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Abstract

We show that subtle acoustic noises emanating from within computer screens can be
used to detect the content displayed on the screens. This sound can be picked up by
ordinary microphones built into webcams or screens, and is inadvertently transmitted to
other parties, e.g., during a videoconference call or archived recordings. It can also be
recorded by a smartphone or “smart speaker” placed on a desk next to the screen, or from
as far as 10 meters away using a parabolic microphone.

Empirically demonstrating various attack scenarios, we show how this channel can
be used for real-time detection of on-screen text, or users’ input into on-screen virtual
keyboards. We also demonstrate how an attacker can analyze the audio received during
video call (e.g., on Google Hangout) to infer whether the other side is browsing the web
in lieu of watching the video call, and which web site is displayed on their screen.

1 Introduction

Physical side-channel attacks extract information from computing systems by measuring unin-
tended effects of a system on its physical environment. They have been used to violate the se-
curity of numerous cryptographic implementations (see [MOP07, And08, KJJR11] and the ref-
erences therein), both on small embedded devices and, more recently, on complex devices such
as laptops, PCs, and smartphones [CZP, GPP+16, BFMRT, GPP+, CRR+, CMR+, GPT].
Physical emanations were used to recover information from peripheral input/output devices
such as screens [Eck85, Kuh, EGKP], printers [BDG+] and keyboards [AAa, BWY, VP, HS,
BCV, HS15, ZZT09, CCLT].

Attackers seeking to exploit such channels face a challenge: attaining physical proximity
to the target computer, in order to acquire physical measurements. In many settings, physical
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access is controlled, and attempts to attain proximity will be blocked or detected. Alter-
natively, the attacker can seek to control suitable sensors that are already located in close
proximity to the target; this may be tractable when there are ubiquitously deployed commod-
ity devices, with suitable sensors, that can be adversarially controlled; for example, one of the
low-bandwidth acoustic attacks [GST] can be conducted via a smartphone, using a malicious
app that records audio using the built-in microphone when the smartphone is placed (for an
hour) near the target.

We raise a third possibility: are there physical side-channel attacks for which the requisite
physical measurements are readily available, and are shared by victims with untrusted parties
as a matter of course, and yet the victims have no reason to suspect that they inadvertently
leak private information?

We observe a new physical side channel that facilitates such an attack: content-dependent
acoustic leakage from LCD screens. This leakage can be picked up by adjacent microphones,
such as those embedded in webcams and some computer screens. Users commonly share
audio recorded by these microphones, e.g., during Voice over IP and videoconference calls.
Moreover, the pertinent sounds are so faint and high-pitched that they are well-nigh inaudible
to the human ear, and thus (unlike with mechanical peripherals) users have no reason to
suspect that these emanations exist and that information about their screen content is being
conveyed to anyone who receives the audio stream, or even a retroactive recording. In fact,
users often make an effort to place their webcam (and thus, microphone) in close proximity
to the screen, in order to maintain eye contact during videoconference, thereby offering high
quality measurements to would-be attackers.

Exploiting this channel raises many questions: What form of content-dependent acoustic
signals are emitted by screens? Can these emanations be used to detect screen content? What
measurement equipment and positioning suffices to measure them? Can they be acquired
remotely via Voice over IP applications, despite the signal conditioning and lossy codecs em-
ployed by such applications?

1.1 Our results

We observe the existence of the aforementioned synesthetic side channel: “hearing” on-screen
images. We characterize this content-dependent acoustic leakage on numerous LCD screens of
various models and manufacturers. The leakage has existed in screens manufactured and sold
for at least the past 16 years, old and new models alike, in both PC and laptop screens, with
both CCFL and LED backlighting. See Appendix A.3 for a list of screens we experimented
with, all of them were found to exhibit this acoustic leakage.
We show that this leakage can be captured by:

• Webcam microphones (see Figure 3.3).

• Mobile phones in proximity to the screen (Figures 3.2).

• “Smart speaker” virtual assistant devices (Figure 3.4).

• The built-in microphones of some screens.

• A parabolic microphone from a 10-meters line-of-sight to the back of the screen (see
Figure 3.1).
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Moreover, the leakage can be observed and analyzed:

• In archived audio recordings.

• From the remote side of a Google Hangouts video-conference call.

• In the cloud-stored audio saved by virtual assistants.

We demonstrate exploitation of the above attack vectors for several attack goals:

1. Extracting text displayed on the screen (in a large font).

2. Distinguishing between websites displayed on the screen, or between websites and a
videoconference screen.

3. Extracting text entered via Ubuntu’s on-screen keyboard. (This shows that on-screen
keyboards are not an acoustic-leakage-resistant alternative to mechanical keyboards.)

Our attacks use tailored signal processing combined with deep neural networks. We demon-
strate that leakage characteristics, and trained neural-networks, often generalize across screens
(even of different models) allowing for training to be done on one screen while attacking an-
other. Finally, the attacks are robust to office-environment noise-level from nearby equipment
such as computers, other monitors, and human speech.

1.2 Related work

Physical side channels. Numerous prior works demonstrated physical side channels. Cate-
gorized by channels, these include electromagnetic radiation [QS, GMO, Eck85, Kuh, EGKP];
power consumption [KJJ, KJJR11, MOP07]; ground-potential fluctuations [GPT]; timing (of-
ten observable by any of the above) [Koc, BB05, BT]; and acoustic emanations from key-
boards [AAa, BWY, VP, HS, BCV, HS15, ZZT09, CCLT], printers [BDG+] and CPU power
supplies [GST]. Acoustic emanations are also mentioned in NACSIM 5000 “TEMPEST Fun-
damentals” [Nat] and related US government publications, but only in the context of elec-
tromechanical devices (as described in [Nat]: “[...] mechanical operations occur and sound
is produced. Keyboards, printers, relays — these produce sound, and consequently can be
sources of compromise”; see [GST] for further discussion).

While some physical side channels have been thoroughly explored, the only previous work
extracting information from involuntary acoustic leakage of electronic components is Genkin
et al.’s acoustic cryptanalysis [GST], which exploits laptop coil whine, and does not consider
leakage from displays.
Screen emanations. Extracting screen content via electromagnetic emanations (“Van Eck
phreaking” and screen “TEMPEST”) is well known and studied, originally for CRT screens [Eck85],
and later also for modern flat-panel screens and digital interfaces [Kuh, Kuh03]. Such elec-
tromagnetic attacks require antennas and radio receivers in physical proximity to the screen,
and tuned to suitable radio frequencies. Acoustic attacks relying on microphones, which are
ubiquitous and open new attack scenarios, have not been previously addressed.
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1.3 Outline

This paper is organized as follows: Section 2 characterizes the content-dependent acoustic
leakage from various screens, and suggests a signal processing scheme for producing clean
leakage traces. Section 3 introduces the attack vectors evaluated in this paper. We then discuss
several attack scenarios, categorized by the attacker’s goal: an on-screen keyboard snooping
attack (Section 4), a text extraction attack (Section 5), and a website-distinguishing attack
from various vantage points, including a remote attack over a Hangouts VoIP call (Section 6).
Section 7 explores generalization of leakage characteristics, as modeled by the attacker, across
screens and screen models. Sections 8 discusses limitations, Section 9 discusses mitigations,
and Section 10 concludes.

2 Characterizing the signal

In this section we explore the acoustic leakage signal emitted by various LCD computer screens
(with both CCFL and LED backlighting) as well as attempt to characterize the connections
between the leakage signal and the displayed image. We begin by providing some background
about the process of rendering an image on modern LCD screens as well as by describing the
experimental setup used in this section.

2.1 Background and experimental setup

Image rendering mechanism. Computer screens display a rectangular l × n matrix of
pixels. Each pixel is typically further divided into red, green, and blue sub-pixels where the
intensity of each sub-pixel is an integer between 0 and 255, thereby allowing the color of
pixel to be uniquely represented using 24-bit integers. The screen’s refresh rate, r, determines
how many times per second an image to be displayed is sent to the screen by the computer’s
graphics card. The screen then renders the received image by iterating over the pixel rows from
top to bottom, with the value of the pixels in each row rendered from left to right. Notice that
the screen always re-renders the image it displays (using the above-described method) r times
per second, even if no changes occurred in the image to be displayed. Typically, screens are
refreshed approximately 30, 60, or 120 times per second, with a refresh rate of approximately
60Hz being the most common.
Experimental setup. For experiments performed in this section we captured the acoustic
noise emanating from various monitors using a Brüel & Kjaer 4190 microphone capsule (ef-
fective up to approx. 40 kHz, well beyond its nominal 20 kHz range), attached to a Brüel &
Kjaer 2669 preamplifier. For power supply and further amplification, these were connected to
a Brüel & Kjaer 2610 or 5935 amplifier. The resulting amplified signal was filtered as necessary
using a high-pass filter (with a cut off frequency between 10 and 21 kHz) and digitized using
a USB sound card, at a sampling rate of 192 kHz (either a Creative E-MU 0404 or Focusrite
Scarlett 2i2). We visualize the spectrograms of these signals using the Baudline software and
(from Section 2.3 onward) process them via custom scripts.
Vsync probe. For the purpose of signal exploration, we shall sometimes utilize a trigger
signal marking the start of each screen refresh period; this allows us to focus on the acoustic
leakage from each screen refresh, separately from the task of synchronizing to the refresh rate.
We implement this trigger by constructing a VGA tap cable that exposes the VGA’s vsync
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line which (as specified in the VGA standard) carries a short 0.5 Volt pulse at the start of
each screen refresh cycle. Note that the vsync probe is a didactic aid; it is not necessary for
the actual attacks.
Screen selection. In this paper we analyze acoustic leakage present from 31 screens of 12
different models from 6 different manufacturers, with various resolutions and backlight types
(LED or CCFL), as tabulated in Appendix A.3. The screens used are those already present
in our university lab and offices at the time of writing (which, heuristically, offers a sample
of popular models), augmented by ad hoc purchases of current models sold on Amazon.com.
For in-depth investigations throughout the paper we chose, from the above, the screens that
presented the clearest signal. For cross-screen experiments we purchased additional screens,
chosen primarily by ready availability on eBay of used instances with diverse usage histories.

2.2 Exploring the leakage signal

Distinguishing various images. We begin our analysis of acoustic leakage emitted from
LCD computer monitors by attempting to distinguish simple repetitive images displayed on
the target monitor. For this purpose, we created a simple program that displays patterns of
alternating horizontal black and white stripes of equal thickness (in pixels), which we shall
refer to as Zebras. The period of a Zebra is the distance, in pixels, between two adjacent black
stripes. Finally, we recorded the sound emitted by a Soyo DYLM2086 screen while displaying
different such Zebras. See Figure 2.1 for a picture of our recording setup.

As can be seen from Figure 2.2–b, the alternating the displayed Zebras causes clear changes
in the monitor’s acoustic signature. See Figure 2.3 for additional examples of monitors that
displayed particular clear signals. Beyond those presented in figures throughout the paper,
we experimented with dozens of other monitors, including both old and newer-generation
monitors of various sizes, and observed similar effects. We conclude that the leakage has
existed in screens manufactured and sold for at least the past 16 years, old and new models
alike, including LED and CCFL-based screens.
Acoustic or EM? To verify that the obtained signal indeed results from an acoustic signal
emanating from LCD monitors, as opposed to electromagnetic radiation accidentally picked
up by the microphone, we placed a sheet of non-conductive sound-absorbing material (e.g.,
thick cloth or foam) in front of the microphone. Figure 2.2–a is analogous to Figure 2.2–b
using the same setup, but with the microphone physically blocked with a thick piece of cloth.
As can be seen in the figure, the resulting signal is severely attenuated, thus proving that the
signals observed here are indeed acoustic. Additional evidence is that as microphone-to-screen
distance increases, the induced signal delay matches the speed of sound rather than the speed
of light (see Appendix A.4).1

Physical leakage source. Having established the acoustic nature of the leakage signal,
we attempted to locate its source within the internal display electronics. To that end, we
disassembled a ViewSonic VA903b LCD monitor, which has a simple, modular internal design
with a moderate number of internal components. As can be seen in Figure 2.4, in addition

1 Conversely, with some of the microphones used in the self-measurements experiments of Section 3.3,
the observed signal appears to have both acoustic and electromagnetic contributions (judging by the above
methodology). This is, presumably, due to poor shielding and grounding on those cheap microphones. However,
in the self-measurement setting, the precise physical channel through which the emanation propagates is
inconsequential.
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Figure 2.1: Setup used for signal characterization. In this photograph, (A) is a Soyo DYLM2086 target
screen, (B) is a Brüel & Kjaer 4190 microphone, connected to a Brüel & Kjaer 2669 preamplifier, (C)
is a Brüel & Kjaer 2610 amplifier, (D) is a Creative E-MU 0404 USB sound card with a 192 kHz sample
rate (E) is a laptop performing the attack.

to the LCD panel itself (A) the ViewSonic monitor has two main boards: a digital board (B)
which is responsible for implementing the monitors logic and picture rendering functions and
a power supply board (C) which provides stable voltage to the digital circuits and backlight
but does not directly process the screen’s content.

In an attempt to locate the component producing the acoustic leakage, we measured the
acoustic signals in various locations on both boards while displaying Zebra patterns on the
LCD panel. We localized the source of emanation to within the monitor’s power supply board,
in the area that is responsible for supplying power to the monitor’s digital board (circled in
green). We were unable to localize the source down to a single component, presumably due
to acoustic reflections, diffraction and mechanical coupling in the board.2

Leakage Mechanism. We conjecture that the momentary power draw, induced by the mon-
itor’s digital circuits, varies as a function of the screen content being processed in raster order.
This in turn affects the electrical load on the power supply components [KJJR11] that provide
power to the monitor’s digital board [EGKP], causing them (as in [GST]) to vibrate and emit
sound. Unfortunately, the precise propagation of signal along this causal chain is difficult to
precisely characterize: power signal modulation have a complex dependence on circuit topol-
ogy, layout and environment; inadvertent power-to-acoustic transduction varies greatly with
circuits electrical and mechanical characteristics; the different channels involve different means
of acquisition and have different bandwidth and SNR constraints, necessitating different signal

2In an attempt to mitigate these, we also tried to lift major components away from the board and connect
them by extension wires; but this changed the circuits behavior and resulting signal, and did not yield conclusive
results.
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(a) covered microphone (b) uncovered microphone

Figure 2.2: (right) Spectrogram of acoustic signals emitted by Soyo DYLM2086 screen while displaying
alternating Zebra patterns. Notice the difference in the screen’s acoustic signature caused by the change
in periods of the displayed Zebra pattern. (left) Spectrogram of a recording in an identical setting, but
with the microphone covered by a thick piece of cloth. In both spectrograms, the horizontal axis is
frequency (0-43 kHz), the vertical axis is time (10 sec), and intensity is proportional to instantaneous
energy in that frequency band. The yellow arrow marks the 4 kHz leakage signal expected to be
produced by a Zebra pattern with a period of 16 pixels.

(a) Samsung 920NW (b) HP ZR30w (c) Dell U3011t (d) Philips 170S4

Figure 2.3: Acoustic emanations of various target screens while displaying Zebra patterns of different
periods, recorded using our setup from Section 2.1. The horizontal axis is frequency (0-43kHz) and
vertical axis is time (10 seconds).

processing; and the choice of acoustic sensors and their placement creates additional consid-
erations that cannot be separated from the transduction’s physical nature. We thus focus on
the aggregate bottom-line effect and its exploitability in the practical scenarios (e.g., webcams
and phones).
Analyzing the leakage frequency. Having verified that different images produce different
acoustic leakage, we now turn our attention to the connection between the displayed image and
the produced leakage signal. Indeed, assume that the rendering of individual pixels produce
sounds that depend on the individual pixel’s color (e.g., black or white). Because the entire
screen is redrawn approximately r = 60 times per second, we expect that spatial-periodic
changes in the displayed pixels will introduce a strong frequency component corresponding to
the frequency of transitions between rendering black and white pixels.

More specifically, a Zebra with a 16-pixel period drawn on a screen with a vertical resolution
of 1050 pixels produces 1050/16 = 65.625 color changes per screen redraw. Accounting for
approximately 60 redraws per second, the acoustic leakage is expected to have a strong 65.625 ·
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Figure 2.4: Internal components of a ViewSonic VA903b monitor. (A) is the LCD panel, (B) is the
screen’s digital logic and image rendering board and, (C) is the screen’s power supply board. The
green circle marks the approximate source of the acoustic signal. On the right is the acoustic Zebra
leakage (similarly to Figure 2.3) from the disassembled screen.

60 = 3937.5 Hz frequency component; which is clearly observable in Figure 2.2–b (marked by
a yellow arrow).

2.3 Signal analysis in the time domain

Following our hypothesis that the intensity of pixel lines is directly manifested in the leakage
signal, we monitored the leakage of a Soyo DYLM2086 screen (see Figure 2.5) while displaying
the Punctured Sinusoidal Zebra image shown in Figure 2.5–a. This is a Zebra pattern with a
21-pixel period, modified in two ways. First, the intensity change between stripes is smoothed,
following a sinusoidal pattern of the given period (to minimize harmonic distortions). Second,
we “punctured” it by placing a full-width third-height black rectangle at the center of the
image (to induce clearly-observable times when the sine waves disappears and reappears).

As can be seen in Figure 2.5–b, displaying the Punctured Sinusoidal Zebra causes a strong
leakage at the Zebra’s “natural” frequency of 1050/21 · 60 = 3000Hz on the resulting spec-
trogram. Next, plotting the acoustic signal in the time domain (after applying a band-pass
filter at 3-4kHz) has resulted in a 3 kHz signal (matching the Zebra’s frequency), where the
amplitude of the middle third of the signal is considerably lower compared to the first and last
third (see Figure 2.5–c). Experimenting with different sizes for the solid black area, the lower-
amplitude area increases and decreases correspondingly. We conclude that the momentary
amplitude of the acoustic leakage signal is a rather accurate approximation of the brightness
level of the individual pixel rows of the target monitor.

2.4 Analyzing amplitude modulated signals

Observing the spectrogram in Figure 2.2–b, we notice that in addition to signal changes in
the 0 − 22 kHz range which correspond to different Zebra patters, there are also changes at
the 27 − 37 kHz range which are again correlated to different Zebra patters. Analyzing the
latter range, we notice that the signal takes form of two distinct side lobes that mirror a
central 32 kHz carrier and that increasing the period of the Zebra image being displayed leads
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(a) Punctured Sinusoidal Zebra image with period 21 (b) Spectrogram (0-43 kHz, 800 ms) of the result-
ing acoustic signal. Notice the strong acoustic signal
present at 3 kHz.

(c) A segment of the acoustic signal after applying
a 3-4 kHz bandpass filter. Notice the clear correla-
tion between the amplitidue of the red signal and the
brightness of pixel lines.

(d) Blue: The acoustic signal after applying a 27.5-38
kHz bandpass filter around the screen’s carrier. Red:
amplitude demodulation of the blue signal. Notice
the inverse correlation between the amplitude of the
red signal and the brightness of pixel lines.

Figure 2.5: Analyzing the acoustic leakage of a Soyo DYLM2086 screen. Recording captured using our
setup from Section 2.1. Figures 2.5–c and 2.5–d are time-synchronized using the vsync probe.

to the carrier’s side lobes coming closer together. This signal behavior at the 27 − 37 kHz
range is highly indicative of a different type of leakage (compared to the 0 − 22 kHz range)
where an amplitude modulated signal being transmitted on a central carrier. Investigating
this hypothesis, in Figure 2.5–d we plot in the time domain the signal obtained after applying
a 27.5-38 kHz bandpass filter around the carrier and its two side lobes. As can be seen, there
is a clear correlation between the color of the displayed pixel row and the amplitude of the
32 kHz carrier (blue), where dark rows corresponding to high signal amplitudes. Recovering
the envelope signal (red line in Figure 2.5–d) using the Hilbert transform method [Hah96]
results in a direct leakage of the color of the displayed pixel row.
Leveraging the modulated signal. As the modulated signal is present on a carrier fre-
quency that is much higher than the frequency of most naturally occurring acoustic signals
(e.g., human speech), it can be leveraged to extract a relatively clean version of the screen’s
image. We now proceed to describe our method for performing acoustic image extraction.

Because the screen refreshes approximately 60 times a second, the output trace produced
by our extraction process is a 192 kHz-sampled time series vector in the duration of one refresh
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Figure 2.6: One-period modulated signal chunks (in color) and their average (in black), of the “black-
hole” screen trace (see Figure 2.5–a).

cycle (1/60 s). Ostensibly, we simply need to sample the demodulated signal for one refresh
cycle. However, as the leakage signal is not completely noise free, we leverage the fact that the
entire image is redrawn 60 times per second (thus producing a fresh sample of the leakage signal
corresponding to the image at each redraw) to reduce noise by averaging. More specifically,
after recording the screen’s acoustic emanations for a few seconds, we bandpass filter the
obtained recording around the carrier signal (allowing only the frequencies 27.5–38) and AM-
demodulate it by subtracting the trace’s average, computing the analytic signal using a Hilbert
transform [Hah96], and taking its absolute value. We then divide the signal into chunks of
samples where each such chunk contains the acoustic leakage produced during a single screen
refresh cycle. Finally, we perform sample-wise averaging of the chunks.

For traces acquired while the vsync probe is attached (see Section 2.1), we can easily apply
this approach: after demodulating, we chop the signal into chunks according to probe’s signal,
so they correspond exactly with refresh periods, and average. Figure 2.6 illustrates this.
Modulated signal quality. We observe that while individual chunks exhibit some noise-
related variations, they do tightly follow a similar content-dependent pattern, with an average
Pearson correlation coefficient of 0.957 between a chunk and the average of all chunks. We
used this correlation test to perform a systematic investigation of the effect of distance on
the leakage signal (see Appendix A.4). We found that by this metric, the content-dependent
leakage is observable when recording at a distance of up to 3 meters (by a bare microphone
without a parabolic dish).

2.4.1 Chunking challenges

The vsync probe we use above is not available to the attacker, who must nevertheless divide
the signal accurately into chunks whose phase within a refresh period is almost identical. Next,
we discuss the challenges in this, and our approach in addressing them.
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Challenge 1: drift. Unfortunately, using exactly 60Hz is usually erroneous by up to 0.2Hz.
The refresh rate used has to be extremely accurate: in our sample rate (192 kHz) and around a
60Hz refresh rate, an error of about 0.002Hz would cause a drift of one sample per ten chunks.
Even such a small error would introduce destructive interference in averaging hundreds of
chunks. The attacker thus has to very accurately measure the refresh rate. Empirically, even
for the exact same configuration, the refresh rate has slight changes of up to 0.02 kHz.
Challenge 2: jitter. Using the vsync probe (see Section 2.1), we examined refresh cycles.
We observed signal jitter that caused destructive interference even when averaging with the
accurate refresh rate. The jitter creates timing abnormalities that are not averaged out over
a few seconds. For our Soyo monitor, every few dozen refreshes, there is an abnormal cycle,
whose duration is abnormal. The abnormalities are erratic: cycles can be either down to 10%
shorter than 1/60 s long, or as long as 1/30 s. Even with the accurate average refresh rate,
drift still occurs: the average refresh rate is actually far from the refresh rate for non-abnormal
refresh cycles. Effectively, every few hundred cycles, the refresh period gets phase-shifted by
some unknown value.
Naive solution: correlation. A natural approach is first approximating or measuring the
refresh rate, segmenting the trace into chunks corresponding to refresh cycle duration, and
use correlation with one arbitrarily chosen “master” chunk to phase-align the traces, i.e., trace
phases are aligned such that correlation is the highest. Then, outlier rejection can be performed
to mitigate jitter and drift in still-misaligned chunks. We found the variants of this approach
to underperform even when the refresh rate used is extremely accurate (see Appendix A.1.2).
Presumably, this is because they all allow for very lenient alignment of the chunks to the
master chunk, i.e., all chunks are rotated so that they correlate best with the master chunk,
which contains a noisy version of the signal of interest. Averaging is thus likely to increase the
noise in the master chunk. Another problem is arbitrarily setting the master chunk, which
can produce an abnormally noisy chunk. The approach is also prohibitively slow.

2.4.2 Our denoising approach

We need a chunking algorithm that is robust to jitter and small drift, i.e., every chunk should
correspond to a refresh cycle at a specific phase (identical for all chunks). Denote the sample
rate fs. We empirically observe that, except for abnormal cycles, refresh times are relatively
stable in the following sense: for each of our recordings there exists an integer W ≈ fs

r
such that cycles are either W or W + 1 samples long, implying that the actual refresh cycle
is between fs

W and fs
W+1 . Moreover, W is always one of two possible consecutive numbers:

S, S − 1. Non-abnormal cycle sizes are therefore always in S − 1, S, S + 1. Another empirical
observation is that Pearson correlation values can be used to heuristically distinguish between
pairs of chunks with the same cycle phase and ones with different phases: same-phase chunks
are typically above some threshold value, whereas different-phase chunks are typically below
it (especially if the phase difference is more than a few samples). Our chunking algorithm is
parametrized by S, by a small integer d, and a “correlation threshold”, a real number T .
High-level overview. The algorithm starts from the first sample in the signal, and iteratively
finds the next chunk start location using Pearson correlation with a reference chunk, assuming
that each chunk size is in G = {S−d, ..., S+d}. The range d is very small: in our experiments
it is usually 1, and never more than 3. This is designed to make small adaptive changes
in chunk sizes to account for the minor drift introduced by the refresh-rate approximation
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and, sometimes, misalignment made in the previous round. When correlation of the reference
chunk with the next chunk drops below T , we enter a “sync” mode where the purpose is to
re-synchronize the chunk phase, again using correlation. If the algorithm enters sync mode for
more than 15% of the signal chunks, or if the algorithm does not exit sync mode after three
iterations, it quits with an error. After averaging, we rotationally shift the resultant array
such that the highest value is the first.3 Appendix A.1.1 describes our algorithm in detail.
Choosing parameter values. d is chosen to be very small to ensure we are not increasing
the noise by maximizing correlation (see advantages below). We used 3 for the keyboard
snooping and cross-screen attacks, and 1 for the other ones. T should be the threshold that
differentiates best between out-of-phase chunk pairs and in-phase chunk pairs. For clean signals
such as the close-range attack, we chose 0.9. For noisier signals we chose 0.4-0.8, accepting
some “false” entries into sync mode. We measured S = 3206 to S = 3202 empirically using the
vsync probe. The attacker, however, does not need to attach a probe to the victim computer:
since the range of possible values is small, the attacker can apply brute force guessing and,
using our algorithm, choose the value of S that maximizes average chunk correlation with the
master chunk and minimizes sync mode iterations. This approach accurately finds the correct
S value using under a minute of victim screen recordings. In our “cross-screen” experiments
described throughout the paper (e.g. in Section 7), we performed attacks without attaching a
vsync probe to the victim screens.
Advantages of this approach. First, it is less likely to augment the noise introduced by
the master chunk. This is because of its strict limitation: the vast majority of chunks found
have to be consecutive and with a very tight size constraint. Only the first chunk in each
sequence is leniently aligned such that it correlates best with the master chunk.

Second, the master chunk is not arbitrarily found, but is a chunk that correlates well with
at least its consecutive chunk. An abnormally noisy chunk is less likely to be selected.

Third, the algorithm is not parametrized by the exact refresh rate. Instead, it can use an
approximation. Not depending on the exact refresh rate is crucial, since it slightly changes
with time, so the attacker cannot be expected to track it.

Finally, this algorithm is much faster than the rotational-shift-based baseline. The com-
plexity of both methods is dominated by the required Pearson correlation computations, an
operation with complexity O (S). The baseline’s approach computes the Pearson correlation
and performs this C × S times, where C is the number of chunks. For a 5 s trace at 192 kHz
sample rate, our implementation of this approach takes 166 s on an Intel Xeon E5-2609 v4.
While in the worst case (6000 × 0.15 × C correlation operations in sync mode, and another
2× d× 0.85× C correlation operations in normal mode), our algorithm performs only about
three times fewer correlation computations as the baseline; in practice it is over two orders of
magnitude faster on average. Even for recordings captured using a parabolic mic, where the
signal is noisy and sync mode is entered relatively often, the average processing time is less
than 2 s for 5 s recordings.

Figure 2.7 shows the output trace for the Punctured Sinusoidal Zebra image. Appendix A.1.2
demonstrates how our approach produces less noisy output traces than a natural baseline.

3This results in consistent trace phase alignment since, as we found, the highest-value sample corresponds
to one of a few refresh period phases.
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Figure 2.7: The output trace of the image of 2.5–a, using T = 0.9, S = 3206, d = 3. This is visually
indistinguishable from the product of chunking and averaging using the vsync probe (see Figure 2.6).

2.5 Cross-screen signal similarities

From a remote attacker’s perspective, the existence of leakage is not enough. If the leakage
does not behave consistently across screens, it will be hard for an attacker without physical
access to the victim’s screen to learn how to process its emitted signal. This is particularly
problematic for an attacker who trains machine learning models on the leakage signal, because
they might overfit to screen-specific attributes. We now show that the relationship between
content and leakage is largely predictable and similar across screens, even when the signal is
recorded through different setups and in different environments.
Visually observing similarities. We used two Dell 2208WFPt screens. We also used two
setups: our setup from Section 2.1, the close-range setup, and one where the microphone
is placed 2 meters from the screen in a parabolic dish. See Figure 3.1 for an example of
such a setup. Both setups were set in different offices (with different environment noises).
In each setup for each screen, we displayed a Punctured Zebra (a Zebra overlayed by a full-
width third-height black rectangle at its center) and recorded a 3 s trace. We applied our
preprocessing procedure from Section 2.4 and proceeded to visualize traces of identical content,
of the same screen, from different screens, and from different screens and different recording
settings. Figure 2.8 shows the result.

First, we compare Figure 2.8a, displaying two traces of the same Punctured Zebra on
the same screen, and Figure 2.8b, displaying traces of the same pattern on different screens.
Clearly, the correspondence of signal amplitude and pixel intensity is similar on both screens.
Next, we notice that the traces do display some minor screen-specific traits, making traces
collected from the same screen (Figure 2.8a) to be more similar than ones collected from
different screens (Figure 2.8b).

Second, note that even two signals taken from different screens and using different setups
(Figure 2.8c) display obvious similarity: the at-distance signal is weaker, and yet has the same
characteristics, with the on-screen Black Hole clearly inducing a flat line in the middle portion
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(a) Different signals of the same
content of the same screen, taken
using the close-range setup.

(b) Signals of two different screens,
taken using the standard setup.

(c) Signals of different screens, one
(solid) taken in close-range and
one (dashed) taken from a dis-
tance using the parabolic dish.

Figure 2.8: Signals recorded while screens were showing a Punctured Zebra (with 16-pixel period
and black middle), after our preprocessing procedure from Section 2.4 and correlation-based phase
alignment.

of both, and the zebra-like pixel color alternations manifesting as a sine wave to the right and
left of the flat line. Below, we show this quantitatively.
Quantifying similarity. We then applied a correlation test, which showed that a relatively
strong correlation exists between signals of different screens showing the same content, even
when they are recorded using different setups. We recorded multiple traces for zebras with
8, 16, 24, 32, and 40-pixel periods, as well as, again, a Punctured Zebra with period 16 (as
above). Alternating these patterns in a round-robin fashion, we captured 10 3 s traces in the
close-range setting for one Dell 2208WFPt screen, and at a distance and using the parabolic
dish for another. We applied our signal processing procedure to all traces. Next, we performed
the following for each of the two screens: first, we randomly chose a trace for each pattern from
this screen’s traces. Then, for every trace from the other screen, we computed its maximal
Pearson correlation over all rotational shifts, with each of the 6 chosen traces. In 100% of the
cases, the trace of the matching pattern was the one displaying the highest correlation value.
We thus conclude that screen content is the dominating factor in the screen’s leakage signal,
while screen-specific effects can be considered as negligible.

3 Attack vectors

We consider four attack vectors. For each, we specify our experimental setup, demonstrate
that leakage exists and, in following sections, evaluate screen content detection attacks.

3.1 Close-range and at-distance attacks

In this setting, the attacker uses a high-end microphone to extract the image displayed on
the screen. While a relatively strong attack model compared to other models considered in
this paper, it is most effective for estimating the extent of acoustic information leakage from
various attack ranges.
Experimental setup. We used a setup similar to the one in Section 2.1. For the distance
attack, we mounted the microphone in a parabolic dish, placed about 10 meters away from
the screen. See Figure 3.1 for an example of such a setup. To simulate a realistic scenario,
recordings were taken in an office environment, with some noise from nearby equipment and
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Figure 3.1: Extracting an image from a screen using a parabolic microphone at a distance of approxi-
mately 5 meters.

people occasionally talking in the proximity of the microphone. We do not expect speech to
interfere, as most of the leakage frequencies are well-above speech frequencies.

3.2 Phone attack

We consider a commodity phone placed in proximity to a screen, recording its acoustic em-
anations using the phone’s built-in microphone (see Figure 3.2). This vector is useful in a
host of scenarios, such as spying on a turned-away screen (e.g., in a business meeting) us-
ing a personal phone. The attack can also be conducted remotely by an app, without the
phone owner’s knowledge, because many mobile apps have permission to record audio at any
time [ST, FHE+].
Experimental setup. For this attack setup, we used an LG V20 phone (which supports a
192 kHz sample rateand, empirically, exhibits good sensitivity to sound even beyond 40 kHz)
directed at a screen and recording using its built-in microphone. We used the Amazing MP3
Recorder app [Ste], which supports high sample rates and offers an interface we used for
automating trace collection en masse: a “start recording” and “stop recording” are exported
by this app and can be used by any other app on the device through Android’s inter-app
communication mechanisms. 4 In particular, we used the Android Debug Bridge (ADB)
interface for invoking recordings. Here, too, recordings were taken in an office environment
with some environmental noise and human speech.
Demonstrating leakage. We found that the phone, recording at 192 kHz sample rate, can
capture the leakage extremely well. We performed an experiment similar to those in Section 2.2
twice: once with the phone directed at the back of the screen (simulating a physical attack in,
e.g., a business meeting), and once with the phone naturally positioned on a table near the
screen (simulating a remote attacker, e.g., an app). In both cases, the measured screen was a
Soyo DYLM2086 screen. Figure 3.2 shows the resulting spectrograms, containing the expected
leakage pattern. While for the naturally positioned phone the signal is attenuated, it is still
clearly visible on the spectrogram. The leakage signal for the directed position is dominant
and is almost comparable to the leakage samples recorded using high-end equipment.

4 The app exposes interfaces (“broadcast receivers”) that can be used by any app, regardless of its permis-
sions, to record audio. This demonstrates the commonplace nature of mobile based audio capturing adversaries.
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(a) Phone microphone directed at the back of the
screen.

(b) Phone placed on a desk by the screen.

Figure 3.2: Acoustic emanations (0-43 kHz, 10sec) of a BenQ q20ws screen while displaying Zebra
patterns of different periods, recorded using an LG V20 smartphone.

Evaluation. We evaluate attacks using this vector: on-screen keyboard snooping is evaluated
in Section 4 and a website distinguishing attack is evaluated in Section 6.

3.3 VoIP attacker

We also consider a remote adversary who is conversing with the target over the Internet, using
a Voice over IP (VoIP) or videoconferencing service. As long as the webcam (if any) is not
pointing at the screen (or at its reflection of some object), the target would assume that remote
participants in the call cannot glean information about the local screen’s content. However,
the adversary receives an audio feed from the target’s microphone, which is usually located
close to the screen (in order to maintain eye contact during video calls), or even embedded
into the screen itself. This microphone picks up the screen’s acoustic emanations, the VoIP
service relays it digitally, and the remote attacker can (as we will show) analyze this signal to
extract the screen’s content.
Experimental setup. Empirically demonstrating this, we obtained the screen’s acoustic
emanations by recording the audio sent to a remote party during a Hangouts call, captured
using the victim’s own microphone (built into a commodity webcam). Here, too, recordings
were taken in an office environment with some environmental noise and human speech.

More specifically, to simulate the victim, we used a PC running Windows 10, connected to
a Dell 22" LCD monitor (model 2208 WFPt) screen, and a Microsoft LifeCam Studio webcam.
The camera was placed naturally by the screen, similarly to Figure 3.3–a. To simulate the
attacker, we used a second PC running Ubuntu 16.04. We set up a Hangouts connection
between the attacker and victim, both running Hangouts over a Firefox browser. At the
attacker end, we redirected all sound output from the soundcard into a loopback device. We
could then use arecord on the device to capture sound originating at the victim end of the
call.
Observing the leakage. We again performed measurements by acquiring traces while dis-
playing alternating Zebra patterns, similar to those in Section 2.2, but using various webcams
and screens. Figure 3.3 summarizes our findings.

We discovered that, first, commodity webcams and microphones can capture leakage. Sec-
ond, natural and expected positioning of cameras can be sufficient. In fact, even the built-in
microphones in some screens (e.g., Apple LED Cinema 27-inch, see Figure 3.3–b) can be suf-
ficient. Third, the leakage is present (and prominent) even when the audio is transmitted
through a Hangouts call; see Figure 3.3–a.
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(a) Microsoft LifeCam Studio webcam positioned below a LED-backlit Dell U2713H screen, recorded through
a Hangouts call. The frequency axis range is 0-13 kHz, due to the lower sampling rate used by Hangouts.

(b) Self-measurement: an embedded microphone
in an LED-backlit Apple LED Cinema 27-inch
screen.

(c) Logitech C910 webcam positioned on top of a 20“
Soyo screen.

Figure 3.3: Time-frequency spectrum of alternating Zebra frequencies measured through various nat-
urally positioned commodity devices. The spectrograms of all combinations indicate similar acoustic
leakage patterns.

Attack evaluation. See Section 6.2.

3.4 Virtual assistant / “smart speaker” attack

The contents of the user’s screen can be gleaned by voice-operated virtual assistants and
”smart speakers“, such as the Amazon’s Alexa assistant running on Amazon Echo devices and
the Google Assistant running on Google Home devices. Once configured, such devices capture
audio at all times, includign acoustic leakage from nearby screens. When a wake phrase, such
as “Alexa” or “Hey Google”, is detected by the device’s elaborate microphone array, it enters an
attention mode to recognize and response to commands. An audio recording of the interaction,
including the wake phrase utterance, is then archived in cloud servers (“to learn your voice
and how you speak to improve the accuracy of the results provided to you and to improve our
services” [Tod18]).
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Figure 3.4: (Left) alternating Zebra patterns displayed on a Dell 2208WFPt monitor, recorded by a
Google Home device and archived on Google’s cloud. (Right) the spectrogram of the recorded signal.
Note the frequency axis ends at 8 kHz, since Google’s archived recordings play at 16 kHz sample rate.

We set out to ascertain that the screen’s visual content is indeed acoustically captured and
subsequently uploaded to Google’s and Amazon’s cloud servers. First, we placed a Google
Home device next to a Dell 2208WFPt screen displaying alternating Zebra patterns. We then
woke the device up by using its wake phrase (“Hey Google”) and kept the the recording running
during the Zebra alternations. Finally, we retrieved the recorded audio from Google’s servers.
Figure 3.4 shows the spectrogram representation of the retrieved audio, where the alternation
of Zebra patterns is clearly visible. We proceeded to perform the exact same procedure with
an Amazon Echo (2nd Gen.), and observed similar results.

4 On-screen keyboard snooping

In this attack, the attacker aims to extract words or sentences from an on-screen keyboard.
On-screen keyboards (operated by touch or mouse) are offered by all mainstream operating
systems, and also used by some websites as a security mechanism for password entry, reducing
the threat of keyloggers.5 Using an on-screen keyboard also protects against attackers with
acoustic probes that try to characterize individual key acoustic emanations [AAb, LWK+,
ZZT09]. We show, however, that the pressed on-screen keys can be inferred from the screen’s
acoustic emanations.

4.1 Machine learning attack methodology

Our attack works in two stages: first, in an off-line stage, the attacker collects training data
(audio traces) to characterize the acoustic emanations of a given type of screen, and uses
machine-learning to train a model that distinguishes the screen content of interest (e.g., web-
sites, text, or keystrokes). In the on-line stage, the attacker records an audio trace of the
actual screen under attack (whether in person or remotely), and then uses the trained model
to deduce the on-screen content.
Why machine learning? The algorithm in Section 2.4 produces relatively clean output
traces, where sample values are clearly dependent on the screen’s content.

5On-screen keyboards resist keyboard logging by malware (unless the malware is adapted to log screen
content), and also low-level keyboard device snooping, e.g., by leaky USB hubs [SGRY].
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The correspondence between pixel intensities and sample values is intricate and difficult
to accurately model. It even seems to vary within a refresh period, with different time spans
within the period presenting slightly different relationships between signal amplitude and pixel
intensities. Moreover, although we produce relatively clean output traces, they do contain
noise. Two output traces of recordings of the same screen content will not be entirely the
same.

Neural networks, and specifically convolutional neural networks (CNNs) [Wik], are very
good at inferring such intricate dependencies in time series data, even in the presence of
noise [SST]. In many cases, when CNNs are configured correctly, we can expect them to be
able to directly perform the processing task at hand, especially for supervised learning and
where enough data is at hand.
Using classifiers. We employ a CNN-based architecture for solving our task. We define,
train, and use CNN classifiers: a classifier’s input is a sample, represented (in our case) as a
time-series vector. Specifically, our classifier inputs will be the outputs of the signal processing
procedure in Section 2.4. A classifier’s output is a vector of probabilities, one for each class. A
sample’s prediction is the class with the highest assigned probability. Before the classifier can
produce meaningful output, it has to be trained. The training procedure feeds the classifier
with sample traces and correct predictions.
Simpler ML architectures. We fine-tuned neural networks for speed and accuracy. Al-
ternatively, our traces (after signal processing) are often clean enough to train a rudimentary
logistic regression model (at the cost of much slower training, due to slow convergence). For
the lower-frequency non-modulated signals acquired through VoIP and used without trace av-
eraging (Section 6.2), the rudimentary model attains low accuracy, but a carefully tuned CNN
is effective.

4.2 Attack simulation and results

We simulated this attack in the smartphone and close-range attack vectors. We assume the
on-screen keyboard is sufficiently large, depending on screen attributes.
Data collection and preprocessing. We captured audio recordings of a Soyo 20” DYLM2086
in the close-range and smart phone settings (Section 3.1 and 3.2, while displaying screen shots
of the mouse pressing varying keys. We used the native Ubuntu on-screen keyboard with a
phone-style layout, “High Contrast” theme and size 700x900. We used portrait screen layout
(see discussion below on screen layouts).

For each attack vector, we iterated 100 times over the 26 letters of the alphabet. To reli-
ably simulate the acoustic leakage during hundreds of key-presses on the on-screen keyboard
required for training, we used screenshots containing the on-screen keyboard with the respec-
tive key being pressed. In each iteration, for each key, we collected a 0.5 s long trace when key
is pressed (simulated by the screen shot). We split these traces to train (90%) and validation
(10%) sets. 6

For testing our snooping attack, we also recorded audio while words are typed on the
virtual keyboard. Words were chosen randomly from from a list of the most common 1000
English words [Nor] (see results). We use the traces of 50 such words for testing both classifiers.

6Here and in Section 5, we use just 10% of the initial recordings for validation. In both, validation sets are
still in the hundreds, and we record an additional trace set, 100% of which was used for testing.
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Characters of the words were typed consecutively, with 3 s between each transition. We also
experiment with words recorded at 1 s speed (see results).

We applied our signal processing procedure in Section 2.4.
Training procedure. Trace processing and training was performed on an Intel(R) Xeon(R)
CPU E5-2609 v4 processor with two Titan X GPUs. We uses the Keras Python library with
a Tensorflow backend to program and train the networks. Keras is used with a Tensorflow 1.4
backend and CUDA 8.0, CUDNN 6.0. We defer the details of the neural network’s architecture
and hyperparameters to Appendix A.2.1.

Each on-keyboard keystroke results in a specific image displayed on the screen. We can
train a classifier to identify the different characters for a given trace. Some pairs of keys are
completely horizontally aligned on this virtual keyboard. We expect keys in such pairs to be
less easily distinguishable from the signal (see below discussion about screen layouts), and
group each such pair into one class label. Our labels were thus ‘b’, ‘c’, ‘m’, ‘n’, ‘p’, ‘v’, ‘x’, ‘z’,
‘aq’, ‘sw’, ‘de’, ‘fr’, ‘gt’, ‘hy’, ‘ju’, ‘ki’, ‘lo’, and space.
Testing procedure. To process a trace, we shift a 0.5 s window across the duration of the
trace. The window offset is advanced in 3200 sample (1/60 s) intervals. For each offset, we
apply our processing algorithm on the sub-trace contained in the window. We then apply our
classifier.

This process outputs an array of class labels of size 60 · l− 30, where l is the original trace
length. We traverse it from start to finish, outputting class labels appearing more than 15
times contiguously for the smart phone attack and 35 times contiguously for the close-range
attack. Assuming the CNN always predicts the right class, this produces sequences of class
labels that correspond to the letters typed on the screen. However, these sequences do not
distinguish (1) letters grouped into the same class, and (2) letters in the same class that were
typed sequentially. For example, for a trace of the word “love”, the sequence [’lo’, ‘v’, ‘de’]
will be produced. The ‘l’ and ‘o’ keys are grouped into the same class, and there is only one
instance of this class label. Similarly, the expected trace of the word “screen” is [’sw’, ‘c’, ‘fr’,
‘de’, ‘n’].

To disambiguate each produced trace, we go over the 102000 words in the dictionary. For
each, we compute its expected trace, and check it against the trace. We return the list of
words that matched the trace, or the prediction list.
Results. Our classifier reaches 100% accuracy on the validation set, for both the smart-
phone and close-range. For the close range attack’s word traces, the correct word was always
contained in our prediction list. The size of the prediction list varied from 2 to 23 with an
average of 9.8 words per trace. For the smartphone attack, the correct word was contained in
the prediction list for 49 out of 50 traces.

To further test the limits of this attack, we repeated the attack using a different screen,
Soyo 22" (model DYLM2248), in the close-range setting. Again, the validation set accuracy
was 100%. This time, we collected traces of 100 additional words, twice: once while waiting 3
seconds between each transition, and once when waiting 1 second. For the 3 s collection, the
correct word was in the prediction list 94 times out of 100. For the 1 s recordings, the correct
word was in the prediction list 90 times. The average candidate list size was 8.
Portrait vs. landscape layout. A pressed key’s color changes from white to black; we
expect this to affect the amplitude of the signal emitted while the corresponding black pixels
are rendered. Pixels are rendered in a raster pattern, i.e., line by line. Because of that,
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keys that are horizontally aligned, and span the same pixel lines, are rendered during very
similar times in every refresh period. We therefore expect that pressing horizontally-aligned
keys will induce very similar, temporally-close effects in the leakage signal. Conversely, keys
positioned in completely different pixel-lines will be rendered during very different times, and
the corresponding amplitude changes will be more distinguishable.

For this reason, in this section, we first built a classifier that only distinguishes between
non-aligned keys, and test it on a portrait layout where far fewer keys are horizontally aligned.

To ascertain whether horizontally-aligned keys can be at all distinguished, we repeated data
collection using the Soyo 22" in landscape layout. We trained the classifier on both landscape
and portrait datasets, but without grouping horizontally aligned keys. The portrait layout
classifier reaches 96.4%, and the landscape layout classifier reaches 40.8%. Top-3 accuracies
are much higher: 99.6% and 71.9%. We conclude that even changes within pixel lines, where
pixels are rendered at very small temporal offsets from each other, can still be distinguishable
in the signal. Moreover, that on-screen keyboards remain vulnerable even in landscape layouts.
Cross-screen results. We verified that the attacker’s training can be done on a different
screen than the victim’s. To this end, we used a smartphone to collect about 130 recordings,
0.5 s each, for each key on a Dell 2208WFPt screen in portrait layout. We then switched to a
different 2208WFPt instance, and collected 10 traces, 0.5 s each, per key. We followed the same
preprocessing procedure as above, and assigned classes to traces, again grouping horizontally-
aligned keys. We then trained our classifier using the traces from the first screen and tested
it on the traces of the second screen. The resulting accuracy is 99.0%. For comparison, this
classifier had a 99.4% accuracy on a similar-sized validation set of traces of the first screen
(not used for training). We conclude that the keyboard snooping attack in the smartphone
setting is possible for a remote attacker without access to the victim’s screen. This supports
the results of Section 7 which indicate that using more than one screen for training would
likely result in even better generalization.

5 Text extraction

In this attack, the attacker aims to extract text from the attacked screen. This could be used
to extract various types of sensitive data, such as identifying information, private messages,
search queries, and financial information.

In this attack, we explore the possibility of extracting content from the screen rather than
classifying it. We simulate an open-world setting where the word base rate is as low as
1/55000, i.e., a specific word has a 1/55000 probability of appearing in a trace. To simulate
the low base rate, our implementation assumes that all characters and words are equally
likely: it does not use any knowledge of actual word or character distribution. Notably, this
is conservative for evaluating natural language word extraction, where the average base rate
is much higher in practice.

We simulate an attack on a portrait-layed victim screen displaying black-on-white text in
very large monospace font (we discuss these assumptions in Section 8).
Data collection and preprocessing. We layed a Soyo 22" DYLM2248 in portrait layout,
and captured traces in the close-range setting (see Section 3.1). We collected 10,000 traces,
each 5 s long. In each trace, a different sequence of randomly chosen letters was displayed
on the screen. The length of sequences was chosen randomly from {3, 4, 5, 6}. Letters were
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chosen from the English alphabet. Letters were capitalized, in font type Fixedsys Excelsior
and size 175 pixels in width. Letters were black on a white screen. We attach each trace to its
corresponding sequence of characters, and again split the traces to train (90%) and validation
(10%), and employ the same machine learning methodology as in Section 4.1.

Similarly, we also collected a test set: the traces of 100 English words, 25 for each possible
length, chosen randomly similarly to Section 4.2. We apply the signal processing algorithm
described in Section 2.4.
Training procedure. We build one classifier for each character location. Each character
location is rendered at a specific time segment during each refresh cycle. We match every
character location with its time segment.7 We construct training and validation data for each
character by extracting the respective output trace segment, thus collecting pairs of output
trace segment and corresponding character value.

Appendix A.2.2 details the CNN’s architecture. We again trained it on a GPU-enhanced
machine (see Section 4.2).
Testing procedure. For each of our 100 test set words, each classifier outputs a probability
vector for each character. To predict which word was typed in, we use the Webster’s dictio-
nary [Web]. We extract the first 6 characters of each dictionary word, sum the log-probabilities
of each word’s characters, and output the words sorted by their probabilities.
Results. The per-character validation set accuracy (containing 10% of our 10,000 trace
collection) ranges from 88% to 98%, except for the last character where the accuracy was
75%. Out of 100 recordings of test words, for two of them preprocessing returned an error.
For 56 of them, the most probable word on the list was the correct one. For 72 of them, the
correct word appeared in the list of top-five most probable words.
Error analysis. Our attack often confuses a commonly used word for a rare one. For
example, the word “dream” is erroneously predicted as “bream”. To avoid such errors, we can
introduce priors on word and character distributions (increasing our conservatively low base
rate). For example, by assigning a higher probability for frequent words in the probability-
assigning phase. This would likely significantly increase accuracy, especially for commonly
used words such as those in our training set.

6 Website distinguishing

In this attack, the attacker is interested in learning whether the victim is entering a specific
website, or is just interested in the victim’s website visiting habits. Website fingerprinting
attacks, often studied in network traffic analysis settings [PLP+, SST, CZJJ], convey the target
user’s browsing behavior and are very revealing of their hobbies and personality [KBK+14].
In the VoIP setting, the attacker may be interested to learn in real time what the other parties
to the call are doing. For example, he may wish to learn whether another party to the call is
currently keeping the videoconference app maximized (presumably focusing his attention on
the call), browsing Facebook, or responding to E-mails.

We note here that the classifiers described in Section 6.1 accurately distinguish up to 100
websites. Thus, as our methodology can accurately classify screen content, it can be leveraged

7To measure this, we introduced sharp pixel intensity changes in two different pixel lines and measured
when, during the refresh cycle, these changes affect the signal. Because line rendering time is linear in line
numbers, we can use this to construct an accurate mapping of lines to rendering time.

22



for detecting an identified website visit vs. using common apps as well as classifying common
apps. Finally, we also note that the collected website traces naturally contain dynamically-
changing content (e.g., ads) affecting measurements, but classifiers nevertheles attain the high
accuracy (implying that the general layout of a website is typically static and unique).

In Section 6.2, we directly evaluate a VoIP attacker whose goal is identifying the victim’s
foreground window, distinguishing between a VoIP app and popular websites.

6.1 Using the modulated signal

Data collection and preprocessing. We recorded traces of a Soyo 22" DYLM2248 at the
close-range, at-distance, and phone attack settings (Sections 3.1 and 3.2). Out of the Moz top-
500 list [Moz], that ranks websites according to the number of other websites linking to them
(which highly correlates with popularity), we chose 97 websites by filtering out corner cases.
For example, duplicate domains for the same website (e.g., google.co.in and google.co.jp)
and non-US-based websites because some of them cause Selenium to hang.

We simulated the attack for the smartphone, at-distance, and close-range vantage points.
For each, we iterated over the collection of websites over 100 times. In each iteration, we opened
a Chrome browser window (controlled by the Selenium automation library for Python) with
the URL of the website. We then started recording for 5 s. For each vantage point, we collected
traces for 5 consecutive nights (when the recording machine was not otherwise in use). We
stopped when we had reached 100 samples per website. This resulted in about 130 traces
per website in the close-range vantage point, 100 traces from the at-distance vantage point,
and 110 traces in the smartphone vantage point. For each setting, we used 70% of traces for
training. For the close-range setting, we used the remaining 30% as a validation, which we
used to guide our classifier architecture tuning (e.g., set learning rate, number of convolutional
layers, etc). For the at-distance and smartphone settings, we used the remaining 30% as test
sets. We apply the signal processing algorithm described in Section 2.4.
Machine learning and results. Our task is to find which of 97 websites is displayed. We
train a CNN directly to solve this task (see Appendix A.2.3), using the setup from Section 4.2.
In about 8% of traces in the close-range and phone attacks, and about 16% in the at-distance
attack, the signal processing algorithm returned an error, implying the signal is particularly
noisy. For the close-range setting, the validation set accuracy was 97.09%. For the smartphone
and at-distance test sets, the accuracy was 91.20% and 90.9% respectively.
Eliminating false positives. Our classifiers in this section work in a closed-world, where
the victim visits one out of the (here, 97) targeted websites. In reality the victim may also
visit other, unknown websites, and the attacker may be interested in detecting when that
occurs. The victim could visit numerous websites before ever visiting a targeted website, so
even an ostensibly low probability of an alarm on a single non-targeted site’s trace, can lead to
many false alarms. This is so-called “base rate fallacy” is extensively discussed in fingerprinting
literature [SST, JAA+]. We thus aim to further minimize the probability of false identification
(false positive rate).

Neural network classifiers assign to all classes values between 0 to 1, whose sum is 1 (similar
to a probability distribution). The prediction is the class with the highest value, which can be
interpreted as the prediction’s confidence. We can prioritize precision over recall by dropping
predictions where confidence is below a threshold. By setting the threshold to 0.96, we get
precision of 0.996, whereas the recall remains well above 0.94. Our classifier is confidently
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erroneous only on 14 out of 3222 validation set samples. Moreover, for every other sample
where a confident mistake was not made, it successfuly disqualifies not 1 class, as the attacker
above requires, but 96 classes. In other words, it makes only 14 “confident” mistakes out
of 3222 × 96 = 309312 possible ones (it is confidently mistaken at a rate of ≈ 5/100000).
Thus, while we do not directly simulate an open-world setting, our results do demonstrate the
necessary low amount of false positives for detection in very low base rates.
Cross-screen results. In Section 7 we extensively evaluate the prospects of this attack in
a cross-screen setting, where the attacker has no access to the victim’s screen.

6.2 Attack through a Hangouts call

Here, we assume the attacker and victim are sharing a Hangouts video-chat session, where au-
dio from the victim’s environment is transmitted directly to the attacker. Leveraging acoustic
leakage from the victim screen, the attacker’s goal is to distinguish the scenario where video-
chat is at the foreground from a scenario where the victim is surfing the Web, and also tell
what website they are visiting.
Data collection and preprocessing. We recorded traces using the setup described in
Section 3.3. We iteratively switched the foreground window of the victim screen in a round-
robin fashion between 11 open windows: browser windows for each of the 10 top websites in
Moz, and a (screen-shot) of a video-chat showing the human face of the attacker sitting in
front of his webcam. We captured a 6 s recording before switching the next window into the
foreground. In this way we collected 300 traces, 6 s each, for each open window.

In previous attack settings, we used the fact that the pattern of interest is modulated and
transmitted, in every refresh period, over a carrier signal at 32 kHz. We leveraged this to pro-
duce a relatively clean version of a display-content-dependent leakage signal (see Section 2.4).
Here, we only sample at 44 kHz—below the Nyquist rate of the carrier signal. We can still,
however, leverage the effect described in Section 2.3—namely, that pixel intensity directly
affects the acoustic signal’s amplitude. We process traces in a more straightforward way: we
computed the fast Fourier transform of each 6 s trace. This results in a vector of frequency
coefficients, corresponding with frequencies between 0 kHz and 44100/2 = 22050 kHz. We take
coefficients of frequencies in band 9-15 kHz which, we found, contain sufficient information,
and used them as the classifier input vector. We split the traces to train (70%) and validation
(30%).
Machine learning and results. Our task is to find which of 11 windows was in foreground.
As in Section 6.1, we design a CNN directly trained to solve this task (see Appendix A.2.3).
The CNN reaches 99.4% accuracy on the validation set.

We compare results on over-VoIP acquired traces and traces acquired in the close-range
setting. To facilitate a fair comparison, we need 2 similar datasets of traces, with the difference
that one was collected through the close-range setting and preprocessed as in Section 6.1,
and one colleted via the VoIP setting and preprocessed as above. We use subsets of the
datasets described in this section and that in Section 6.1; both subsets contain about 80 5 s
training traces per website. We trained a classifier for each dataset, using the appropriate
CNN architecture (see appendix A.2.3). The through-VoIP classifier attained an accuracy of
98% on the validation set, slightly less than the through-VoIP classifier described above (which
handles 1 extra class, but uses x3 more traces per class). The close-range classifier attained
an accuracy of 99.2%.
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We conclude there is a minor drop in the attacker’s accuracy when sound is recorded
using commodity equipment and is moreover encoded and decoded using a lossy VoIP codec.
However, using a higher amount of traces, we still attain near-perfect accuracy in the through-
VoIP setting.
Cross-screen results. We collected and processed 30 traces per class (totaling 330) from
another Dell 2208WFPt screen, and tested our classifier on them. Our classifier had an
accuracy of around 0.1, slightly above a random guess, indicating that the classifier is overfitted
to the training screen. In Section 7, we show that overfitting can often be mitigated by training
on more than one screen. We leave the task of applying that methodology for this attack to
future work.

7 Cross-screen attacks

Thus far, we performed preliminary evaluations of the cross-screen scenario for most attacks,
by training on one screen and testing on a different one. While this proved highly effective
in some cases, such an attacker does risk training a model oferfitted to the traits of a specific
screen. In this section we demonstrate how overfitting can be mitigated by training on multiple
screens rather than one.
Data collection. We used a total of ten screens: five of model Dell 2208WFPt WD-04
(the Dell4 set), two of model Dell 2208WFPt WD-05 (Dell5), two of model Dell 2208WFPf
B (DellB), and one of model Soyo 22" DYLM2248. The screen set was chosen to contain
both similarity (nine screens in the Dell 2208WFP* family) but also variation (including three
different Dell models and one Soyo model). For every screen, we collected 50 recordings, 5 s
each, of each of 25 websites (similarly to Section 6, the top 25 websites in the Moz top 500),
in the close-range setting (see Section 3.1).
Data preprocessing. We first applied the signal processing from Section 2.4. Then, for
each victim screen v, we evaluate classifiers trained using each of its training collections:

• Each single screen (including v).

• Each of same-model sets (Dell4 , Dell5 and DellB) defined above, excluding v from the
corresponding set.

• The mixed collection, containing 2 randomly chosen screens from Dell4 , 1 from Dell5 ,
and 1 from DellB , excluding v.

• The all collection, containing all 10 screens, excluding v.

• The nosoyo collection, with all screens except the Soyo.

For every such collection c, we assembled a training data containing about 50 samples for each
website, by taking 50/ |c| samples for each screen in c.
Machine learning and results. We used our website distinguisher architecture similar to
that in Section 6, but used the Adadelta optimizer which converges much faster than SGD
when using only 25 classes, and thus trained for only 200 epochs. For each v, we trained our
classifier on each of its training collections and evaluated the resulting classifier on v’s data
(re-initializing learned weights at random before the next training process). The results are
summarized in Figure 7.1.
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Figure 7.1: Cross-screen classification accuracy.

Observations. First, we observe that classifiers trained on one of the 3 Dell models often
generalized to a different model within the Dell 2208WFP* family. This sometimes hap-
pens even when training on just one screen (e.g., several classifiers generalize well on screen
Dell4#2), and especially when training and testing on screens of the same model. Second,
using more screens from the same family improves the intra-family generalization: training on
a single screen yields worse results than training on two screens (i.e., Dell4 or Dell5); training
on 4 screens yields further improvement (mixed and Dell4); and training on 9-10 screens (all
and nosoyo) gives the best results. Third, intra-model generalization is slightly higher than
generalization across the Dell models: for classifiers trained on a single Dell screen and tested
a different screen of the same model, the average accuracy is 0.276, compared to 0.233 for
screens of other Dell models. Finally, inter-vendor generalization is poor: classifiers trained
on the Soyo screen have low accuracy for Dell screens and vice versa.
Conclusions. The accuracy of a remote attacker with no physical access to the screen is
limited by inter-screen generalization. To attain high generalization, the attacker can use
multiple screens from the same model, or even similar models from the same vendor. Note
that this training phase can be done once, off-line, and utilized for multiple attacks. It can
also be done retroactively, after recording the victim and using this recording to fingerprint
their screen model.

8 Limitations

While the results presented in this paper clearly demonstrate that screen content can be
detected via an acoustic side channel, the presented attacks have some limitations:
Remote attack accuracy. Accuracy is reduced in a remote setting where the adversary
uses their own screen(s) for training (see Section 7, Section 4.2, and Section 6.1). However,
in many cases it remains high (e.g., over 90% for distinguishing between 25 websites, 98%
for distinguishing letters typed on an on-screen keyboard). Our investigation in Sections 2.5
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and 2.2 indicates that different screens display similar signal content-dependence, explaining
why attacks generalize across screens (when enough screens are used for training).
Attacker’s prior knowledge. The adversary needs to know the victim’s screen model
(or face reduced accuracy). Note that such knowledge is far less sensitive than the screen’s
actual content, and is often readily deducible from the victim’s purchasing procedures or trash.
Changes in components other than the screen could also affect the acoustic leakage (e.g., the
attached computer may use the screen at an unusual display resolution), but we conjecture
that in practice this is rare.

Moreover, for on-screen keyboard snooping (Section 4.2), an attacker needs to know the
on-screen layout of the victim, including text background, font, key size, etc. We consider this
scenario plausible, as website and keyboard layouts as well as fonts are often fixed (e.g., when
the victim uses the OS’s native on-screen keyboard to type a login password). Similarly, our
text extraction attack currently requires a known background and a large 175pt font. Finally,
we note that our website classification experiments assumes the simple case of a user statically
viewing a webpage. We leave the task of achieving website classification in the presence of
user interaction (such as active scrolling) as future work.
Granularity. Our attacks detected information at a a coarser resolution than individual
pixels. Indeed, the requisite bandwidth for detecting individual pixels seems to far exceed the
acoustic transmission properties of air (modern screens render pixels at a rate of over 100MHz,
whereas above a few hundred kHz sound propagation in the air has too short a range due to
attenuation and distortion effects).

This affects the type of screen contents that can be distinguished. For example, our text
extraction (Section 5) works on large fonts. Similarly, we show that on-screen keyboard snoop-
ing (Section 4.2) is more accurate in portrait orientation, where coarse pixel line granularity
suffices.
Attacker sample rate. In Sections 4.2 through 6.1, we exploit a carrier signal at 32 kHz.
To carry out these attacks, the attacker’s sample rate must be at least 64 kHz (due to the
Nyquist limit, and assuming that aliasing is eliminated by hardware filters). While modern
commodity hardware often samples at 96 kHz (as we demonstrated in Sections 3.2, 4.2, 6.1
using a mobile phone), low-end attackers recording at lower rates might be limited to the
remote attacks demonstrated in Section 6.2.
Accuracy depends on microphone distance and screen model. The leakage signal
quality and extractability varies greatly with the microphones’ proximity to the screen (see
Figure 3.2), as well as screen makes and models (see Figure 2.3). However, as we show, even
relatively noisy signals acquired at-distance (Section 6.1), or signals passed through a lossy
codec (Section 6.2), can be used to mount an attack. Deterioration of the underlying signal
with distance is analyzed in Appendix A.4.

9 Mitigations

Elimination. An obvious remedy to such leakage is for computer screen manufacturers to
more carefully evaluate their designs, to minimize “coil whine” and similar electronic compo-
nent vibrations within screen circuitry (cf. [GST]). The ubiquity of leakage, across manufac-
turers and models (Figures 2.3, 3.2, 3.3 demonstrate leakage in Dell, Soyo, Apple, Philips, HQ,
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BenQ, and Samsung; attacks were simulated on various Dell and Soyo screens in Sections 4
through 7), suggests that this may be difficult or costly.
Masking. Acoustic noise generators can be used to mask the signal, at a cost in design,
manufacturing, and ergonomic disruption (some of the exploitable signal lies within the human-
audible frequency range). The masking ought to have adequate energy and spectrum coverage
to reduce signal-to-noise by orders of magnitude, because the leakage signal is retransmitted
60 times per second, offering high redundancy.
Shielding. Acoustic shielding of screens may reduce the leakage amplitude, but is difficult to
achieve while keeping adequate air circulation for cooling. For microphones built into screens,
a sound-absorbing barrier may reduce microphone pickup of internally-generated sounds (but
would not affect external microphones). In the case of some screens or microphones in which
there is an electromagnetic contribution to the leakage (see Section 2.2), corresponding shield-
ing would also be desirable—and, typically, expensive.
Software mitigations. A more promising approach to mitigating the attacks presented in
this paper are software countermeasures. More specifically, variations on software mitigations
to the EM Tempest attack, which change on-screen content to mask the leakage, such as font
filtering [KA], can be considered. Moreover, because our extraction attacks use mainly aggre-
gate horizontal intensity of pixel lines, while mostly losing the information inside individual
lines, fonts can be changed such that all letters project the same horizontal intensity. Finally,
our attacks all heavily rely on neural network classifiers which, themselves are vulnerable to
inputs specifically crafted to mislead them [GSS14, SZS+13].

10 Conclusion

We report a new physical side-channel leak: acoustic leakage of screen content. We suggest
powerful attacks that extract highly precise information, such as on-screen text and on-screen
keyboard presses. We posit that this leakage is uniquely dangerous because even weak attack-
ers, that only receive encoded audio traces from legitimate communication channels, as well
as a attackers with no access to the victim’s physical screen, can exploit it.

We demonstrate this by successfully simulating highly precise content extraction and iden-
tification attacks across an array of setups, as well as a simple, but well motivated, attack
scenario: exploiting an open Hangouts connection to deduce what on-screen activity a party
to the call is involved in.

This is the first demonstrated attack using codec-encoded acoustic emanations from non-
mechanical peripherals, for which users don’t have a reason to suspect acoustic leakage would
even exist.
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A Appendix

A.1 Our trace chunking algorithm

A.1.1 Algorithm in detail

The algorithm first initiates an empty collection of chunks. Then, it searches for the first two
consecutive chunks whose sizes are in G, and their correlation8 is higher than the threshold.
It sets one of these chunks to be the first, master chunk, and adds it to the collection.

Then, starting from the position after the added chunk, it searches a size ∈ G for the
next chunk such that the correlation of the following chunk is the highest. If the master’s
correlation with the obtained chunk is above T , it is added to the chunk collection. Otherwise,
it is discarded and the algorithm goes into sync mode.

8Pearson correlation of two chunks of different sizes is taken after truncating them to the lower size among
the two.
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In sync mode, the next chunk’s size can be between S and S + 6000 samples. Again, the
algorithm finds the size that maximizes correlation with the following chunk. As long as the
algorithm is in sync mode, it does not add new chunks to the collection. The algorithm exits
sync mode once it found a size such that the following chunk has correlation < T .

When the algorithm succeeds, it truncates all chunks to the size of the smallest one (typ-
ically min{G}), and performs outlier rejection: discard the 10% of chunks whose correlation
with the master chunk is lowest, as well as any chunk that has a peak that exceeds 1.5 times
the average highest peak. The pseudo-code is given in Algorithm 1.

Algorithm 1: Chunkify
1: procedure ChopSignal(array signal, size S, allowed drift d, threshold T )
2: init:
3: chunks← list()
4: G← [S − d− 1, S + d]
5: c_len← median{G} // expected chunk length
6:
7: find_first, master_chunk:
8: while len(chunks) = 0 do
9: j ← argmaxj∈G{corr(signal[: j], signal[j : j + c_len])}
10: if corr(signal[: j], signal[j + 1 :]) > T then
11: chunks[0]← signal[: j] // master chunk
12: signal← signal[j :]
13: else
14: signal← signal[1 :]

15: loop:
16: next_len← G //normal mode
17: state← "normal"
18: sync_count← 0
19: while len(signal) > len(chunks[0]) +max{next_len} do
20: j ← argmaxj∈next_len{corr(chunks[0], signal[j : c_len])}
21: c← corr(chunks[0], signal[j : c_len])
22: if corr(chunks[0], signal[: j]) > T and state = "normal" then
23: chunks.append(signal[: j]) // master chunk
24: else
25: if c < T then
26: state← "sync"
27: next_len← [S, S + 6000]
28: sync_count+ = 1
29: if sync_count > 3 then
30: return "error"
31: else
32: state← "normal"
33: next_len← G

34: signal← signal[j :]

35: outlier rejection:
36: outlier_reject(chunks)
37: return chunks

A.1.2 Comparing against a natural baseline

Figure A.1 compares our method with the baseline, correlation-based one outlined in Sec-
tion 2.4.1, for processing a particularly noisy Zebra signal recorded using a parabolic mic
directed at a Soyo screen. This naive approach comprises of (1) chunking according to the the
exact de-facto refresh rate (59.9019 in this case), (2) rotationally shifting chunks according to
maximal correlation, and (3) performing outlier rejection, removing chunks whose correlation
is less than 0.05.
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(a) Output of the naive approach. (b) Output of our approach, using
S = 2306, T = 0.05, d = 3.

(c) Output of “ground truth” chunk-
ing, using the trigger signal obtained
via the vsync probe to accurately
segment the trace.

Figure A.1: Comparing the outputs of the two chunking approaches on a Zebra of 30 periods, recorded
using a parabolic mic (see Section 3.1). The naive approach produces a signal whose amplitude is
erratic and bears less resemblance to the one of the ground truth, even though it is using as input the
exact refresh rate (up to 0.0001 s), and even though this rate is entirely stable across this particular
recording (there are no abnormally sized cycles).

A.2 Neural Network Architectures

A.2.1 On-screen keyboard snooping

For the experiment in Section 4.2, we used a convolutional layer with window size 12, 16
filters, and stride 1, followed by another convolutional layer with the same parameters but 32
filters, followed by a max-pooling layer with pool size 4, and one fully-connected layer with
output size 512. The convolutional and FC layers have ReLU activations. The last layer is
a softmax. We used an Adadelta optimizer with a categorical crossentropy loss, and a batch
size of 64. We trained each network for 200 epochs. Each epoch takes around 3 s. The model
was evaluated on the validation set after every epoch; the best-performing model was saved
for testing.

A.2.2 Text extraction

For the experiment in Section 5, we used 1 convolutional layer with window size 12, 64 filters,
and stride 1, one max-pooling layer with size 2, and 1 fully-connected layer with output size
2048. The convolutional and FC layers have ReLU activations. The last layer is softmax. We
used an SGD optimizer with learning rate of 0.01, norm-clipped at 1. We used a batch size of
16, and trained for 1000 epochs. After every epoch the model was evaluated on the validation
set; the best-performing model was saved for testing.

A.2.3 Website distinguishing

For the experiment in Section 6.1, we used 6 convolutional layers, with a max-pooling layer
after every 2. All convolutions are of window size 24 and stride 1. For the first and second
layer, we have 16 and 32 filters respectively, and 64 for the other four convolutional layers. The
10th layer is a fully connected layer with 512 outputs, followed by a 0.9 dropout layer. The
first 10 layers have ReLU activations. The last layer is an FC layer with softmax activations.
We used an SGD optimizer with a 0.01 learning rate, 0.1 gradient clipping, a categorical
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crossentropy loss, and batch size of 64. We trained each network for 800 epochs (about 4 s per
epoch).

For the experiment in Section 6.2, we used 3 convolutional layers with kernel size 12,
stride 1 and 16 filters, followed by a max-pooling layer with pool size 8, followed by a fully
connected (FC ) layer with output 512, followed by a Dropout 0.5 layer, followed by a softmax
output layer. Convolutional, FC, and max-pooling layers have ReLU activations. We used
an Adadelta optimizer with categorical crossentropy and batch size 16. We trained for 100
epochs. Each epoch took about 7 s.

A.3 List of Screens Used

We specify the screen models used in the experiments reported in this paper. Similar effects
were observed during opportunistic ad-hoc tests on additional screens.

Model Size Resolution Backlight Qty
Apple Cinema A1316 27" 2560 × 1440 LED 1
BenQ q20ws 20.1" 1680 × 1050 CCFL 1
ViewSonic VA903b 19" 1280 × 1024 CCFL 2
Samsung 920NW 19" 1440 × 900 CCFL 1
Dell 2208WFPt 22" 1680 × 1050 CCFL 8
Dell 2208WFPf 22" 1680 × 1050 CCFL 2
Dell 3011 30" 2560 × 1600 CCFL 5
Dell U2713H 27" 2560 × 1440 LED 2
HP ZR30w 30" 2560 × 1600 CCFL 5
Philips 170S4 17" 1280 × 1024 CCFL 1
Soyo DYLM2086 20" 1440 × 900 CCFL 1
Soyo DYLM2248 22" 1680 × 1050 CCFL 2
Eyoyo S801C 8" 1024 × 768 LED 1
Eyoyo 808H 8" 1024 × 768 LED 1
Lenovo Carbon X1
3rd Gen laptop screen 14" 2650 × 1440 LED 1

A.4 The effect of microphone distance

We investigate the effect of microphone proximity to the screen on the leakage signal. We
used the setup in Section 2.1 to record a Dell 2208WFPt screen from various distances. The
microphone was placed near the screen’s top and then moved away along a straight line, pitch
40 degrees up, while maintaining the microphone’s orientation towards the screen coaxially.
We recorded traces of a Punctured Zebra from a distance of 1cm, 2cm, 5cm, 10cm, 20cm, 50cm,
100cm, 200cm, 300cm, and 500cm. Then, to measure the signal quality at a given distance, we
performed the correlation test from Section 2.4 and Figure 2.6: we demodulated and “chopped”
the signal into chunks (each corresponding with a refresh period) using the vsync probe. We
then measured the average Pearson correlation of the chunks from the average of chunks.

Figure A.2a shows the resulting chopped-and-averaged trace for each distance. Especially
for small distances, one can readily observe the regular patterns corresponding to Zebra stipes,
as well as the flatter region corresponding to the puncturing (black rectangle) in the middle.
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Figure A.2b shows the correlation values for the various distances. Even at a distance of 3
meters, we see nontrivial correlation value.

Note the discernible shifts between the traces in Figure A.2a, as distance increases. These
occur since the signal is captured acoustically but triggered electronically. At a 60 kHz refresh
rate, the speed of sound (343m/s) causes a delay of 17.5% of the refresh cycle per meter of
distance — consistently with the observed signal. Had the signal source been electromagnetic
(conducted or emanated), the delay would have been induced by the speed of light in the
relevant medium (metal or air), and thus smaller by 6 orders of magnitude.
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(a) For various distances, the averages of modulated signal segments corresponding with refresh
periods.

(b) Signal quality (average correlation value) as a function of microphone distance.

Figure A.2: For recordings of a black hole from various distances, we quantitatively and qualitatively
characterize the relationship between microphone distance and signal quality.
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