
TVLA : User’s Manual

(Working Draft)

Roman Manevich∗ Mooly Sagiv†

August 23, 2004

Contents

1 Introduction 3
1.1 Downloading and installing 3

2 Graphical representation 3
2.1 Colors . 5
2.2 Shapes . 5
2.3 Edges . 5

3 TVP 5
3.1 Predicates . 5
3.2 Formulae . 6
3.3 Consistency rules . 11
3.4 Actions . 11

3.4.1 Specifying the title of an action with %t 12
3.4.2 Updating predicates 12
3.4.3 Using preconditions for filtering with %p 12
3.4.4 Focusing structures with %f 12
3.4.5 Reporting messages with %message 12
3.4.6 Creating new nodes with %new 12
3.4.7 Retaining nodes with %retain 13

3.5 Specifying the control flow graph 13
3.6 Usability features . 13

∗mailto:rumster@tau.ac.il
†mailto:msagiv@tau.ac.il

1

mailto:rumster@tau.ac.il
mailto:msagiv@tau.ac.il

3.6.1 Writing comments . 13
3.6.2 Preprocessing . 13
3.6.3 Sets . 13
3.6.4 Foreach . 14
3.6.5 Composite operations 14

4 TVS 14

5 Command line options 15

6 Property files 18

7 Changes since version 0.91 19

8 Additional references 20

References 21

2

1 Introduction

This document is intended as a user’s manual for the TVLA system. The
reader should be familiar with the Three-Valued Logic based Analysis frame-
work described in [SRW02] before consulting this manual. The manual is
accompanied by an example of the analysis of the reverse function in Fig-
ure 1.

The original algorithms in the system were designed and implemented
by Tal Lev-Ami [LAS00, LA00].

1.1 Downloading and installing

The system and latest information is available at:
http://www.cs.tau.ac.il/~tvla/.
Please see the file LICESNE for licensing information.

Installation procedure:

1. TVLA is written in Java and requires J2SE version 1.4.2 (or above),
available from http://java.sun.com/j2se/. Before attempting to
run TVLA, make sure it is possible to launch Java executables by
entering “java” at the command-line prompt.

2. TVLA uses DOT to generate Postscript files and requires Graphviz
version 1.12 (or above), available from
http://www.research.att.com/sw/tools/graphviz/. After installing
Graphviz, make sure the bin sub-directory is added to your path.

3. Extract the archive’s content and set the environment variable TVLA HOME
to that location.

4. Add the bin sub-directory to your path (the bin directory contains
running scripts for Windows and Linux).

IMPORTANT: Make sure the path does not contain trailing ’\’ char-
acters or trailing ‘/‘ characters.

5. You are now ready to run the system. Enter tvla to see usage infor-
mation and command-line options.

2 Graphical representation

3-valued structures are displayed using graphical representation. For exam-
ple an input structure for the reverse function is given in Figure 2.

3

http://www.cs.tau.ac.il/~tvla/
http://java.sun.com/j2se/
http://www.research.att.com/sw/tools/graphviz/

/* list.h */

typedef struct node

{
struct node *n;

int data;

} *L;

/* reverse.c */

#include "list.h"

L reverse(L x) {
L y, t;

y = NULL;

while (x != NULL) {
t = y;

y = x;

x = x->n;

y->n = t;

t = NULL;

}
return y;

}
(a) (b)

Figure 1: (a) Declaration of a linked-list data type in C. (b) A C function
that uses destructive updating to reverse the list pointed to by parameter
x.

%n = {head, tail}
%p = {

sm = {tail:1/2}
n = {head->tail:1/2, tail->tail:1/2}
x = {head}
t[n] = {head->head, head->tail, tail->tail:1/2}
r[n,x] = {head, tail}

}
x

r[n,x]

r[n,x] n t[n]

n t[n]

t[n]

Figure 2: The TVS of an input structure for the reverse function analysis
and its graphical representation.

4

2.1 Colors

Colors are used to represent the different values for predicates. Solid black
is true (1), dotted black is unknown (1/2), and red is false (0).

2.2 Shapes

The values of nullary predicates are displayed in a box titled “nullary”.
By default, nullary predicates with true values are written inside the box,
nullary predicates with false values, are not shown and nullary predicates
with indefinite values (1/2) have the value added next to them.

An ellipse represents a node. If the ellipse is double-circled then the
node is a summary node, and if it is green then the node is maybe active
(ac = 1/2). Unary predicates are written within the ellipse. If the value is
different from 1 it is appended to predicate’s name (i.e., = 0 or = 1/2).

2.3 Edges

Binary predicates are represented as directed arrows between the left and
right arguments and annotated by the name of the predicate. If a binary
predicate has the same value for both u1->u2 and u2->u1 the two edges are
replaced with a bidirectional edge.

3 TVP

The specification of the analysis including the control flow graph of the
analyzed program is given in a format called TVP (Three Valued Program).
A TVP file should end with the extension ’.tvp’. The TVP for the analysis
of the reverse function is given in Figures 3, 4, and 5. The syntax of a TVP
file is given in Figure 6. The syntax is in extended BNF when A ⊲⊳ B denotes
a (possibly empty) sequence of A’s separated by B’s. Missing displaying
different kleene values.

3.1 Predicates

The predicate name can be either <id> or <id>[<id>, . . . , <id>]. These
are ordinary names. The intention of the <id>[<id>, . . . , <id>] format
is to denote predicates which are parameterized by source properties such
as names of fields and pointer variables. This is especially good for instru-
mentation predicates. The predicate’s arity is determined by the number
of variables in parenthesis. For a description of the properties that can be
used in predicate declaration see Table 1.

5

// Set of names of program variables.
%s PVar {x, y, t}
/* Program variables definition */
foreach (z in Var) {

%p z(v1) unique pointer
}
// A predicate to represent the n field of the list data type.
%p n(v1, v2) function
// Is shared instrumentation.
%i is[n](v) = E(v1, v2) (v1 ! = v2 & n(v1, v) & n(v2, v))
// Reachability instrumentation.
foreach (z in PVar) { %i r[n, z](v) = E(v1) (z(v1) & n∗(v1, v)) }
// The t[n] predicate records transitive reflexive reachability between
// list elements along the n field.
%i t[n](v1, v2) = n ∗ (v1, v2) transitive reflexive
// Cyclicity instrumentation.
%i c[n](v) = n+(v, v)

Figure 3: The declarations part of the TVP for the reverse function shown
in Figure 1.

Instrumentation predicates are declared very similarly to core predicates.
They use the same naming mechanism and the same flag specification. The
only difference is that for an instrumentation predicate the user has to attach
its defining formula. The formula’s free variables should match the variables
given in the parenthesis (with the exception of precondition free variables
explained later).

3.2 Formulae

The formula is evaluated in the context of a three valued logical structure
using the semantics of Kleene’s 3-valued logic. Transitive closure of a gen-
eral binary formula works as follows, the last pair of variables are the free
variables of the subformula, and the first pair of variables are the variables of
the resulting TC relation. The formula ϕcond?ϕtrue : ϕfalse is an if-then-else
formula. If ϕcond evaluates to true the value of the formula is ϕtrue. If ϕcond

evaluates to false the value of the formula is ϕfalse. If ϕcond is unknown then
the result is the join of the values of ϕtrue and ϕfalse, i.e., the value of ϕtrue

when it is equal to the value of ϕfalse and unknown otherwise.

6

/******************************** Generic Actions *****************************/
%action Is Not Null Var(x1) { %t x1 + ” != NULL”

%f { x1(v) } %p E(v) x1(v)
}
%action Is Null Var(x1) { %t x1 + ” == NULL”

%f { x1(v) } %p ! (E(v) x1(v))
}
/********************************* List Actions *******************************/
%action Set Null L(x1) { %t x1 + ” = NULL”

{ x1(v) = 0 }
}
%action Copy Variable L(x1, x2) { %t x1 + ” = ” + x2

%f { x2(v) }
{ x1(v) = x2(v) }

}
%action Get Next L(x1, x2) { %t x1 + ” = ” + x2 + ”->” + n

%f { E(v1) x2(v1) & n(v1, v)}
{ x1(v) = E(v1) x2(v1) & n(v1, v) }

}
%action Set Next Null L(x1) { %t x1 + ”->” + n + ” = NULL”

%f { x1(v) }
{ n(v1, v2) = n(v1, v2) & ! x1(v1) }

}
%action Set Next L(x1, x2) { %t x1 + ”->” + n + ” = ” + x2

%f { x1(v), x2(v) }
{ n(v1, v2) = n(v1, v2) | x1(v1) & x2(v2) }

}

Figure 4: The actions part of the TVP for the reverse function shown in
Figure 1.

7

/* The program’s CFG and the effect of its edges */
L1 Set Null L(y) L2 // y = NULL;
L2 Is Null Var(x) exit // while (x != NULL) {
L3 Is Not Null Var(x) L3 // x != NULL
L3 Copy Variable L(t, y) L4 // t = y;
L4 Copy Variable L(y, x) L5 // y = x;
L5 Get Next L(x, x) L6 // x = x->n;
L6 Set Next Null L(y) L7 // y->n = NULL;
L7 Set Next L(y, t) L8 // y->n = t;
L8 Set Null L(t) L2 // t = NULL;

// }
exit Assert ListInvariants(y) error
exit Assert No Leak(y) error

reverse

L1

L2

y = NULL

L4

L5

y = x

exit

x == NULL

L3

x != NULL

L6

x = x->n

L7

y->n = t

error

assertListInvariants(y) assertNoLeak(y) t = y

y->n = NULL

Figure 5: The CFG part of the TVP for the reverse function shown in
Figure 1 and its corresponding CFG.

8

<tvp> ::= <decl>∗ %% <action>∗ %%
<cfg edge>∗ [%%<cfg node>⊲⊳,]

<decl> ::= %s <id> <set expr>
| %p <pred> (<var>⊲⊳,) <prop>∗

| %i <pred> (<var>⊲⊳,)
= <formula> <flags>

| %r <formula> ==> <formula>
<pred>::= <id>[[<id>⊲⊳,]]
<kleene> ::= 1 | 0 | 1/2
<action> ::= %action <id> (<id>⊲⊳,) {

[%t <message>]
[%f { <formula>⊲⊳,]
[%p <formula>]
(%message <formula> -> <message>)∗

[%new [<formula>]
[{ <update>∗ }]
[%retain <formula>]}

<message> ::= (<quoted string>|<pred>)⊲⊳+
<set expr> ::= <set name> | { <id>⊲⊳, }

| <set expr> - <set expr>
| <set expr> + <set expr>

<update> ::= <pred> (<var>⊲⊳,) = <formula>
<formula> ::= <formula> & <formula>

| <formula> | <formula>
| <formula> -> <formula>
| <formula> <-> <formula>
| !<formula>
| (<formula> ? <formula> : <formula>)
| <var> == <var>
| <var> != <var>
| A(<var>⊲⊳,)<formula>
| E(<var>⊲⊳,)<formula>
| <pred>(<var>⊲⊳,)

| <pred>+(<var> , <var>)

| <pred>*(<var> , <var>)

| TC(<var> , <var>)
(<var> , <var>) <formula>

| <kleene>
<cfg edge> ::= <cfg node>

<id> (<id>⊲⊳,) <cfg node>

// TVP file

// Set declaration
// Core predicate
// Instrumentation predicate

// Consistency rule
// Predicate name
// Predicate’s flags
// Functional dependencies
// Atomic values
// Action declaration
// Action title
// Focus formulae
// Precondition
// Report messages
// New individual(s)
// Update formulae
// Retain formula
// Message for user

// Set difference
// Set union
// Update formula
// logical ∧
// logical ∨
// logical implication
// logical equivalence
// logical ¬
// if-then-else
// equality
// inequality
// ∀v1, v2, . . . , vn

// ∃v1, v2, . . . , vn

// Predicate (of arbitrary
// arity)
// Transitive closure on
// binary predicate
// Reflexive and transitive
// closure on binary predicate
// Transitive closure on a
// general binary formula
// Atomic values
// CFG edge

Figure 6: The syntax of a TVP file.

9

Property Arity Meaning Consistency Rule

unique unary true for p(v1) & p(v2) ==> v1 == v2
at most E(v1) p(v1) & v1 != v ==> !p(v)
one node

function binary partial E(v) p(v, v1) & p(v, v2) ==> v1 == v2
function E(v) p(v1, v) & v2 != v ==> !p(v1, v2)

invfunction binary inverse of E(v) p(v1, v) & p(v2, v) ==> v1 == v2
a partial E(v) p(v, v2) & v1 != v ==> !p(v1, v2)
function

symmetric binary p(v1, v2) ==> p(v2, v1)

antisymmetric binary p(v1, v2) & p(v2, v1) ==> v1 == v2
p(v1, v2) & v1 != v2 ==> !p(v2, v1)

reflexive binary v1 == v2 ==> p(v1, v2)

antireflexive binary v1 == v2 ==> !p(v1, v2)

transitive binary E(v2) p(v1, v2) & p(v2, v3) ==> p(v1, v3)

abs unary p is an N/A
abstraction
predicate

nonabs unary p is not an N/A
abstraction
predicate

Table 1: Properties of predicate p, their meaning and the generated consis-
tency rules.

10

Head Condition Result

0 The structure is invalid - discard.

1 Never breached.

predicate The value of the predicate for the The structure is invalid - discard.
assignment is false
The value of the predicate for the Coerce it to true.
assignment is unknown

negated The value of the predicate for the The structure is invalid - discard.
predicate assignment is true

The value of the predicate for the Coerce it to false.
assignment is unknown

variable The two variables are assigned The structure is invalid - discard.
equality to different nodes

The variables are assigned to the Coerce into a non summary node.
same node and it is a summary node

variable The two variables are assigned The structure is invalid - discard
inequality to the same node

Table 2: Result of a consistency rule breach according to its head.

3.3 Consistency rules

Most of the needed consistency rules for an analysis are automatically gen-
erated from the functional properties of predicates (see Table 1) and from
the instrumentation predicates’ defining formulae. Sometimes it is useful
to write explicit consistency rules. The left hand side of a consistency rule
(the body) is a general formula, the right hand side (the head) is either an
atomic formula or the negation of an atomic formula, ==> stands for ⊲.
Note that the free variables of the body must match the free variables of
the head exactly. A consistency rule state that for each assignment to the
free variables of the body that evaluate the body to 1, the head should also
evaluate to 1. The action performed in case of a consistency rule breach
(i.e., the body of the consistency rule is evaluated to 1 and the head to 0 or
1/2 for a certain assignment) depends on the head of the consistency rule
as seen in Table 2.

3.4 Actions

The arguments of an action are predicate names1 that can be used in the
following formulae and will be replaced with the actual arguments when the

1the arguments can also include identifiers that are used to define predicates.

11

action is used (see Section 3.5). The actions section of the reverse program
is given in Figure 4.

3.4.1 Specifying the title of an action with %t

The title of the action, used when printing the action’s structures.

3.4.2 Updating predicates

Update formulae describe how predicates are updated as a result of an ac-
tion. If a predicate does not have an update formula then its value before
the action is retained. The formula is evaluated on the old structure with
the exception that nodes and predicates added in the %new declaration are
available. Note that update clauses are not comma separated.

3.4.3 Using preconditions for filtering with %p

The precondition formula is evaluated to check whether this action should
be performed. If the formula is closed then a result of true or unknown
triggers the application of this action. If the formula contains free variables
then the action is performed for each assignment into these variables poten-
tially satisfying the formula. The free variables can be used in the following
formulae and have the expected assignment.

3.4.4 Focusing structures with %f

The focus formulae for this action. Applied before the precondition.

3.4.5 Reporting messages with %message

Messages that are reported to the user if the formula given is potentially
satisfied.

3.4.6 Creating new nodes with %new

An optional unary formula can be supplied. If no formula is supplied then
a single new node is created. If a formula is supplied then each node poten-
tially satisfying the formula is duplicated, a new temporary binary predicate
called instance is created matching the old node with the new node. In both
cases an unary predicated called isNew is created an set true only for the
nodes created in this action. Both these predicates can be used in the fol-
lowing formulae. The default value of all the predicates when applied to the
new nodes is false. If the unary formula supplied evaluates to unknown for
a certain node, the matching new node becomes maybe active.

12

3.4.7 Retaining nodes with %retain

A mechanism for defining nodes that persist after an action. By default,
all nodes persist. This mechanism can be used to model actions like free
or even on-the fly garbage collection. An unary formula must be supplied.
Only nodes that potentially satisfy the formula are retained. If the formulae
supplied evaluates to unknown for a certain node, it becomes maybe active
instead of being removed.

3.5 Specifying the control flow graph

The program to be analyzed is composed of CFG nodes with edges con-
necting between them and actions to be performed on these edges. A flow
insensitive analysis can be done by using a single CFG node with actions on
self loops. A CFG node is declared implicitly by the existence of incoming or
outgoing CFG edges. The action used in the CFG edge must be predefined
in the actions section. The actual arguments passed to the action substitute
the formal arguments used in its definition.

If only a subset of the nodes should be printed the list of CFG nodes to
print should be supplied as the last section. The default behavior is printing
the structures available in each CFG node.

3.6 Usability features

TVP was designed to be written generically. Several constructs are used to
support this notion.

3.6.1 Writing comments

TVP supports C++ style comments: everything between /* and */ or from
// to the end of that line is ignored.

3.6.2 Preprocessing

The TVP file can be preprocessed using the standard C preprocessor before
being parsed by the system. The preprocessor enables file inclusion (using
the #include directive), macro expansion (using the #define directive), and
conditional evaluation (using the #if, #endif, etc. directives).

3.6.3 Sets

Sets are a mechanism for grouping together several predicate names to be
used later in a foreach clause or a composite formula. Set operation such
as union (+), and subtraction (−) can be used to create set expressions.

13

3.6.4 Foreach

Sometimes a declaration, a focus formula or an update formula should be
repeated several times for different predicates, to avoid code duplication
TVP support the mechanism of foreach. The syntax is:
foreach (<id> in <set expr>){code }

The code between the curly braces is duplicates once for each set member
and each time the predicate is substituted with the appropriate set member.
Foreach can be applied to any declaration (core predicate, instrumentation
predicate, consistency rule), to focus formulae and to update formulae in
actions.

The foreach mechanism can handle composite predicate names, in this
case only the identifiers within the square braces are substituted.

3.6.5 Composite operations

Composite operations are a mechanism for applying a logical operation (only
& and | are supported) on a set of formulae. This is similar to foreach but
can be used inside a formula. The syntax is:
<op>/{<formula> : <pred> in <set expr>}

If the set is empty the neutral member for the operation is used (0 for
| and 1 for &). For example, the expression |/{z(v) : z in {x, y, t} } is
expanded to x(v) | y(v) | t(v).

4 TVS

The input structures for the analysis are described in a format called TVS
(Three Valued Structure). For example, the TVS for input structure used
in the analysis of the reverse function is given in Figure 2. A TVS file name
should end with the extension ’.tvs’. The syntax of a TVS file is given in
Figure 7.

The value of a predicate defaults to false unless otherwise specified in
the TVS structure. All the node names used in the predicates must be
predefined. All the predicate names used must be declared in the TVP file.
If a node (or a node pair) is specified without a value, the default of true
(1) is taken. TVS supports the same commenting style as TVP.

14

<tvs> ::= <structure>∗

<structure> ::= <universe> <predicates>
<universe> ::= %n = { <node>⊲⊳, }
<predicates> ::= %p = { <predicate>∗ }
<predicate> ::= <pred> = <kleene> /* Nullary */

| <pred> = { (<node> [<value>])⊲⊳, } /* Unary */
| <pred> = { (<leftnode>-><rightnode> [<value>])⊲⊳, } /* Binary */
| <pred> = { (<id>⊲⊳,) [<value>]⊲⊳, } /* Arbitrary */

<node> ::= <id>
<value> ::= : <kleene>

Figure 7: The syntax of a TVS file.

5 Command line options

Usage: tvla <program name> [input file] [options] Options:

-d Turns on debug mode.

-action [f][c]pu[c]b Determines the order of operations computed

by an action. The default is fpucb.

f - Focus, c - Coerce, p - Precondition.

u - Update, b - Blur.

-join [algorithm] Determines the type of join method to apply.

rel - Relational join.

part - Partial join.

ind - Independent attributes (single structure).

no_abstraction - No abstraction is applied.

-ms <number> Limits the number of structures.

-mm <number> Limits the number of messages.

-save back|ext|all Determines which locations store structures.

back - at every back edge (the default).

ext - at every beginning of an extended block.

all - at every program location.

-noautomatic Supresses generation of automatic constraints.

-props <file name> Can be used to specify a properties file.

-log <file name> Creates a log file of the execution.

-tvs <file name> Creates a TVS formatted output.

-dot <file name> Creates a DOT formatted output.

-D<macro name>[(value)] Defines a C preprocessor macro.

-terse Turns off on-line information printouts.

-nowarnings Causes all warnings to be ignored.

-path <directory path> Can be used to specify a search path.

15

-post Post order evaluation of actions.

• Analysis engine
Three different types of engines are available : tvla is the classic
chaotic iteration algorithm and the default one, tvmc is a multithread-
ing engine that performs a state-space exploration using a search stack,
and ddfs is a Double-DFS multithreading engine that utilizes Buchi
automata.

• Backward Analysis
Some analyses need to propagate information in the opposite direction
specified for the CFG edges. To reverse the direction of the CFG
edges use the -backward flag. When this option is chosen, the input
structures are stored in the last location computed by the topological
sorting of the program locations.

• Order of action evaluation
The default order of evaluation in the iterative algorithm is reverse
post order. However, when the analysis is very time/space consuming
and you want to see the structures that reach the end of the analyzed
program as soon as possible, use the -post flag to use post order and
get the desired effect.

• Debugging
When debugging a new analysis it is useful to see the analysis as it
progresses and not just its final result. Use the -d flag to see the
structures in the different phases of execution. In debug mode all the
consistency rules are printed together with their dependencies and each
time a structure is discarded because of an irreparable consistency rule
breach, the problematic consistency rule, assignment and structure are
shown. Notice that this mode generates very large PostScript files so
you would probably want to use the -ms flag.

• Computing the effect of an action
Sometime you want to try and run the algorithms (Coerce, Focus,
Precondition, Update, Blur) in a different order or quantity than the
default one (Focus, Coerce, Precondition, Update, Coerce, Blur). Use
the -action <seq> flag to control the computation of the action’s
effect. The argument is of the form [f][c]pu[c]b when: f - Focus, c -
Coerce, p - Precondition, u - Update, b - Blur.

• Join method
Three join methods are available. To use the relational analysis ap-
proach where (bounded) structures kept up to isomorphism choose the

16

rel option. To use the single-structure method use the ind option. In
this approach all the structures in a CFG node that match with their
nullary predicates’ values are merged into a single structure. The op-
tion is very useful for analyses that would otherwise take a very long
time and create many structures. It is worth considering the -action
fcpucb specification when working in single structure mode. A com-
promise between the two approaches merges structures that identify
on their nullary abstraction values and set of canonical node names,
thus considering only a partial set of predicates. To use this option
choose the part. TVLA can perform analysis without applying any
abstraction via the no abstraction option. This option can yield a
non-terminating analysis and therefore the -ms is usually needed to
force termination.

• Maximum number of structures
A complex analysis may take a very long time and especially in debug
time may run forever. To see a partial result, you can limit the number
of structures generated using the -ms <number> flag.

• Maximum number of messages
The number of messages reported by the system can be limited. This
can be used to supply a condition that if holds the system stops (by
limiting the number of messages to 1).

• Saved locations
The default behavior of the system is to perform a join, and save all
the structures that reached the program location, only in every back
edge in the control graph (approximately once in every loop). Saving
structures at every program location is the most efficient in terms of
the number of structures generated (use -save all). However, it is
very space consuming. For a compromise between the two extremes
use -save ext which saves structures only at the beginning of each
extended block (i.e., at every merge point in the control graph).

• No automatic constraint generation
Sometimes it is useful to supply all the constraints by hand with-
out the automatically generated constraints. To do this supply the
-noautomatic flag.

• Properties file
A properties file name can be supplied with the -props option. The
file is loaded before the analysis starts and overrides all other property
files. For more information see section 6.

17

• Log file
A log file name can be supplied with -log option. In this case the
majority of the information written to the console is redirected to the
log file.

• TVS output file
A TVS output file name can be supplied with the -tvs option. In this
case the output of the analysis in TVS format is directed to the file.

• DOT output file
A DOT output file name can be supplied with the -dot option. In this
case the output of the analysis in DOT format is directed to the file.
The activation scripts for TVLA use this option to create an output
file for DOT by adding the ‘.dt’ extension to the program name. This
option can be used to specify a different file name for DOT, but the
Postscript output should then be created manually (the dotps script,
supplied with TVLA, can be used for this).

• On-line information
TVLA reports information as the analysis progresses to the standard
output. To avoid seeing this information use the -terse flag.

• Preprocessor macros
Preprocessor macros can be passed to the parsers by using the
-D<macro>(value) option. This has the same effect as
#define symbol value. For example, specifying -DCONCRETE de-
fines the CONCRETE symbol, and -DLEVEL(1) sets the value 1 to
the symbol LEVEL.

• Search path
The option -path can be used to add directories to the search path.

6 Property files

A mechanism alternative to command-line options is available by the means
of property files. Property files consist of key-value pairs using the syntax
key=value. (More information about the syntax of property files is avail-
able from the JDK documentation of the java.util.Properties class2.) Each
command-line option has a corresponding property.

There are several ways to pass properties to TVLA:

2http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html

18

http://java.sun.com/j2se/1.4.2/docs/api/java/util/Properties.html

1. When TVLA is activated a tvla.properties file, which is located at
the installation directory is loaded. This file contains all available
properties and also includes documentation for each.

2. Though it is possible to edit the tvla.properties file, it is not recom-
mended, because later TVLA versions may update this file and also
because this global change will affect every run of TVLA. If global
changes are intended, add the properties that should be change to the
user.properties file, which is also located at the installation directory.
The properties in this file override the ones in the tvla.properties file.

3. By creating a file with the same name as the program file and the
.properties extension (for example merge.properties for merge.tvp) the
properties in this file will load when this program is used and override
the ones passed by the previous methods.

4. By specifying a properties file name with the -props command-line
option. The properties in this file will override all properties specified
with the previous methods.

5. Finally, command-line options change their corresponding properties
and override properties specified by all other methods.

Although all command-line options have corresponding properties, there
are other properties which do not correspond to command-line options.
These are used to control TVLA behaviors which are less common and also
to test features as they are being developed.

7 Changes since version 0.91

The following changes are incorporated:

• Two multi-threading engines are now available for analyzing multi-
threaded programs. Currently, documentation for using them is only
available from http://www.cs.tau.ac.il/~yahave/3vmc.htm.

• A properties mechanism is added. This is described in 6.

• The command-line options -b2 and -rotate have been moved to prop-
erty file.

• The -significant option is no longer supported. This was done in order
to offer better performance by adding different implementations for
three-valued structures.

19

http://www.cs.tau.ac.il/~yahave/3vmc.htm

• The -dump option is no longer supported.

• The command-line option -join has been renamed to -save.

• The command-line option -single has been replaced with the -join op-
tion, which also includes a partial join (see the command-line options
section for more details).

• The command-line option -action includes blur as a mandatory oper-
ation, which is applied last.

• The following command-line options are new : -props, -tvs, -dot, -D,
-terse, and -nowarnings. Consult the command-line options sections
before using them.

• It is now possible to specify empty predicate update sections.

• Nullary predicates can be presented as either diamonds or listed in
a box. Use the tvla.dot.nullaryStyle property to choose the desired
presentation.

8 Additional references

The TVLA system (version 0.9) was originally described in [LAS00].
The TVLA framework is described in [SRW02] and is a good place to

start understanding the theory behind the system.

20

References

[LA00] T. Lev-Ami. TVLA: A framework for Kleene based static analysis.
Master’s thesis, Tel-Aviv University, Tel-Aviv, Israel, 2000. 1

[LAS00] T. Lev-Ami and M. Sagiv. TVLA: A framework for Kleene based
static analysis. In Jens Palsberg, editor, Proc. Static Analysis

Symp., volume 1824 of Lecture Notes in Computer Science, pages
280–301. Springer-Verlag, 2000. 1, 8

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis
via 3-valued logic. ACM Transactions on Programming Languages

and Systems, 24(3):217–298, 2002. 1, 8

21

	1 Introduction
	1.1 Downloading and installing

	2 Graphical representation
	2.1 Colors
	2.2 Shapes
	2.3 Edges

	3 TVP
	3.1 Predicates
	3.2 Formulae
	3.3 Consistency rules
	3.4 Actions
	3.4.1 Specifying the title of an action with %t
	3.4.2 Updating predicates
	3.4.3 Using preconditions for filtering with %p
	3.4.4 Focusing structures with %f
	3.4.5 Reporting messages with %message
	3.4.6 Creating new nodes with %new
	3.4.7 Retaining nodes with %retain

	3.5 Specifying the control flow graph
	3.6 Usability features
	3.6.1 Writing comments
	3.6.2 Preprocessing
	3.6.3 Sets
	3.6.4 Foreach
	3.6.5 Composite operations

	4 TVS
	5 Command line options
	6 Property files
	7 Changes since version 0.91
	8 Additional references
	References

