extract-313

ing the loudness and pitch features from the source audio,314

aligning pitch key to the target (if needed) and generation315

procedure. The evaluations samples are available in the316

supplementary material. Twenty raters were asked to rate317

the generated outputs by two criteria: (i) target similarity318

to the transferred instrument, and (ii) the melody similarity319

to the original tune. Scores vary on a scale of one to five.320

4.4 Results321

As can be seen in Tab. 1, our method outperforms DDSP322

both by the melody similarity and target similarity. While323

the baseline method gets a relatively close score on melody324

similarity, it is inferior in sound quality and its ability to325

mimic the target instrument. For example, in some cases326

DDSP fails to imitate the target domain timbre, and pro-327

duces a sine-sounding signal in the correct pitch. An ex-328

ample of a challenging conversion is depicted in Fig. 4.329

The high melody preserving results of both methods re-330

flect the fact that both utilize a meaningful f0 sine-wave331

signal, which aligns the output melody well with the in-332

put melody. However, the target similarity results can be333

explained through the crux of the DDSP mechanism: the334

learnable function on this network optimizes control pa-335

rameters of a deterministic noise-additive synthesizer, thus336

it is upper bounded by the quality of the best-setup syn-337

thesizer. Our method, on the other hand, enjoys the ex-338

pressiveness of a fully capable neural generator, thus can339

deviate considerably from the source, if needed, in order to340

generate realistic sounds.341

4.5 Data efficiency342

Another advantage of our method is the need for a min-343

imal amount of training data to generate high quality sam-344

ples. Successful timbre-transfer results are produced from345

datasets of few minutes long. For comparison we have346

trained a state-of-the-art WaveNet based model for mu-347

sic translation [14] on two different datasets: URMP, as348

presented above, and a 30min subset of MusicNet [18], as349

discussed in Sec. 5. In both cases, the music translation350

method [14] failed due to the limited amount of data.351
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Figure 4. A challenging conversion from a female voice
to a cello. (a) The results of DDSP. (b) Our results. While
DDSP introduces synthetic noise in order to bridge the dif-
ferent characteristics of the two domains, our method suc-
cessfully manages to overcome and adapt the input signal
to cello’s articulation and timbre .

5. DISCUSSION352

Recent music AI models vary in the number of parameters353

and in the required size of the training data. The very re-354

cently introduced jukebox model [2] was trained on over355

a million songs using hundreds of GPUs, and include 7356

billions parameters. The autoencoder-based music-domain357

translator [14] was trained on hours of audio, using tens of358

GPUs and includes 42M parameters. In comparison, mod-359

els such as ours are trained on a single GPU, require min-360

utes of audio, and have orders of magnitude less param-361

eters, 1.4M on each scale in our case. The total number362

of parameters is even smaller than the lean DDSP model,363

which is of 6M parameters. Taking into account the fact364

that each scale is trained separately, our model is much365

more accessible to universities and other small-scale re-366

search labs than the other models in the literature.367

The method generates sound by shape-shifting a sine-368

wave, which serves as the skeleton of the rich-timbre369

painted output. Using scales reflects the inherent struc-370

ture of the musical audio signal, which is composed of371

harmonies on different pitch resolutions. The utilization372

of this strong prior allows us to achieve state-of-the-art re-373

sults much more efficiently.374

The hierarchical structure, which is natural for music375

generation, also exists in other methods, but in a different376

way. In the jukebox model, the hierarchy is used sepa-377

rately in the encoders and in the decoders, i.e., all encoder378

scales are applied, followed by the decoder scales. In our379

model, there is an interleaving structure in which genera-380

tion is completed at the lowest scale (including both input381

encoding and the WaveNet decoder), moving to the pro-382

cesses of the next scale and so on.383

Limitations The economic nature of the model is not384

without limitations. Unlike the jukebox model, our model385

does not produce a discrete encoding that can be used (to-386

gether with an sizable transformer model) for composing387

new music. In order to add a similar capability, we would388

need to quantize the input encoding modules (Ej) using389

techniques such as VQ-VAE [19] and to train an auto-390

regressive model for each level of the hierarchy. Alter-391

natively, any composition method can be used to generate392

the bare-bones input signal of the network, which would393

then add the articulation and the timbre to create a richer394

musical experience.395

In the current form, unlike both jukebox and the autoen-396

coder music translator, our model does not share informa-397

tion between different domains, and needs to be retrained398

on each domain. It is not difficult, however, to modify it to399

be conditioned on multiple target domains, a path that has400

been followed many times in the past for other WaveNet-401

based generators.402

The current method relies on the f0 signal as extracted403

by a pretrained network that has been trained on mono-404

phonic instruments. Since the pitch tracker we employ405

was trained on monophonic instruments [9], the results on406

polyphonic instrument are mostly reasonable but not al-407

ways. When successful, our method is successful in trans-408

forming the melody to the learned monophonic target do-409

mains. However, training polyphonic target instruments410

remains a challenge since it relies on such a success across411

the training samples. In the supplementary we present re-412

sults obtained for polyphonic instruments (keyboard and413

piano samples from MusicNet), for both our method and414

DDSP. Both methods succeed to some degree with our415

method presenting what we consider to be a slight advan-416

tage (see supplementary samples). As future work, we417

note that our method can be readily extended to employ418

encoders, such as the ones of [2, 14], which were trained419

on large collections of polyphonic music.420

6. CONCLUSIONS421

We present a novel method of music generation which re-422

lies on neural source filtering and hierarchical generation.423

The method achieves high quality audio generation despite424

training on small training datasets. The generated input425

is conditioned on loudness and pitch signals, which are426

almost source-agnostic, and the characteristic articulation427

and timbre of the target instrument are introduced through428

a series of generators.429
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