Automatic Program Synthesis of Long Programs with a Learned Garbage Collector

Amit Zohar?!, Lior Wolf1* Artificial Intelligence Research

ITel Aviv University 2Facebook Al Research

facebook

100

o I PCCoder
. Overview Architecture . —
Problem: 80
» Input: A handful of input/output examples for a program : ' icti
Input: put/outp p prog Variables + Output Function Predictions B
» Goal: Generate a program that corresponds to all of the examples . i S
Inear — 2 60
State 1 Dense Block p
Method: N R L g
» Step-Wise Approach: Predict the program statement by statement Statement Predictions w0
» Garbage Collection: Predict which variables can be discarded at each step State 2] State Average : 30
: : : : SR > > — Linear —
» Dynamic Input: Use intermediate program states as input for the model Encoder Pooling y
» Prediction Guided Search: Perform a tree search guided by the model’s S ;
predictions to find a correct program tate . —— Drop Predictions b
Linear SELU Linear SELU Linear SELU |_ 0 5 8 10 12 14
° BN, e
Achievements: inear Program Length
» Synthesis of programs more than twice as long as state-of-the-art Comparison of our method (PCCoder) with DeepCoder
» Near perfect success rate for existing lengths Our network’s architecture (*reimplementation) for various program lengths
m : H:Zﬂ ﬁut: [2,1,-1,2,4,-1,-1,3,1,4,4,4,-1,2,0,5], [57, 133, 220, 231, 186, 82, 45, 14, 227, 227, 89, 109]
° ° v v Output: [6, 10]
DSL Program Environment Program Environment '3 < MAP (410 p
v4 & REVERSE v3 nput: [1,0,7,-1,1,3,7,2,5,7,-1,1, 4, 1], [188, 237, 212, 202, 50, 19, 232]
v5 & ZIPWITH (+) v4 v4 Output: [4, 6]
v6 & FILTER (>0) v5
Sz S 3 We wish to represent an intermediate state of a program during its execution: Training: POt mput: 17,13, 1,0,8, 1253, 51]
a < [int] Optimize three tasks concurrently: S IEE Y Qutput: 136,641
b & FILTER (%2==0) a Input Input Program State: > Statement Prediction: The main task v11 & REVERSE v10 Input: 16,5,0,6,3,4,1,7,7,7,3,8], [42, 59, 64, 29, 186, 102, 186, 141]
13,54,138,209,36,83 -167,-11,-199,140,148,-124 : : : : , : : v12 € SCANIL (+) vi1 utput: (14, 26]
¢ & MAP(/2) b [13,54,138,209,36,83] [167,-11,-199,140,148,-124] The sequence of all the variable values acquired thus far, starting with the program’s input, » Variable Dropping: Allows to generate longer programs el & sl e e
d & SORT ¢- . . . via < IAKEv2vis input: 112, 3,8, 8,12, 6,11, 2], [246, 113, 222, 18, 144, 250, 6, 63]
e ¢ LAST d Output Output and concatenated with the desired output » Function Prediction: Auxiliary task - provides hierarchical structure to VIS < TAKE Vi3 vid oot 15,59, 10.88. 109 110 /
69 /4 statements
Program Environment: A real program synthesized by our method
The concatenation of all the program’s states (one for each input/output example) Inference:
We use a Domain Specific Language (DSL) borrowed from Search for a correct program: Nodel ol o] T T 1
. ode otal solve imeout needed to solve
DeepCoder (Balog et al., 2017). > Tree search — nodes are environments, edges are statements
2 < [int] Sample 1: Sample 2: State 1 State 2 > Use Complete Anytime Beam Search (CAB) — perform beam search in a loop, 1% 2% 4% 5%
* High-level programs — complex methods in a few lines of code b ¢ FILTER (%2==0)a - 3.6 4,8,11) increasing the beam size and width at each iteration PCCoder 33%, 025 03s 04s 0.6s
* Aprogram is a sequence of functhn calls with their parameters c & MAP (/2) b 3.6] [4,8,11] 6] 4,8] > Maintain a program environment with the program predicted thus far DeepCoder* 5% 44s 245s 311s 971s
e Every statement creates a new variable — the result. d <& SORT ¢ _— . 3] 2,4] > Query the network at each step and order edges accordingly RobustFill* (Attn A) 29, R8s 843 i)
* The variables are either integers or arrays of integers. e < LASTd 3 4 3 4 » When the number of variables is exceeded — drop variables according to the RobustFill* (Attn B) 4% 7s 1ls 517s -
* Contains high-level functions like MAP and low-level functions like HEAD, network’s predictions
MIN. A program in the DSL with two The environment of the program Comparison of our method (PCCoder) with other synthesis methods
H M M State 1 State 2 | * i i
* The problem becomes increasingly harder with program length: for a input-output samples after executing line 3 for program length 8 (*reimplementation)
program of length 8 — 752 possibilities for every statement.
Model Total solved Timeout needed to solve
Program State i Bl R Bl Bl " 20% 40% 60% T0% 80%
Varl: | [12,4] 0 > |1 0 |63 |2/ |—> — PCCoder 83% 38 10s 84s 202s 635s
Var2: [5,1] ol T I —— 11 181 los . Linear : . | | | PCCoder (ten I/O test samples) 84% 0.6s 9s 70s 135s 530s
Wi 2 15 L{T&iﬁ?mg’ :Erfbgezrding Concatenation State 1 State2 | State 1 State2 [statel State 2 PCCOder (HO function head) 70% 58 668 3478 9538
vard: | 13 T (A3 N 1 [96 109 —» —> PCCoder (no drop head) 7% 6s 11s 161s 741s -
output: | 8 " Ts In " Tae Tos PCCoder (only statement head) 66% 7s 126s 660s - -
1 o[>, N o e, PCCoder (DFS) 67% 29s 310s 692s - -
amit.zhr@gmail.com & F X s N & |3 X
https://arxiv.org/abs/1809.04682 A depiction of the state encoding module of our network g 2 < Ablation analysis of our method (program length 8)
https://github.com/amitz25/PCCoder

