
Automatic Program Synthesis of Long Programs with a Learned Garbage Collector
𝐴𝑚𝑖𝑡 𝑍𝑜ℎ𝑎𝑟1, 𝐿𝑖𝑜𝑟 𝑊𝑜𝑙𝑓1,2

Problem:
➢ Input: A handful of input/output examples for a program
➢ Goal: Generate a program that corresponds to all of the examples

Method:
➢ Step-Wise Approach: Predict the program statement by statement
➢ Garbage Collection: Predict which variables can be discarded at each step
➢ Dynamic Input: Use intermediate program states as input for the model
➢ Prediction Guided Search: Perform a tree search guided by the model’s

predictions to find a correct program

Achievements:
➢ Synthesis of programs more than twice as long as state-of-the-art
➢ Near perfect success rate for existing lengths

Overview

We wish to represent an intermediate state of a program during its execution:

Program State:
The sequence of all the variable values acquired thus far, starting with the program’s input,
and concatenated with the desired output

Program Environment:
The concatenation of all the program’s states (one for each input/output example)

Program Environment

We use a Domain Specific Language (DSL) borrowed from
DeepCoder (Balog et al., 2017).

• High-level programs – complex methods in a few lines of code
• A program is a sequence of function calls with their parameters
• Every statement creates a new variable – the result.
• The variables are either integers or arrays of integers.
• Contains high-level functions like MAP and low-level functions like HEAD,

MIN.
• The problem becomes increasingly harder with program length: for a

program of length 8 – 752 possibilities for every statement.

1Tel Aviv University 2Facebook AI Research

A depiction of the state encoding module of our network

Training:
Optimize three tasks concurrently:
➢ Statement Prediction: The main task
➢ Variable Dropping: Allows to generate longer programs
➢ Function Prediction: Auxiliary task - provides hierarchical structure to

statements

Inference:
Search for a correct program:
➢ Tree search – nodes are environments, edges are statements
➢ Use Complete Anytime Beam Search (CAB) – perform beam search in a loop,

increasing the beam size and width at each iteration
➢ Maintain a program environment with the program predicted thus far
➢ Query the network at each step and order edges accordingly
➢ When the number of variables is exceeded – drop variables according to the

network’s predictions

A real program synthesized by our method

Comparison of our method (PCCoder) with DeepCoder
(*reimplementation) for various program lengths

Comparison of our method (PCCoder) with other synthesis methods
for program length 8 (*reimplementation)

Ablation analysis of our method (program length 8)
amit.zhr@gmail.com

https://arxiv.org/abs/1809.04682
https://github.com/amitz25/PCCoder

DSL

Architecture

Our network’s architecture

A program in the DSL with two
input-output samples

The environment of the program
after executing line 3

Program Environment

