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ABSTRACT 

 
In this work, we examine the strength of deep learning approaches 

for pathology detection in chest radiographs. Convolutional neural 

networks (CNN) deep architecture classification approaches have 

gained popularity due to their ability to learn mid and high level 

image representations. We explore the ability of CNN learned from 

a non-medical dataset to identify different types of pathologies in 

chest x-rays. We tested our algorithm on a 433 image dataset. The 

best performance was achieved using CNN and GIST features. We 

obtained an area under curve (AUC) of 0.87-0.94 for the different 

pathologies. The results demonstrate the feasibility of detecting 

pathology in chest x-rays using deep learning approaches based on 

non-medical learning. This is a first-of-its-kind experiment that 

shows that Deep learning with ImageNet, a large scale non-medical 

image database may be a good substitute to domain specific 

representations, which are yet to be available, for general medical 

image recognition tasks. 

 
Index Terms — Chest Radiography, Computer-Aided Diagnosis 

Disease Categorization, Deep Learning, Deep Networks, CNN. 

 

1. INTRODUCTION 

 
Chest radiographs are the most common examination in radiology. 

They are essential for the management of various diseases 

associated with high mortality and display a wide range of 

potential information, many of which is subtle. Most of the 

research in computer-aided detection and diagnosis in chest 

radiography has focused on lung nodule detection. Although the 

target of most research attention, lung nodules are a relatively rare 

finding in the lungs. The most common findings in chest X-rays 

include lung infiltrates, catheters and abnormalities of the size or 

contour of the heart [1]. Fig. 1 shows examples of healthy and 

pathological chest X-rays. Distinguishing the various chest 

pathologies is a difficult task even to the human observer. 

Therefore, there is an interest in developing computer system 

diagnosis to assist radiologists in reading chest images. 

      Initial studies on chest pathology detection in radiographs can 

be found in the literature [2, 3, 4]. In [2] the healthy versus 

pathology detection in chest radiography was explored using Local 

Binary Patterns (LBP) [5]. Avni et al. [3, 4] used the Bag-of-

Visual-Words (BoVW) model [6] to discriminate between healthy 

and four pathological cases.  

      Deep neural networks have recently gained considerable 

interest due to the development of new variants of CNNs and the 

advent of efficient parallel solvers optimized for modern GPUs. 

Deep learning refers to machine learning models such as 

Convolutional Neural Networks (CNNs) that represent mid-level 

and high-level abstractions obtained from raw data (e.g. images) 

[7]. Recent results indicate that the generic descriptors extracted 

from CNNs are extremely effective in object recognition, and are 

currently the leading technology [8, 9]. Deep learning methods are 

most effective when applied on large training sets. In the medical 

field such large datasets are usually not available. Initial studies 

can be found in the medical field that uses deep architecture 

methods [10, 11]. However, we are not aware of any works that 

use generic, non-medical, training sets in order to address a 

medical imaging task. Moreover, we are not aware of any deep 

architecture methods for the specific task of pathology detection in 

chest radiographs. 

      In our work, we utilize the strength of deep learning 

approaches in a wide range of chest-related diseases. We also 

explore categorization of healthy versus pathology which is an 

important screening task. We empirically explore the use of CNNs 

for these tasks with a particular focus on pre-trained CNN that is 

learned from a large scale real-life and non-medical image 

database. We later show that categorization rates can be slightly 

improved by combining features extracted from CNN and common 

low-level visual features that are optimal for the task of object 

categorization.  

 

2. METHODS 

 
CNNs constitute a feed-forward family of deep networks, where 

intermediate layers receive as input the features generated by the 

former layer, and pass their outputs to the next layer. The strength 

of a deep network is in learning hierarchical layers of concept 

representation, corresponding to different levels of abstraction. For 

visual data, the low levels of abstraction might describe the 

different orientated edges in the image; middle levels might 

describe parts of an object while high layers refer to larger object 

parts and even the object itself. In this work, we tested the deep 

learning network capabilities in chest pathology detection  

 

2.1. Pre-trained CNN model using ImageNet 
 

We focus on the Decaf pre-trained CNN model [12], an adaptation 

of a CNN which closely follows the CNN which was constructed 

by Krizhevsky et al. [13], with the exception of small differences 

https://plus.google.com/u/0/114572833782308972723?prsrc=4


in the input data and the cancelation of the split of the network into 

two pathways. The CNNs in [12, 13] were learned over a subset of 

images from ImageNet [14], a comprehensive real-life large scale 

image database (>20M) that is arranged according to 

concepts/categories (>10K). Specifically, [12] learned a CNN on 

more than one million images that are categorized into 1000 

categories, which is illustrated in Figure 2. 

      

 
 

Fig. 1. Chest x-rays categories examples: (a)-(c) healthy; (d)-(f) 

enlarged heart (cardiomegaly); (g)-(i) enlarged mediastinum; (j)-(l) 

left or right effusion; (m) multiple pathologies: enlarged heart and 

mediastinum, left and right effusion.  

 

 

Using the notation of [12] to denote the activations of the n-

th hidden layer of the obtained network as Decafn, the 5th layer 

(Decaf5) and 6th layer (Decaf6) and 7th layer (Decaf7) features 

were extracted and defined as descriptors. Decaf5 denotes the last 

convolutional layer and is the first set of activations that has been 

fully propagated through the convolutional layers of the network 

and Decaf6 denotes the first fully-connected layer. 

 

 
 

Fig. 2. An illustration of the architecture of the CNN used by [12]. 

 

 

2.2. Selecting and Combining feature sets  
 

We tested several common descriptors that are known in the 

literature, including GIST [15] and Bag-of-Visual-Words (BoVW). 

The GIST descriptor [15] is derived by resizing an image to 128 x 

128 and iterating over different scales (4 scales in our case) where 

for each scale the image is divided into 8x8 cells. For each cell, 

orientation (every 45 degrees), color and intensity histograms are 

extracted, and the descriptor is a concatenation of all histograms, 

for all scales and cells.  

BoVW is a state-of-the-art method that has been previously tested 

for this specific task [3, 4]. The BoVW [6] image representation is 

adapted from the bag-of-words (BoW) representation of text 

documents. Therefore, to represent an image using BoVW model, 

it must be treated as a document, which means that the image is 

treated as a distribution of visual elements. We thus need to find 

these visual elements and discretize their space in order to create 

the visual word dictionary. Once we generated the visual word 

dictionary, an image can be represented as a histogram of visual 

word occurrences based on the collection of its local descriptors. 

We implemented the visual words model [3, 4] as follows: (1) 

extracting patches from each training image, (2) Applying 

Principal Component Analysis (PCA) for dimensionality reduction 

to reduce noise level and computational complexity, (3) adding the 

patch center coordinates to the feature vector. This introduces 

spatial information into the image representation, without the need 

to explicitly model the spatial dependency between patches, (4) 

clustering of all patches using K-means into representative visual 

words generating a dictionary. K-means is a common clustering 

method which clusters the input feature vectors into K groups 

where their centers used as the visual words which build the 

dictionary. A given (training or testing) image can now be 

represented by a unique distribution over the generated dictionary 

of words. Empirically, we found that using 7 PCA components of 

variance-normalized raw patches and using a dictionary size of 

1000 words results in the best classification performance. 

All features used in our work were normalized: each feature 

across all images has its mean subtracted, and is divided by its 

standard deviation. Following normalization, we applied fusion of 

different feature groups. Empirically we claim that fusing CNN 

intermediate layers features with GIST features captures the salient 

information that allows a more accurate categorization of our 

problem. We implemented a fusion approach of the different 

features by averaging the class probabilities obtained for each 

feature group. The algorithm flowchart is described in Figure 3. 

 



 
Fig. 3. Algorithm flowchart. 

   

3. EXPERIMENTS AND RESULTS 

 

3.1. Data 

 

Our dataset consists of 443 frontal chest x-ray images (DICOM 

format). The images were acquired from the Diagnostic Imaging 

Department of Sheba Medical Center (Tel-Hashomer, Israel). Two 

radiologists interpreted the X-rays, and this served as the reference 

gold standard. The radiologists examined all of the images 

independently. They then discussed and reached a consensus 

regarding the label of every image. For each image and pathology 

type, a positive or negative label was assigned. The images depict 

3 chest pathology conditions: Right Pleural Effusion (44 images), 

Cardiomegaly (99 images) and Abnormal Mediastinum (110 

images). Overall, the dataset contains 219 images with at least one 

pathology condition. The digitized images were cropped and 

centered. 

 

3.2. Experimental Results 

 

We started with a binary categorization task, per pathology. 

Classification was performed using a Support Vector Machine 

(SVM) classifier with leave-one-out-cross-validation method. For 

each binary categorization task, cases diagnosed with the examined 

pathology were labeled as positive cases, while cases that weren’t 

diagnosed with this pathology were labeled as negative cases. We 

investigated the different linear and nonlinear kernels (linear, 

polynomial and RBF) using standard grid-search technique, and 

empirically selected the efficient non-linear intersection kernel. 

Three accuracy measures were examined: sensitivity, specificity 

and the area under the ROC curve (AUC). Sensitivity and 

Specificity are derived based on the optimal cut point on the ROC 

– the point on the curve closest to (0,1).  

   Tables 1-3 present the experimental results. We report Decaf5 

and Decaf6 baseline descriptors (Decaf7 gave less significant 

results). We note the boost in performance following the 

introduction of deep architecture descriptors. For all cases, the 

deep architecture descriptors outperform the GIST descriptor. 

Another improvement was gained by applying late fusion on the 

baseline descriptors: Decaf5, Decaf6 and GIST. In almost all cases 

the fused descriptor outperforms the deep architecture single-

layered descriptors. In several of the cases a clear improvement 

over the BoVW descriptor is shown.   
Figure 4 shows comparative ROC curve analysis performed 

on our dataset using a leave-one-out-cross-validation method. It 

can be seen that our fused method matches or outperforms all other 

tested methods. 

 
  Deep Learning Late Fusion 

Descriptor GIST BoVW L5 L6 GIST+L5+L6 

Right Pleural 

Effusion 0.87 0.89 0.94 0.90 0.92 

Cardiomegaly 0.92 0.94 0.93 0.91 0.94 

Mediastinum 0.83 0.86 0.87 0.87 0.88 

Healthy vs 

Pathology 0.84 0.88 0.86 0.86 0.87 

                  Table 1. AUC accuracy metric. 

 
  Deep Learning Late Fusion 

Descriptor GIST BoVW L5 L6 GIST+L5+L6 

Right Pleural 

Effusion 0.82 0.84 0.89 0.89 0.86 

Cardiomegaly 0.84 0.89 0.85 0.87 0.89 

Mediastinum 0.79 0.80 0.81 0.74 0.80 

Healthy vs 

Pathology 0.83 0.80 0.80 0.86 0.84 

                  Table 2. Sensitivity accuracy metric. 

 
  Deep Learning Late Fusion 

Descriptor GIST BoVW L5 L6 GIST+L5+L6 

Right Pleural 

Effusion 0.80 0.85 0.87 0.80 0.83 

Cardiomegaly 0.82 0.87 0.89 0.82 0.86 

Mediastinum 0.78 0.80 0.82 0.84 0.85 

Healthy vs 

Pathology 0.72 0.79 0.79 0.72 0.78 

                  Table 3. Specificity accuracy metric. 

 

 

4. CONCLUSIONS 
 

In conclusion, in this work we present a system for the medical 

application of chest pathology detection in radiograph images 

which uses CNN that is learned from a non-medical dataset 

(ImageNet). Unlike previous work on using pre-trained CNNs as a 

feature extraction method [8], in our case Decaf5 baseline 

descriptor is the leading representation. This representation alone 

is an effective off-the-shelf descriptor for chest x-ray retrieval 

tasks. We have demonstrated that this result can be improved by 

fusing the baseline descriptors of Decaf5, Decaf6 and GIST, 

assuming that the combination captures information that eludes 

each one of the descriptors alone. Future work entails further 

tuning of the CNN with actual x-ray data. We believe such tuning 

may augment the CNN performance even further. Our results 

demonstrate the feasibility of detecting pathology in chest x-ray 

using deep learning approaches based on non-medical learning. 

This is a general approach that is also applicable to other medical 

classification tasks. 



 
Right Pleural Effusion Detection. 

 
  Abnormal Mediastinum Detection. 

 
  Cardiomegaly Detection, 

 
         Healthy vs. Pathology Detection. 

 

Fig. 4. ROCs of different examined pathologies.  
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