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Abstract—Since the invention of the camera, photos have been
used to document reality and to supply proof of events. Yet today
it is easy to fabricate realistic images depicting events that never
happened. Thus, dozens of papers strive to develop methods
for authenticating images. While some commercial cameras
already attach digital signatures to photographs, the images
often undergo subsequent transformations (cropping, rotation,
compression, and so forth), which do not detract from their
authenticity, but do change the image data and thus invalidate the
signature. Existing methods address this by signing derived image
properties that are invariant to some set of transformations.
However, these are limited in the supported transformations, and
often offer weak security guarantees.
We present PhotoProof, a novel approach to image authen-

tication based on cryptographic proofs. It can be configured,
according to application requirements, to allow any permissible
set of (efficiently computable) transformations. Starting with a
signed image, our scheme attaches, to each legitimately derived
image, a succinct proof of computational integrity attesting that
the transformation was permissible. Anyone can verify these
proofs, and generate updated proofs when applying further
permissible transformations. Moreover, the proofs are zero-
knowledge so that, for example, an authenticated cropped image
reveals nothing about the cropped-out regions.

PhotoProof is based on Proof-Carrying Data (PCD), a cryp-
tographic primitive for secure execution of distributed compu-
tations. We describe the new construction, prove its security,
and demonstrate a working prototype supporting a variety of
permissible transformations.

I. INTRODUCTION

A. Background
Photography is one of the most prevalent media in the

modern age, and digital cameras are nowadays ubiquitous

and integrated into mobile phones and portable computers.

Photos are usually considered reliable and convincing, and are

relied upon in personal, commercial and legal contexts, and in

forming public opinion.
Digital image editing tools are also very common, and

with the ability to improve image quality and add artistic

flavor, they also help creating fake photos of scenes that are

essentially altered, or wholly fictional, yet appear realistic.

Many such forgery examples are well known, in propaganda

[19], [41], photojournalism [26], [54], pranks, extortion at-

tempts, attempts at personal embarrassment, and falsified legal

evidence. Tools are needed to detect fake images and help the

photographic medium maintain its credibility.
Image Authentication (IA) is, loosely speaking, the ability

to prove that an image faithfully represents some original

photograph that was captured in a given class of physical

image acquisition devices (e.g., a camera model). Distinguish-

ing a genuine image from a fake just by inspection can be

very hard.1 Forensic experts can seek anomalies in content,

such as shadow/illumination direction [29], in file metadata,

e.g. thumbnails embedded in the image file header [30], or

in digital artifacts (see [16] for a survey), but in general

this can be time-consuming and unreliable.2 An alternative

approach, pursued in this paper, is to associate additional data

(a signature or proof) with the final image, in order to detect
forgery reliably and robustly.

B. Prior work

A popular approach to image authentication is to use

an authentication mechanism to append proofs to authentic

images. These proofs can readily be verified by any viewer.

One example is for the camera to digitally sign the image

when it is captured, as suggested by Friedman [21]. A secret

signing key can be securely embedded inside the camera’s

Image Signal Processor (ISP). Using the corresponding public

key, viewers can verify the signature and thus be convinced

that the image is authentic.

The limitation of this solution is that digital signatures

are, by design, sensitive to even the smallest change in the

signed data. When the signature is calculated on the image

(or, as is often done for efficiency, a collision-resistant hash

thereof), changing even a single bit of the image will result

in a mismatching signature. This restriction is incompatible

with many applications where it is legitimate and desirable

to alter images, as long as they are kept “authentic” (in

some application-specific sense). For example, operations such

as rotation, rescaling, lossy compression, brightness/contrast

adjustments and cropping may be considered permissible,

as the resulting image still faithfully represents a captured

physical scene.3

1For example, Schetinger et al. [44] found that nonprofessional human
inspectors identified forgeries in digital images with only about 58% accuracy.
2A recent Broad Agency Announcement (BAA) soliciting research propos-

als in the area of visual media forensics by the American agency DARPA [14]
points out the imbalance between thousands of available image manipulation
programs and very few forgery detection tools in the market, and the relatively
low work capacity of human analysts.
3For example, New York Times guidelines on integrity permit rectangular

cropping [53].
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Developing an image authentication mechanism that sup-

ports some set of permissible transformations is an ongoing

research area. Generally speaking, the existing solutions can

be categorized into two main approaches.

Semi-fragile watermarking. The first category is semi-
fragile watermarking (e.g., [32], [52], [27]). A watermark is

a signal or pattern embedded into an image in a perceptually

and statistically invisible fashion. Embedding the watermark

ensures that performing one of the allowed transformations

on the image will not destroy the watermark, but (ideally)

any other digital manipulation will. Sun et al. [52] suggested

embedding a semi-fragile watermark in coefficients of SVD

decomposition of image blocks in a way resilient to JPEG

compression. In [32], two JPEG compression invariants are

used to embed an authentication string in the image DCT co-

efficients, making the watermark robust to JPEG compression.

Robust hashing. The second category of image authentica-

tion mechanisms is robust hashing or feature extraction (e.g.,
[46], [20], [55], [33], [48], [17], [59], [34], [60]). Here, a

specially designed hash function for images is defined, such

that different images yield different results, but images that

are essentially the same (i.e., modified by some permissible

transformation) give identical (or close) hash digests. When an

image is captured, its digest is signed using a private signing

key and attached to the image. A verifier that receives a copy

of the image computes its digest, verifies the signature on

the attached digest using a verification key, and compares the

two digests. If these two digests are close enough, by some

distance measure, they are accepted by the verifier.

Venkatesan et al. [55] construct an image hash function

robust to JPEG compression and limited geometric modifi-

cations. Their authentication method relies on a secret key

and is thus restricted to the private verification setting. Lin

and Chang [33] use differences between corresponding DCT

coefficients from different blocks to create authentication data

which is invariant to JPEG compression. Lin et al. [34] present

a robust hash based on running a pseudorandom feature

vector of the image through a Slepian-Wolf coding (where the

pseudorandom seed is known by the verifier). They show this

technique to be resilient to JPEG compression, affine warping,

and contrast and brightness adjustments.

All existing authentication methods have at least one of the

following drawbacks:

Fixed set of permissible transformations. Different appli-

cations may consider different transformations as permissible,

but most existing techniques are specific to a fixed set of

supported transformations (e.g., [46], [20], [33], [48], [40],

[34]). Usually the set is also relatively small and includes

transformations of the same “nature”, e.g., only certain geo-

metric transformations or only image compression, which are

preserved by an invariant of their watermarking or underlying

hash. One exception is the method in [17], which allows some

degree of freedom in the choice of allowed transformations,

though at the expense of accuracy.

Non-negligible error probability. Most existing image au-

thentication techniques with permissible transformations have

non-negligible probabilities for false alarms or false accep-

tance. This is mainly due to the statistical nature of verifi-

cation, usually in the form of comparison of some quantified

property to an (empirically chosen) threshold (as in [46], [33],

[17], [59], [34]).

Vulnerability to adversaries. Many of the methods are

insecure against an adaptive attacker who is familiar with the

authentication method. Such an attacker may devise an image

that will fool the verifier with very high probability. In [46] for

example, the authors propose robust hash image authentication

that works by splitting an image into blocks (of different

sizes) and taking their intensity histograms. An attacker who

is aware of this method can generate an image that (a) gives

the same vector of authentication data (i.e., block histograms)

and (b) is not a result of a JPEG compression. To overcome

this weakness, some have suggested incorporating pseudo-

random elements into the authentication process. However,

in the public verification setup, it is often the case that the

random seed (i.e., the key) must be known. The attacker might

then compose a manipulated image that fools the verifier with

high probability. The method proposed in [34], for example,

is vulnerable in this way, and other methods are similarly

vulnerable.

Lack of succinctness on the verifier side. In most au-

thentication methods, the verification time and the size of

the authentication data grow with the image size or with the

number of transformations that were applied on it. While

for robust hash methods this results in larger image data,

in watermarking based authentication, longer embedded data

results in a larger decrease in image quality.

CertiPics. A different approach to image authentication is

taken by Walsh [57], who implemented CertiPics, an image

authentication software over the Nexus operating system [45],

[49] using a secure co-processor (TPM). First, a policy is

defined, stating the allowed transformations and editing rules.

Users use specially written and authorized applications on a

Nexus machine for editing. CertiPics keeps a certified and

unforgeable log of the transformations performed. This log is

then used when viewing the edited image on a Nexus machine,

to verify that the image is authentic according to the policy.

CertiPics, too, lacks succinctness on the verifier side: the

size of the log and the effort to verify it grow with the length

of the history. It also does not provide zero-knowledge: the

log leaks the editing history of the image, even when this is

undesirable and not required by the policy.

Trusting cameras. Most approaches to image authentication,
including ours, rely on a signing camera as root of trust.

Critique and justification of this assumption is not the main

focus of our contribution, but since it affects the overall

security of the system, we discuss it in Appendix A.
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Table I
COMPARISON BETWEEN EXISTING AUTHENTICATION METHODS AND PhotoProof

technique type claimed transformations flexible
specification

negl.
error
probability

size
overhead

JPEG rotate crop scale brightness,
contrast flip trans-

pose

digital
signature

× � O(1)

[32] SW � � × × O (n)

[33] RH � × × O (n)

[52] SW � × × O (n)

[17] RH � � restricted × unspecified

[34] RH � � � � × × O (n)

[55] RH � < 2◦ < 10% < 10% × × O (n)

[60] RH � < 5◦ < 2% � × × O (1)

[20] RH � � × × O (1)

PhotoProof CP (�) � � (�) � � � any efficient
transformation

� O (1)

Type can be Robust Hash (RH), Semi-fragile Watermarking (SW), or Cryptographic Proofs (CP). Flexible specification denotes whether the set of permissible
transformations is configurable. Error probability denotes whether the probability of false alarms and misdetections is negligible. Size overhead is the length of the
authentication data as a function of image size. (�) refers to capabilities supported in our scheme but not yet implemented in our current prototype.

C. Our contribution

We present PhotoProof, a novel approach to image authen-

tication that is based on cryptographic proofs of computational

integrity. Our construction yields a public-proving and public-

verifying authentication system which is secure and reliable.

We also describe our implementation of a working proof-of-

concept prototype, including a collection of permissible image

transformations.

Our construction realizes IA scheme, a new cryptographic

primitive defined in this work, which does not possess any

of the aforementioned shortcomings of the existing solutions

and has other desirable properties. Table I summarizes the

comparison of our construction to existing techniques.

Consider the following IA workflow. A system administrator

first decides on a set of permissible transformations. Any

editor can apply a permissible transformation on an image

and generate a new proof, provided the image’s authentication

data is available either as a digital signature computed by the

camera or as a previous proof. Any viewer can then verify that

the proof is valid for this image.

PhotoProof fulfills the above IA workflow, with additional

important properties, some of which have not been achieved

by any other technique:

1) Proofs are unforgeable. Not only does our method have

negligible error probability, either for falsely rejecting

or falsely accepting an image as authentic, it is also

provably secure against (computationally bounded) ad-

versaries that might try to pass manipulated images as

authentic.

2) Proofs are zero-knowledge, which ensures that no infor-

mation about the image, other then it being authentic,

can be learned from the proof. For example, one might

want to crop out or black out an embarrassing portion of

an image. The zero-knowledge property guarantees that

information edited out of the image (in an authenticity-

preserving way), and even the choice of transformations

that were applied to the image, remain secret.

3) Verification is fast and proofs are of constant-size.

4) Authentication can include additional metadata, e.g, to

prevent change of author information or geographic data.

5) Finally, PhotoProof is unique in that it can naturally

be adjusted to include any set of image transformations.

In terms of performance, proof verification takes mere mil-

liseconds, but at present the creation of proofs is too slow

for many applications and common image sizes. We discuss

possible performance enhancements in Section V.

D. Approach

Our approach is an application of the Proof-Carrying Data

paradigm, defined by Chiesa and Tromer [11].

Consider the (informal) scenario of a distributed compu-

tation between multiple parties, with parties receiving inputs

from others, performing their own computation and outputting

their results to the next parties in the computation. PCD

transforms this computation into a secure one, by enabling

each party to attach to its output a proof. The PCD proof

certifies not only the correctness of the last computation, but

also of its entire history. This means that in order to accept

the result of such a distributed computation as correct, only

the last proof is required (see Figure 1).

Figure 1. A PCD computation transcript. Each node receives input messages
zi and proofs πi from previous nodes, and then computes its output and
generates a proof for it. Only the final proof is needed to certify that the
entire computation was executed correctly.

PCD is known to be possible under various reasonable

assumptions [9], and was recently implemented, in the general
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case [7], and (more efficiently) in the special case of a single

hop, where it is called a SNARK [6]. We build on these prior

works and adapt them to the image authentication setting.

This work is also the first application-specific use of PCD

(prior prototypes were either proofs-of-concept for generic

computation [7], [13] or used the special case of SNARKs

[3]).

We begin with the following high-level description of how

to use PCD to build an image authentication mechanism

(see Figure 2). Initially, an image is captured with a digital

camera. A user who wishes to edit the image can apply

a permissible transformation on it, and — using the PCD

proving algorithm — generate a new proof for its authenticity.

Any number of such steps can follow, and may be performed

by different users. At any time, any viewer of the image may

check its proof by using the PCD verification algorithm. The

proof guarantees that this latest step and all prior steps were
complied with the specification (encoded via PCD) of the

predefined set of permissible transformations. We propose a

digital signature produced inside the camera (as also proposed

in [21]) as the root of trust that specifies the beginning of

the chain of permissible transformation steps, and with the

required precautions we discuss in Appendix A.

Figure 2. The history of an image as a distributed computation (a) where in
each step a PCD-generated proof is appended (b).

In this work we present the theoretical construction of

PhotoProof from PCD for any set of permissible trans-

formations, as well as an implementation of a PhotoProof

prototype, supporting small images and a diverse set of per-

missible transformations. Our prototype builds on the PCD

implementation of [7].

The rest of this paper is organized as follows. We begin by

formally defining image authentication schemes in Section II.

In Section III we give some required background on PCD. We

present our theoretical construction and its proof of security in

Section IV and describe our prototype, challenges in instan-

tiation, and possible extensions in Section V. We summarize

and give future research directions in Section VI.

II. DEFINING IMAGE AUTHENTICATION

We consider the following image authentication workflow.

First, the IA scheme is constructed and implemented, along

with a library of implemented image transformations. A system

administrator who wishes to integrate this IA scheme into his
or her system, chooses a set of permissible transformations

from the available collection. This set reflects what changes are
allowed to be made to the images. The system administrator

then runs the IA scheme’s generator algorithm to produce

the system keys: two public keys for proving and verifica-

tion, which are encoded in editing and viewing applications

respectively, and a secret signing key, securely embedded in

the cameras.4 Photographers can then use the cameras to
produce digitally signed images. Any editor can use the editing
application to edit the image, by performing a permissible

transformation on it, and to generate a proof of authenticity for

the new image. The viewing application enables any viewer
to present images while verifying their authenticity using their

attached proofs.

Our goal is to construct such an IA scheme that applies

for any defined set of permissible transformations. The proofs
must be succinct, as otherwise simply attaching a signed copy

of the image prior to the transformation to an altered one (and

letting the verifier compare the two) would suffice. We also

want the proofs to be recursive, i.e., it must be possible to

prove the authenticity of an image using another authenticated

copy, without having access to the original camera-signed

image. Moreover, the proofs must be cryptographically hard

to forge and must not reveal data about the image other than

its authenticity. We begin by defining some basic terms, and

proceed to the formal definition of an IA scheme.

A. Basic definitions

Image. An image I is a pair I = (B,M) contain-

ing a pixel matrix B and metadata M . The pixel matrix
B ∈ {0, 1, ..., 255}3×N×N

, for some integer N , represents an
N ×N matrix of pixels, each containing 3 bytes for the red,

green and blue components.5 N is not the actual size of the

image, but merely the allocated size. The height and width of

the image are specified in the metadata and can be any integer

smaller or equal to N . Pixel values outside the real image area
should be 0.

The metadata for an image, denoted M , is a list of key-
value pairs, where the keys are unique and taken from some

predetermined set. We assume M is represented as a binary

string by some reasonable encoding (the precise encoding is

inconsequential for the ensuing discussion), and constrain the

length of this string to a fixed length m. Let I [key] denote
the value in M with the key key, which we also call the key
field. M must contain values for width and height keys that
specify an image’s real width and height.

Let I denote the set of all images, and let IN denote the

set of all N -images, i.e., with an N ×N pixel matrix.

4For simplicity, we describe the scenario where the signing keys to be
embedded in cameras are created from scratch by the IA scheme. In reality,
existing signing keys embedded by camera manufacturers would probably be
used; see Section V-G for this natural extension.
5We consider here only square matrices and 8-bit RGB pixels for clarity.

This is trivially generalized.

258258



Remark 1. We distinguish the notion of image as defined here
from the notion of image files (e.g., PNG or JPEG). When we
refer to image files we say so explicitly.

Transformation. An image transformation t is a function
t : I × {0, 1}� → I such that for every N , if I ∈ IN , then
t (I, γ) ∈ IN for any γ. That is, an image transformation takes
an N -image and some parameters as input, and outputs an N -
image. We also require that for every N there is an upper

bound KN such that for all I ∈ IN , γ ∈ {0, 1}� there is a
γ′ ∈ {0, 1}KN such that t (I, γ) = t (I, γ′). In other words,
the parameter string length is bounded for every N . Note
that an image transformation may work on both the image’s

pixel matrix and its metadata (e.g., a crop transformation

may change the width and height fields of an image). As
a default, a transformation leaves the metadata as is, unless

otherwise defined. It is also possible to define transformations

that change only the metadata (e.g., edit an author field).
Permissible transformation. Let T = (t1, ..., tn) denote
the set of permissible transformations, a set of n image

transformations that were defined by the system administrator

as authenticity preserving.6

Provenance. For some N -image I , a provenance7 of I is
an N -image J , a finite series of transformations (u1, ..., um)
and a series of parameter strings Γ = (γ1, ..., γm) such that
if we take I1 = J and Ii+1 = ui (Ii, γi) for 1 ≤ i ≤ n,
then Im+1 = I . In this case we say that I has a provenance
originating in J . We call a provenance of I a permissible
provenance if all of the ui are permissible transformations.
Original image. Let S = (GS, SS, VS) be an existentially
unforgeable digital signature scheme [24]. For an image I , a
signature verification key pS and a signature σ, we say that I is
original with respect to pS according to σ if VS (pS, I, σ) = 1.
When it is clear what key is relevant, we only say that I is
original according to σ, and if σ is specified in that context
too, we may just say that I is original.8

Authentic image. Given pS and T as before, let e =
(O, (u1, .., um) ,Γ) be a provenance and σ a signature. We say
an image I is authentic with respect to (T , pS) according to
(e, σ) if e is a permissible provenance of I and O is original

with respect to pS according to σ. (Note that every original
image is authentic, according to the provenance of length 0.)

B. Image authentication

Given a set of permissible transformations T and a security

parameter λ, and given an existentially unforgeable signa-
ture scheme S = (GS, SS, VS), an Image Authentication (IA)
scheme for T is a tuple IA = (S, GIA, PIA, VIA), where GIA is

6This is easily generalized to image relations that check conditions between
input and output images (e.g., each pixel value changes by at most 1).
7The word provenance is originally used for referring for a work of art’s

chronology of custody.
8A more general definition would be to use some originality decider that

decides whether a given image is original, according to some witness. This
way, the construction does not necessarily depend on a digital signature
scheme. We chose to stick with the more specific version, as it is more intuitive
and practical.

called the generator, PIA is called the prover, and VIA is called
the verifier.
The generator GIA

(
1N , 1λ

)
→ (pkIA, vkIA, skIA), given a

maximal image size N and security parameter λ, probabilisti-
cally generates a secret signing key skIA, a public verification
key vkIA, which also contains a public key that matches skIA,
i.e. vkIA = vk′

IA||pS (here and everywhere else, || denotes
string concatenation), and a public proving key pkIA. GIA is

a preprocessing step and assumed to be executed once, in

advance, by a trusted party (e.g., the camera manufacturer).

The prover PIA (pkIA, Iin, πin, t, γ) → (Iout, πout) , receives
a proving key pkIA, an N -image Iin, a proof πin and a pa-
rameter string γ, and returns an edited image Iout = t (Iin, γ)
with a proof for its authenticity πout.

The verifier VIA (vkIA, I, π) → 0/1, receives a verification
key vkIA, an N -image I and a proof π and returns a decision
whether I is authentic.

The signature scheme’s signing algorithm SS is intended to
be executed by a trusted party (e.g., a secure camera). For

simplicity, we consider a scenario where every device is em-

bedded with the same secret key, generated by the generator.

This is easily generalized to a system with certificate chains

and possibility for revocation, as discussed in Section V-G.

The following properties must hold for GIA, PIA, VIA.
9

Completeness. An IA scheme IA is complete if it is always
possible to successfully prove the authenticity of an authentic

image. That is, for every N and for every N -image I with a
permissible provenance e = (O, (u1, ..., un) ,Γ):

Pr

⎡
⎢⎣VIA (vkIA, I, π) = 1

∣∣∣∣∣∣∣

(pkIA,vkIA,skIA)←GIA(1N ,1λ)

σ←SS(skIA,O)

(I,π)←prove(e,σ)

⎤
⎥⎦ = 1

where we define prove (e, σ) to yield (In+1, πn+1), computed
using the recurrence relation:

I1 ← O, π1 ← σ, and (Ii+1, πi+1) ← PIA (pkIA, Ii, πi, ui, γi) .

Unforgeability. The unforgeability of the signature scheme

S still holds, even when considering adversaries that receive

pkIA and vkIA as an auxiliary input.

Proof-of-knowledge. If the verifier accepts a proof π for
an image I generated by some adversary, then the image is
authentic, and moreover, the adversary “knows” a permis-

sible provenance of I and a signature according to which
I is authentic. Formally, an IA scheme IA has the proof-
of-knowledge property if, for every polynomial-time stateful
adversary A, there is a polynomial-time knowledge extractor
E that can output a provenance and a signature, such that for

every N and a large enough λ, and every polynomial-length
series of N -images (I1, .., Ir) for some r ∈ poly (λ), it holds

9These are adapted from the general definitions of PCD in Appendix D of
[7]. See also Section III.
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that:

Pr

⎡
⎢⎢⎢⎣

VIA(vkIA,I,π)=1

DT (vkIA,I,e,σ)=0

∣∣∣∣∣∣∣∣∣

(pkIA,vkIA,skIA)←GIA(1N ,1λ)

σi←SS(skIA,Ii),1≤i≤r

(I,π)←A(pkIA,vkIA,(Ii,σi)i)

(e,σ)←E(pkIA,vkIA,(Ii,σi)i)

⎤
⎥⎥⎥⎦ ≤ negl (λ)

(1)

Above, DT (vkIA, I, e, σ) is the procedure that returns 1 iff I is
authentic with respect to T , pS according to e and σ, where pS
is the public key of the signature scheme, which is contained

in vkIA.

Succinctness and efficiency. IA proofs are short and easy to
verify, i.e., VIA (vkIA, I, π) runs in time Oλ (|I|) and an honestly
generated proof is of length Oλ (1) (where Oλ hides a fixed
polynomial in λ). The prover and generator run in polynomial
time in their inputs and in the (worst-case) running times of

the transformations in T on images of size at most N .10

Statistical zero-knowledge. The IA proofs reveal nothing

beyond the authenticity of the image. Formally, proofs are sta-
tistical zero-knowledge: there exists a polynomial-time stateful
simulator S such that for every stateful distinguisher D that

creates and observes proofs of legitimate images of its choice,

the distinguisher D cannot tell whether it is interacting with a

real prover or with the simulator S which does not even know
the original image. Formally, the following two probabilities

are negligibly close (in λ):

Pr

⎡
⎢⎢⎢⎣

t∈T

VIA(vkIA,Iin,πin)=1

D(π)=1

∣∣∣∣∣∣∣∣∣

1N←D(1λ)

(pkIA,vkIA,skIA)←GIA(1N ,1λ)

(Iin,πin,t,γ)←D(pkIA,vkIA,skIA)

(I,π)←PIA(pkIA,Iin,πin,t,γ)

⎤
⎥⎥⎥⎦ (2)

Pr

⎡
⎢⎢⎢⎢⎢⎢⎣

t∈T

VIA(vkIA,Iin,πin)=1

D(π)=1

∣∣∣∣∣∣∣∣∣∣∣∣

1N←D(1λ)

(pkIA,vkIA,skIA)←S(1N ,1λ)

(Iin,πin,t,γ)←D(pkIA,vkIA,skIA)

I←t(Iin,γ)

π←S(I)

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

Remark 2. As mentioned, the signing algorithm should be exe-
cuted by a trusted party, e.g., a secure camera (see Section A).

skIA should be available only to the generator algorithm and

the signing algorithm. In practice, this also means that the

key should be kept in a protected storage, thus unavailable to

outside untrusted users.

Remark 3. Zero-knoweldge (ZK) is a very useful property
for an IA scheme to have (e.g., to ensure that private or

embarrassing details that were cropped out of an image remain

secret), but one may ask what is the cost of making it a

requirement. In our particular case, our construction yields

zero-knowledge “for free”, since the succinctness of the proofs

relies on SNARK constructions, and today’s most efficient

10In our construction, the dependence is quasilinear in the size of the
arithmetic circuit that computes the compliance predicate, which contains the
sub-circuits performing the transformations in T .

SNARK constructions [43], [22], [4] provide ZK with neg-

ligible overhead over their non-ZK variant..

Remark 4. Our definition of proof-of-knowledge is non-

standard. We discuss this in Section IV-C.

Remark 5. The prover algorithm is comprised of two parts: (i)
creating the output image by applying the input transformation

on the input image with the input parameters, and (ii) gener-

ating a new proof for the new output image. It is possible to

separate these two steps, by defining an editor algorithm and

a prover algorithm, e.g., to enable a user to edit an image with

one utility and then generate a proof with another. While this

may be desirable for some applications, it is easy to see that

the two methods are equivalent from a cryptographic point of

view. We chose to stick with the first one for two reasons.

First, the interfaces are simpler and more elegant. Second, the

translation of parameters from the “image processing” form

to the “arithmetic circuit input” form is handled internally

without requiring the user’s involvement.

Remark 6. PhotoProof leaves the specification of permissible
transformations at the hands of the system administrator. It

is up to the system administrator to make sure that the

transformations chosen cannot be abused, for example, by

being repeatedly applied to accumulate to overall undesirable

changes. Note that in this case, PhotoProof can also restrict

the number of transformations that can be performed to prevent

such an abuse, see Section V-G.

III. PROOF-CARRYING DATA

Proof-Carrying Data [11] is a cryptographic primitive for
enforcing properties of distributed computation executed by

untrusted parties, using proofs attached to every message. As

our construction of the IA scheme is based on PCD, we

provide a brief and informal description of the concept and

terminology. (See [12] for a detailed overview and [9], [7]

for the latest definitions. Here we follow the definitions in

Appendix D of [7]).

Consider the scenario of a distributed computation between

multiple untrusting parties, where every party can receive

inputs from previous parties, add its own local data, perform

a computation and output its result to the following parties

(see Figure 1). We can think of this computation as a directed

acyclic graph, where nodes represent computation and edges

represent messages between parties. Edges are labeled with

the content of the message, and vertices are labeled with the

content of their node’s additional local data (if any). This graph

is called the transcript of the computation.
The property to be enforced is encoded as a compliance

predicate, denoted Π, which inspects a single node (i.e., its
incoming input edges, outgoing output edges, and its local

data) and accepts or rejects them. A transcript is said to be Π-
compliant if Π accepts all nodes in the transcript. A message

value m is said to be Π-compliant if it is the final edge in
some Π-compliant transcript.
Given a compliance predicate Π, PCD transforms the origi-

nal computation into an augmented computation that enforces
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compliance, in the following sense. Each party attaches, to

each of its output messages, a proof to the claim that the

message is Π-compliant. Thus, in particular, the final output of
the computation can be verified to result from a Π-compliant
computation by merely inspecting the final proof associated

with that output. The running time of the prover and verifier,

and the size of the proofs, are all essentially independent of

the transcript’s size.

More concretely, a (preprocessing) PCD system is a triplet

of algorithm (GPCD, PPCD, VPCD).
11 The generator algorithm

GPCD

(
Π, 1λ

)
, given a compliance predicate Π and a security

parameter λ, probabilistically outputs a pair of public keys:
proving key pkPCD and verification key vkPCD. The generated
keys can be used by all parties to prove and verify messages

for an unlimited number of times. For input messages �zin
with matching proofs �πin, local data l and an output message
zout, the prover algorithm PPCD (pkPCD, �zin, �πin, l, zout) outputs
a new proof πout attesting that zout is Π-compliant (if this
is indeed the case). Given a message z and its proof π, the
verifier algorithm VPCD (vkPCD, z, π) decides whether the proof
is valid. See Appendix D of [7] for the full definitions.

A PCD system has the following properties. Completeness:
for any result of a Π-compliant transcript, the prover can
generate a message that convinces the verifier. Succinctness:
proof size is Oλ (1) and VPCD runs in Oλ (|z|) (and, in

particular, is independent of the size of Π or the transcript).

Proof-of-knowledge, which is a strengthening of soundness: an
adversary that successfully convinces the verifier of the claim

that some message z is Π-compliant “knows” of a Π-compliant
transcript which outputs z. The adversary can get additional
polynomial-length auxiliary input, which is chosen before the

PCD keys are generated. (Statistical) zero-knowledge: a proof
for a message does not contain information about the transcript

which produced it.

On the theoretical side, PCD was shown to be constructable

by recursive composition of SNARK proofs [9] (which are,

essentially the single-message case of PCD). SNARK con-

structions are known, and some are implemented, on the basis

of knowledge-of-exponent assumptions [25], [35], [10], [43],

[6], [4], [22] and extractable collision resistant hashes [8],

[39], [10]. Recently, Ben-Sasson et al. [7] presented the first

implementation of preprocessing PCD, which was also made

public via the libsnark library [47]; see below for further

details.

Expressing compliance predicates. As discussed, PCD

proves “compliance” as expressed by a predicate Π that applies
to every node of the transcript. We did not specify, however,

what language is used to express Π.
One possibility is to represent it as a computer program

using some programming language. There are implementations

of SNARKs (the 1-hop private case of PCD) for correct

11We follow the definition of [7], which is a somewhat stricter version
than the one in [11], in the sense that we assume that for any compliance
predicate Π, the generator GPCD can generate the appropriate keys efficiently
(the original definition only requires that a GΠ

PCD exists, i.e., GPCD may be
non-uniform). In a non-preprocessing PCD system, there are no keys or G.

execution of C programs [43], [7], [56], [4], [6]. However,

compiling C programs into an underlying “native” level of

SNARKs, such as Quadratic Arithmetic Programs (QAP) [22])
comes at a large overhead.

For this reason we chose to encode our compliance predicate

using a low-level language called the Rank 1 Constraint Sys-

tem (R1CS), an NP-complete language similar to arithmetic

circuit satisfiability but allowing general bilinear gates at unit

cost (see Appendix E.1 in [5] for more details). This allows a

tight reduction to QAP, and preserves its expressive power.

Definition 7. A Rank 1 Constraint System S of size n ∈
N over finite prime order field Fp (Fp-R1CS) is defined by

vectors �ai,�bi,�ci ∈ F
m+1
p , i ∈ {1, . . . n}. For a vector �α ∈

F
m
p , we say that �α satisfies S if 〈�ai, (1, �α)〉

〈
�bi, (1, �α)

〉
=

〈�ci, (1, �α)〉 for all i ∈ {1, . . . n}, where 〈·, ·〉 denotes the inner
product of vectors.

The language of S is the set of all vectors �x ∈ F
k
p, k ≤ m.

such that �x can be extended to a vector that satisfies S, i.e.,
there is a �w ∈ F

m−k
p s.t. (�x, �w) satisfies S.

As discussed in Section V, our PhotoProof implementation

use libsnark [47], an open-source C++ library which imple-

ments the preprocessing SNARK scheme of [22] and PCD of

Ben Sasson et al. [7]. This PCD implementation receives its

compliance predicates as an Fp-R1CS, and all of its messages,

local data and proofs are vectors over Fp. The libsnark

library also includes implementation of gadget classes, used
to construct instances of R1CS recursively. A gadget has two

main functionalities: generate a constraint system and generate

an assignment. For example, a gadget for a relation R (x, y)
can (i) generate a constraint system (that includes x and y
as variables) which can be satisfied iff R (x, y) = 1 and (ii)
given assignments to x, y compute a witness assignment that
satisfies this constraint system.

Remark 8. It is usually more intuitive to think of Π as an

arithmetic circuit, in which all the wires carry values from Fp

and gates are field operations. There is a linear-time reduction

from any arithmetic circuit to a R1CS. Briefly, the reduction

is performed by adding a variable for each wire of the circuit,

and adding a rank-1 constraint on those variables for each gate.

The resulting system size is linear in the number of gates of the

original circuit. The full details can be found in Appendix E.1

of [5].

IV. IMAGE AUTHENTICATION USING PCD

A. Construction

For any set of image transformations T , we construct
an IA for T , from a preprocessing PCD system and an

existentially unforgeable digital signature scheme [24]. We call

this construction PhotoProof (PP).

The layout of the construction is as follows. The

PhotoProof generator, given a maximal image size N , first
translates the set of permissible transformations into a com-

pliance predicate Π, which, given two N -images (and some
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auxiliary input), checks whether the images represent a permis-

sible transformation’s input-output pair (for some parameters).

The generator also creates a digital signature key pair and calls

the PCD generator on the compliance predicate to create the

proof system; images are signed inside the camera, using the

secret signing key, and the prover and verifier apply the PCD

prover and verifier to generate/check proofs.

Formally, let (GPCD, PPCD, VPCD) be a PCD system, and let

S = (GS, SS, VS) be an existentially unforgeable digital signa-
ture scheme’s generation, signing and verification algorithms.

Our PCD system will be defined over messages of image

and public-key pairs, i.e., z = (I, pS).

We first define the following compliance predicate:

Algorithm 1 compliance predicate ΠT (zin, zout, t, γ)

Input: incoming and outgoing messages zin = (Iin, pin),
zout = (Iout, pout), an image transformation t and a
parameter string γ.

Output: 0/1.
1: if zin = ⊥, t = ⊥ and γ is a digital signature then
2: return VS (pout, Iout, γ)
3: if t ∈ T and t (Iin, γ) = Iout and pin = pout then
4: return 1

5: return 0

The compliance predicate deals with two situations. For

the base case, where there is no input image but only output

image, it verifies the image’s signature using the given public

key.12 For any other case, it checks whether the transformation

between the input and the output image is indeed permissible

and also checks that the given public key is not changed.

The goal of including the public key in the message is for

allowing the final verifier, which knows the public key that

appears in the system’s verifying key, to be convinced that the

same public key was used for the signature verification of the

original image. Another way of achieving this could have been

encoding the signature verification key inside the compliance

predicate (to yield ΠT
pS
). The main drawback in doing so is

that the PCD keys become dependent in the signature keys,

which complicates the construction and its security proof.

We continue to define the main PhotoProof algorithms in

Algorithms 2–4.

12We implemented a slightly modified version due to efficiency considera-
tions, see Section V-F.

Algorithm 2 PhotoProof generator GPP

(
1N , 1λ

)

Input: a maximal image size N and a security parameter λ.
Output: a proving key pkPP, a verification key vkPP and a

signing key skPP.
1: (sS, pS) ← GS

(
1λ

)
{generate a secret key and a public key of the signature

scheme}

2: generate an Fp-R1CS instance CN which computes ΠT

when applied on N -images.
3: (pkPCD, vkPCD) ← GPCD

(
CN , 1

λ
)

{generate PCD keys}

4: return (pkPCD||pS, vkPCD||pS, sS)

Algorithm 3 PhotoProof prover PPP (pkPP, Iin, πin, t, γ)

Input: a proving key pkPP, an N -image Iin, a proof πin, an
image transformation t and a parameter string γ.

Output: an edited image Iout and a proof πout.
1: parse pkPP as pkPCD||pS
2: if πin is a digital signature string then
3: π′

in ← PPCD (pkPCD,⊥,⊥, πin, (Iin, pS))
{“convert” the signature to PCD proof by calling the

PCD prover}

4: else
5: π′

in ← πin
6: Iout ← t (Iin, γ)
7: l← (t, γ)
8: zin ← (Iin, pS)
9: zout ← (Iout, pS)
10: πout ← PPCD (pkPCD, zin, π

′
in, l, zout)

11: return πout

Algorithm 4 PhotoProof verifier VPP (vkPP, I, π)

Input: a verification key vkPP, an N -image I and a proof π.
Output: 0/1.
1: parse vkPP as vkPCD||pS
2: if π is a digital signature then
3: return VS (pS, I, π)
4: if π is a PCD proof then
5: return VPCD (vkPCD, (I, pS) , π)
6: return 0

B. Proof of security

We now sketch the proof that PhotoProof fulfills the

requisite properties.

Theorem 9. For any set of polynomial-time image trans-
formations T , and given PCD and an existentially un-
forgeable digital signature scheme, the corresponding PP =
(S, GPP, PPP, VPP) is an IA scheme for T .

Proof sketch. In the following, recall that a PhotoProof proof
π may be of one of two types: a digital signature or a PCD
proof. We now prove the different properties.

262262



Succinctness. This follows from the efficiency of digital

signatures and the succinctness property of PCD. The running

time of VPP is essentially the sum of VPCD’s and VS’s running
time, both of which are Oλ (|I|) regardless of the predicate
ΠT . GPP consists of a call to GS (which is polynomial in the

security parameter λ), a generation of CN that computes ΠT

for N -images, which is polynomial in its worst-case running
time, and a call to GPCD on the generated R1CS instance, which

from the PCD properties is quasilinear in the size of CN . PPP

essentially performs an efficient transformation t ∈ T and runs

PPCD at most twice, and thus also fulfills the requirement.

Completeness. Let e be a permissible provenance e =
(O, (u1, ..., un) ,Γ) and a signature σ = SS (skPP, O). First
note that the correctness of S guarantees that VS (pS, O, σ) = 1.
Hence, for every step of prove, the compliance predicate ΠT

is satisfied. PCD completeness then yields that every proof

generated inside prove will convince the PCD verifier with

probability 1. Therefore the final proof will also convince it

with probability 1.

Unforgeability. This property trivially holds for our construc-
tion. We need to show that knowing pkPP, vkPP does not help
an adversary attacking the signature scheme, except with a

negligible probability. Having pkPP, vkPP is the same as having
pkPCD, vkPCD, pS. The PCD keys are (randomly) generated inde-
pendently from the signature keys, and the signature scheme

is secure against adversaries with access to the public key and

some (key-independent) auxiliary input.

Proof-of-knowledge. Using the terminology of [7], we can

look at a provenance of an image as a distributed computation
transcript T, where transformations and parameter strings are
the nodes’ local data, and images are the messages on edges.

The IA proof-of-knowledge then follows from the PCD proof-

of-knowledge (PCD-PoK). Indeed, let A be a polynomial-

time adversary attacking the PhotoProof scheme. We need

to show a polynomial-time extractor E such that, whenever A
convinces VPP that some image I is authentic using a proof π,
E produces the evidence (provenance e and signature σ) of
authenticity, i.e., Eq. 1 holds.
Using A, we construct APCD, an adversary attacking the PCD

scheme. Recall that PCD-PoK allows for the adversary and

the extractor to be given an additional auxiliary-input string

(chosen prior to key generation). Our APCD will interpret its

auxiliary input as a series of images with matching signatures

(Ii, σi)i, along with a matching public key pS , will run
A (pkPCD||pS, vkPCD||pS, (Ii, σi)), and will then output the PCD
message and a proof corresponding to A’s output. PCD-PoK
then guarantees that there is an extractor EPCD such that (for

every N and large enough λ and every (polynomial-length)
auxiliary input a, the following holds:

Pr

⎡
⎢⎢⎢⎢⎣

VPCD(vkPCD,z,π)=1

out(T) �=z orCN (T)=0

∣∣∣∣∣∣∣∣∣∣

(pkPCD,vkPCD)←GPCD(CN ,1
λ)

(z,π)←APCD(pkPCD,vkPCD,a)

T←EPCD(pkPCD,vkPCD,a)

⎤
⎥⎥⎥⎥⎦≤negl(λ)

(4)

where out (T) denotes the last message of the transcript T,
and CN (T) returns 1 iff T is CN -compliant.

Note that the probability in Eq. 1 is over the generation of

(pkPP, vkPP, skPP), while in Eq. 4 it is only on the generation
of the PCD keys. However, PCD-PoK holds for every a,
and in particular such a that is generated by first generating
(pS, skPP) ← GS

(
1λ

)
and choosing any r images I1, ..., Ir, and

then taking a = (pS, (I1, SS (skPP, I1)) , ..., (Ir, SS (skPP, I1))).
So the probability remains negligible even when adding the

generation of (pS, skPP) to the probability space, i.e., for every
(I1, .., Ir),

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

VPCD(vkPCD,z,π)=1

out(T)�=z orCN (T)=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(pS,skPP)←GS(1λ)

σi←SS(skPP,Ii),1≤i≤r

(pkPCD,vkPCD)←GPCD(CN ,1
λ)

(z,π)←APCD(pkPCD,vkPCD,a)

T←EPCD(pkPCD,vkPCD,a)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤negl(λ)

Now, we define the extractor E as the algorithm that (a)

when A outputs an image and a digital signature, outputs

the same image and signature and (b) when A outputs an

image and a proof, invokes EPCD and reads off the permissible

provenance and signature from the output transcript’s graph

labels. So the above probability implies:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎣
VPCD(vkPCD,z,π)=1

DT (vkPP,z,e,σ)=0

∣∣∣∣∣∣∣∣∣∣∣∣∣

(pkPP,vkPP,skPP)←GPP(1N ,1λ)

σi←SS(skPP,Ii),1≤i≤r

(I,π)←A(pkPP,vkPP,(Ii,σi)i)

(e,σ)←E(pkPP,vkPP,(Ii,σi)i)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

≤negl(λ)

(5)
Now, Eq. 1 follows by splitting it into two cases, according

to the proof that A outputs. The case of a signature triv-

ially holds. For the case of a PCD proof, it follows from

VPP (vkPP, I, π) = VPCD (vkPCD, z, π) and Eq. 5.

Statistical zero-knowledge. We need to show a polynomial-
time stateful simulator SPP such that for every stateful distin-
guisher DPP the probabilities in Eq. 2 and 3 are negligibly

close. By the statistical zero-knowledge of the underlying

PCD, there exists a simulator SPCD such that for every distin-

guisher DPCD that (given 1λ) outputs some compliance predi-
cate Π′, and given proving and verification keys outputs some
(�zin, �πin, l, zout), DPCD cannot distinguish between a PCD-

generated or a SPCD-generated proof for zout with more than
negligible probability. That is, the following two probabilities

are negligibly close (in λ):

Pr

⎡
⎢⎢⎢⎣

Π′(�zin,l,π)=1

VPCD(vkPCD,�zin,�πin)=1

DPCD(π)=1

∣∣∣∣∣∣∣∣∣

Π′←DPCD(1λ)

(pkPCD,vkPCD)←GPCD(Π′,1λ)

(�zin,�πin,l,zout)←DPCD(pkPCD,vkPCD)

π←PPCD(pkPCD,�zin,�πin,l,zout)

⎤
⎥⎥⎥⎦

Pr

⎡
⎢⎢⎢⎣

Π′(�zin,l,π)=1

VPCD(vkPCD,�zin,�πin)=1

DPCD(π)=1

∣∣∣∣∣∣∣∣∣

Π′←DPCD(1λ)

(pkPCD,vkPCD)←SPCD(Π′,1λ)

(�zin,�πin,l,zout)←DPCD(pkPCD,vkPCD)

π←SPCD(zout)

⎤
⎥⎥⎥⎦

This PCD simulator SPCD is then used to construct the

IA simulator SPP needed to show the IA’s statistical zero-

knowledge. Let SPP be the following simulator: when invoked
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as SPP
(
1N , 1λ

)
it runs a modified version of GPP (Algo-

rithm 2) where instead of calling GPCD it calls SPCD(CN , 1
λ);

when later invoked as SPP (I) it simply runs and outputs
SPCD (I).
To see that this simulator succeeds, first note that the dis-

tinguisher in the IA zero-knowledge definition is weaker than

that of the PCD zero-knowledge definition, since the former

is limited to choosing only N to determine the compliance

predicate, and can control only Iin,πin,t and γ (and not

Iout). Thus, from DPP one can easily construct a distinguisher

DPCD for the PCD zero-knowledge, by tacking on to DPCD

the requisite fragments of the PhotoProof algorithms so

that it presents a PCD interface instead of the more limited

IA interface. Formally, when we expand GPP and PPP Eq. 2

becomes:

Pr

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t∈T

VPP(vkPP,Iin,πin)=1

DPP(π)=1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1N←DPP(1λ)

(pS,sS)←GS(1λ)

CN=C(ΠT ,1N)

(pkPCD,vkPCD)←GPCD(CN ,1
λ)

(pkPP,vkPP,skPP)←(pkPCD||pS,vkPCD||pS,sS)

(Iin,πin,t,γ)←DPP(pkPP,vkPP,skPP)

(zin,π′in,l,z)←FD(Iin,πin,t,γ)

(π)←PPCD(pkPCD,zin,π′in,l,z)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where FD (Iin, πin, t, γ) contains the steps of PPP which

convert a signature to a PCD proof when necessary and output

the data in its PCD form (i.e., as messages and local data).

Now we define DPCD by repacking the extra steps before/after

DPP’s execution, to be left only with the PCD interface, and

obtaining:

Pr

⎡
⎢⎢⎢⎣

CN (zin,l,z)=1

VPP(vkPP,Iin,πin)=1

DPCD(π)=1

∣∣∣∣∣∣∣∣∣

CN←DPCD(1λ)

(pkPCD,vkPCD)←GPCD(CN ,1
λ)

(zin,π′in,l,z)←DPCD(pkPCD,vkPCD)

π←PPCD(pkPCD,zin,π′in,l,z)

⎤
⎥⎥⎥⎦

Using the same reasoning, Eq. 3 becomes:

Pr

⎡
⎢⎢⎢⎣

CN (zin,l,z)=1

VPP(vkPP,Iin,πin)=1

DPCD(π)=1

∣∣∣∣∣∣∣∣∣

CN←DPCD(1λ)

(pkPCD,vkPCD)←SPCD(CN ,1
λ)

(zin,π′in,l,z)←DPCD(pkPCD,vkPCD)

π←SPCD(pkPCD,zin,π′in,l,z)

⎤
⎥⎥⎥⎦

We now split to cases according to πin. When πin is a PCD
proof, VPP is the same as VPCD, and so we are left with the exact
probabilities from the PCD definition. When πin is a digital
signature, then VPP (vkPP, Iin, πin) = 1 iff VS (pS, Iin, πin) = 1
and whenever this holds, then the “conversion” to PCD suc-

ceeds, i.e., VPCD (vkPCD, zin, π
′
in) = 1. From PCD soundness,

the opposite holds too except for negligible probability.

Thus, the distinguishing advantage in IA (difference be-

tween Eq. 2 and 3) for SPP and DPP is the same as the dis-

tinguishing advantage in the PCD zero-knowledge definition

for SPCD and DPCD up to a negligible difference and the latter

advantage is negligible, by definition of SPCD.

C. Strengthening proof-of-knowledge

Proof-of-knowledge of IA schemes lets adversaries see sig-

natures under S for any series of images (of polynomial size).
Note, though, that these images are chosen before pkIA,vkIA and
skIA are generated. A stronger notion of proof-of-knowledge

would be to consider adversaries with a signing oracle, so

they can query it for images that are adaptively chosen after

the system keys are generated.

To see why this definition is stronger than the one we used,

consider an artificially weakened version of our PhotoProof

construction, where the verifier algorithm is added a “trap-

door” rule, to accept any image that is given along with a

proof π which contains a valid signature on the proving key
(i.e.,VS (pS, pkIA, π) = 1). This is of course undesirable, and
indeed this artificial construction does not fulfill the stronger

notion of proof-of-knowledge. However, it does fulfill the

original IA definition, since the adversary there cannot ask

for signatures after seeing pkIA, and thus cannot produce an
image with the “trapdoor” signature.

The problem with the stronger definition is that the PCD

proof-of-knowledge does not guarantee anything against ad-

versaries with oracle access. In a recent work, Fiore and Nit-

ulescu [18] study the security of SNARK proof-of-knowledge

in scenarios where adversaries are given access to ora-

cles. They too suggest a non-addaptive notion of proof-of-

knowledge very similar to our IA proof-of-knowledge.

V. IMPLEMENTATION

A. System description

We implemented a PhotoProof prototype for a set of

permissible transformations including identity, (arbitrary) rect-

angular crop, horizontal and vertical flip, transpose, general

brightness/contrast adjustments and rotation. We also demon-

strated the protection of metadata fields by adding protected

timestamp data to our images. Although fully operational, our

implementation is still more of a proof-of-concept than a real-

world-ready system, due to relatively long proving times and

large proving keys for small images. We review our prototype’s

performance in Section V-B, and list some ideas and directions

for making the system usable in practice in Sections V-G

and VI.

Our implementation makes use of libsnark[47], a C++

library implementing SNARKs and PCD. It contains the pre-

processing PCD for Fp-R1CS of Ben-Sasson et al. [7], using

the SNARK scheme of Gennaro et al. [22]). The libsnark

library creates proofs for computation (expressed Fp-R1CS)

over a large prime field Fp (chosen from a set offered by

libsnark, corresponding to its supported elliptic curves), and

offers a gadget library for expressing such computation (see

Section III for more details).

At the heart of our implementation lies a collection of

gadgets which form an image processing tool-box expressed

in R1CS. Using them, we implement a gadget for each

permissible transformation we support. All these gadgets are

then combined to create the compliance predicate gadget,
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which, given a maximal image size N , generates a R1CS
which computes the compliance predicate on images of size

up to N (and fixed size local data).

Our code has 4 levels (see Figure 3). At the higher level is

Python code that handles image processing and user interface.

It makes use of Pillow, the Python Imagining Library fork

[38]. It also handles serializing images and parameters before

sending to the next level. The second level supplies a C++

wrapper for libsnark functionality. Level 3 contains the PCD

implementation of [7]. Level 4 is the PhotoProof gadget

library. For example, to edit an image and generate a new

proof, the user uses the Python prover function (level 1). This

function applies the transformation on the image, and then

serializes all input: hashes, images with metadata, input proof,

transformation, parameters and other data. It then invokes the

C++ executable containing the prover wrapper (level 2). This

code takes all the input and prepares an assignment for the

input variables to the compliance predicate. It then calls level

4 to generate the witness to the compliance predicate constraint

system. Finally, it invokes libsnark’s PCD prover (level 3)

on the witness and the input proof to generate the new proof,

which it outputs back to the Python code, where it is output

to the user.

Our implementation does not include a secure camera. To

simulate original camera images, we use the generated secret

signing key to sign our “original” images. The secret key is,

of course, not used in any other part of the system. For digital

signatures we use an ECDSA library [58] with a NIST192p

curve (about 80 bits of security).

B. Performance

We ran our prototype on images of N × N pixels for

various N values and measured the average running time of

the generator, prover and verifier, as well as the sizes of the

keys and the proofs. Our benchmark machine was a desktop

with a 4-core 3.4GHz Intel i7-4770 processor and 32GB of

RAM. Our results are summarized in Table II. The security

of our scheme is guaranteed by PCD security, and indeed, for

all the images and transformations we ran our prototype on

(hundreds of executions), no completeness or soundness errors

were recorded. Every illegal change of an image, even of a

single bit, is detected by the scheme.

As expected, generation and proving times are much slower

than verification times. One thing to keep in mind when

assessing overall performance is that generation takes place

only once in the lifetime of the system, by some trusted,

preferably high-performance server; proving is done only once

per edit, and can be delegated to (untrusted) cloud servers.

Verification, to be done by all viewers of the image, is fast.

The reported proving times in Table II assume that the

proving key pkPP is preloaded into RAM. This holds, e.g.,
for scenarios where proving is done by a dedicated server or

by a software plugin that loads the key into memory upon

startup.

The measured proving times are per-edit, and indepen-

dent of which transformation is applied on the image (as

every proving step proves compliance with a predicate that

“considers” all permissible transformations). When performing

multiple edit steps (e.g., crop and then rotate) an additional

proving step is needed for each transformation applied. In

Section V-G we discuss using PCD with multiple compliance

predicates, thus shortening the proving time per edit step by

considering only the applied transformation.

Although 128 × 128 images are too small for practical

use, our prototype is the first working proof-of-concept of

an IA scheme (as defined in Section II-B). Proving time and

key size grow quasi-quadratically in N , as expected from the

algorithm’s complexity and confirmed by Table II. Thus, for

example, handling 1024× 1024 images will increase proving
time by a factor of less than 100. Since the cryptographic

algorithms are highly amenable to parallelism via GPGPU,

FPGA, and ASIC, we expect that such implementations will

greatly improve performance and allow handling of larger im-

ages. Key size improvements are also possible, e.g., by using

PCD with multiple compliance predicates (see Section V-G).

C. Instantiation challenges and solutions

There are many interesting challenges when instantiating

PhotoProof. Many of them arise from the need to tailor

advanced functionality to arithmetic circuits.13

In our implementation, compliance predicate size is a signif-

icant bottleneck, which affects both running time and (proving)

key size. Current SNARK technology is on the borderline of

feasibility. The SNARK implementation we use, which is the

fastest currently available, can prove satisfaction of arithmetic

circuits in approximately 0.1 milliseconds per gate [6]. As

the size of a circuit that performs transformations on images

depends on the maximal image size it can receive as an

input, and real-world images are typically large (hundreds of

kilobytes to few megabytes), the circuit should be carefully

designed.

Efficiently implementing an image-processing operation

such as an arithmetic circuit is an interesting problem. For

our prototype we had to design circuits that perform rect-

angular crop, horizontal and vertical flip, transpose, general

brightness/contrast adjustments and rotation. We next describe

some of the challenges in doing this, using the example (one

of many) of the image rotation transformation.

D. Case study: implementing image rotation

The rotation transformation, rotate (I, α) → J , rotates an
image I by an angle α to create an image J (for this

discussion we assume 0 ≤ α ≤ π
4 ). In its basic form, without

interpolating pixels and anti-aliasing techniques, the algorithm

sends to the pixel in position (x, y), the pixel in position
(xcosα− ysinα, xcosα+ ysinα) (assuming rotation around
(0, 0)).
Our goal is to design an arithmetic circuit that, given an

N×N input image and output image, and optionally additional

parameters, checks whether the output is a rotation of the

13Our compliance predicate is implemented as an R1CS, but it is more
intuitive to think of it as an arithmetic circuit. See Remark 8.
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Table II
PhotoProof PROTOTYPE RUNNING TIMES AND KEY SIZES FOR N ×N IMAGES

N #CP
GPP PPP VPP pkPP(MB) vkPP(MB) π(KB)

avg. (s) σ (%) avg. (s) σ (%) avg. (s) σ (%)

16 171,815 16.92 1.7 13.97 0.1 0.09 2.1 144.4

2.7 2.67
32 706,959 32.9 0.1 25.2 0.3 0.1 2.2 255.5

64 2,966,167 83.2 0.1 69.8 0.4 0.14 1.6 635.1

128 12,531,999 367 0.5 306 0.7 0.5 9 2601.4

Average and (normalized) standard deviation (σ) are over 10 iterations each. Reported proving times assume
pkPP is preloaded into RAM. #CP is the size of the generated compliance predicate.

Figure 3. High-level design of the PhotoProof application.

input. Our circuit will rotate the input image and compare

the result to the output image.

In the following, we list some general considerations, and

exemplify each using the image rotation case.

Circuit design. There are many differences between writing
a computer program and writing an arithmetic circuit. For
example, a program can receive input of arbitrary length and
have a maximum running time of its worst code flow, while a
circuit has a fixed size input and its size is the sum of all its
sub-circuits. Another difference is that in circuits, as a rule of
thumb, the more input gates affect each output gate, the larger
the circuit has to be, at least when implemented naively.
In image rotation, every output pixel depends on multiple

input pixels, as there is an “arch” of pixels that can be sent to a

given output pixel (depending on the given angle). A program

that computes rotate will only require O
(
N2

)
operations. But

a circuit has to wire many input pixels to each output pixel (as

many as O (N)), depending on the specific algorithm. Naively,
that will require O

(
N2

)
MUX gadgets (i.e., sub-circuits), a

total of O
(
N3

)
gates. A better solution is to use the rotation

through shearing of Paeth [42], which we outline here. An x-
shear is a matrix in the form

(
1 a

0 1

)
. Similarly, a y-shear is

a matrix
(

1 0

b 1

)
. As the name implies, x-shears work only in

the x direction, that is, a point (x, y) is translated under an x-
shear to (x+ ay, y). In the context of images, that means that
x-shears work on rows while y-shears work on columns. Note
this identity:

(
cosα − sinα

sinα cosα

)
=

(
1 −tan

(
α
2

)
0 1

)
·
(

1 0

sinα 1

)
·(

1 −tan
(
α
2

)
0 1

)
. Hence, it is possible to rotate an image using

only shears: first, shear all rows with a = − tan (α/2); then
all columns with b = sinα; then, again all rows. Shears can be
implemented efficiently in circuits using a barrel shifter, which
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shifts a row of size k in O (k log k) gates. Shifting N rows,

then N columns, and again N rows, sums up to O
(
N2 logN

)
gates.

Nondeterministic programming. Recall that in each compu-
tation step, PCD proves compliance of the local computation.
The proof is attached to the output message, and ascertains, in
particular, the existence of inputs and local data that (together
with the output) satisfy the compliance predicate. The local
data may provide arbitrary hints (“nondeterministic advice”)
that, while not trusted to be correct, may help check the
relation between input and output messages more efficiently.
In our rotation example, there is the issue of computing the

trigonometric functions, given an angle α. This is hard to do
over Fp. Instead, it is possible to directly supply the circuit

with the values of a = tan
(
α
2

)
, b = sin (α), which are all that

are needed for the shearing. This, however, requires adding a

check that the given a and b are indeed derived from the same
angle (knowing the value of this angle is not necessary). To do

so, another nondeterminism trick can be used. The circuit will

also be given c = sin
(
α
2

)
and d = cos

(
α
2

)
, so that it only

needs to check 3 arithmetic conditions: c2 + d2 = 1, da = c
and 2cd = b.

Arithmetic over Fp. All functionality that is incorporated
into our compliance predicate needs to be implemented as
an R1CS using the basic operations of Fp. Functions that
are “unnatural” in Fp can be hard to implement and end
up requiring many field operations; these include integer
comparison, fraction arithmetic and trigonometric functions.
In image rotation (and everywhere else in our compliance

predicate) we had to compute arithmetic of real values.

We solve this by using a fixed-point representation for the

numbers and storing them inside field elements as integers.

This sometimes results in some small calculation error. For

this reason, we allow for a small and configurable deviation

from the aforementioned 3 conditions (less than 2−14 in our

implementation). By ensuring that the rotation transformation

applied on the input image (before the call to the PCD prover)

is computed in the exact same way, we guarantee the same

rounding errors will occur inside and outside the circuit, hence

preserving completeness.

E. Implementing other transformations

Following is a complete list of the transformations we have

implemented. For all our transformations (which are imple-

mented as arithmetic circuits, as described above), images are

represented as an N ×N matrix, where the upper-left corner

of the image is always at index (0, 0), the image’s real width
and height are specified in the metadata (in width and height
fields), and the pixels outside of the image borders are zeros. In

all transformations, the input image is first transformed, then

checked to see whether it is identical to the output image.

Identity. Checks whether the input and output image are

identical. Identical images have the same pixel data as well as

the same metadata.

Crop. The input image is first cropped, i.e., every pixel

is either left unchanged or zeroed using MUX gates, where

the chooser value is computed according to the pixel location

with respect to the crop borders. Then, the image is translated

(using barrel-shifters, as described for rotation), so its (new)

upper-left pixel is moved to location (0, 0) of the pixel matrix.
Metadata is changed accordingly (e.g., width is set to the new
width).

Transpose. Input image is transposed. The transpose oper-

ation requires only “rewiring” input pixels to corresponding

output pixels. Transpose keeps the upper-left corner in place

so no translation is needed.

Flip. Input image is flipped (similarly to transpose), then

moved to the upper-left corner using barrel shifters (since

flipping may move padding to location (0, 0)).

Image rotation. As described in Section V-D.

Contrast/brightness. Given α, β, each pixel of the input
image undergoes the transformation 	αx+β
, where negative
values are kept 0 and overflows are set to 255. The following
conditions are checked: 0 ≤ α ≤ 255, |β| ≤ 255. The real-
value arithmetic is done using fixed-point representation, in

the same way as described for rotation.

F. Signature verification

Another challenge is in verifying the original image’s digital

signature inside the compliance predicate.14 From the circuit

size perspective, this can be expensive, especially when the

signature scheme is of some algebraic nature unrelated to the

PCD field Fp. We explored the following options:

Fp-friendly signatures. One possibility to make this more

efficient would be to use a signature scheme whose verification

can be compactly expressed over Fp. For example, one can use

an RSA-based digital signature scheme with a small public-

key exponent, e = 3, requiring just 3 modular multiplications
to verify, and these can be efficiently implemented using radix

	√p
 arithmetic. Leveraging nondeterminism, as discussed
above, can further reduce the size of the circuit: for exam-

ple, modular reduction can be implemented by big-integer

multiplication (guessing the quotient and remainder) instead

of division. Another option would be to use an elliptic-curve

signature scheme in a curve over the field Fp.

Signatures outside Π. We chose to implement a different

approach: moving the signature verification out of the compli-

ance predicate, and letting the PhotoProof verifier check the

signature outside the PCD verifier.

For each original image, the camera computes an original
hash, a collision-resistant hash digest of the original image,
and signs it. This original hash and its signature are then

passed on in every edit step. The compliance predicate is

modified to check that the original hash either matches the

image it received as the local input (this happens for the case of

14A recent work by Backes et al. [2] suggested ADSNARK, a proof system
on authenticated data. Their work does not discuss recursive composition of
proofs, nor the IA-specific considerations we described in this section.
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the original image), or is passed from input to output without

modification (thus forcing the original hash to stay the same

for every image in the edit chain). Given an image, a proof, an

original hash and a signature, the PhotoProof verifier checks

that (a) the PCD proof is valid for the image with its attached

original hash and that (b) the signature of the original hash is

valid under the signature scheme’s public key.

In other words, we move the signature verification from the

first proving step to the last verification step, by using PCD to

make sure that the original hash digest does not change along

the way.

A collision resistant hash in an arithmetic circuit can be

computed cheaply using the subset-sum CRH function over

Fp [1], [23], as suggested in [7]. This results in a smaller

compliance predicate than the one obtained by checking

signatures in Π, but yields slightly larger proofs.15

Note that by attaching an original hash to each image, the

zero-knowledge property of the proof system as defined above

no longer holds (e.g., given two authentic images, it is possible

to compare their associated original hashes and thereby deduce

whether they originated in the same original image). However,

we can make sure the original hash itself does not reveal

any information about the original image, by making it a

statistically-hiding commitment (e.g., a hash of the original

image concatenated with sufficiently-long random padding).

Thus, a slightly weaker zero-knowledge property still holds:

the IA proof does not reveal information about the image other

than the original hash and its signature.16

PCD-based signatures. Signature verification can also be

removed from the PCD by assuming that the secure camera

can run a PCD prover. In this case, the camera can output the

original image along with a hash of its secret key, a certificate

for this hash, and a PCD proof for the claim “the image was

authorized by a camera which had access to a secret key with

this specific hash digest” (e.g., by supplying the prover with

a hash digest of the key and a hash on the image together

with the same key). The key remains secret due to the zero-

knowledge of the proof. This alternative offers the best of both

worlds: full zero-knowledge and a compliance predicate of size

similar to “signatures outside Π”. However, it requires heavy
PCD computation to be run on the camera’s secure processor.

G. Additional features and extensions

Many additional currently unimplemented features can be

incorporated into PhotoProof.

Certificates. It is imprudent to use a single secret key

for all cameras. A large scale system with multiple devices

should use revocable certificates (e.g., X.509 [51]). This can

be done as follows: every manufactured camera is assigned

a unique public-private pair of signing keys, and a certificate

15In our implementation we used ECDSA signatures of 384-bit length,
which fit in 2 field elements. The original hash is an additional single field
element.
16This new definition is the same as the zero-knowledge definition in

Section II-B except the simulator is given the original hash and its signature
in addition to the image.

for the public key, chained up to a root certificate. The set

of authorized root public keys should be specified in the

IA proving key. The compliance predicate is then modified

to include a check that the certificate chain, as well as the

image’s signature, are valid. Note that the identity of the

camera that took the original image remains secret, thanks

to zero-knowledge.

Revocation. A revocation mechanism may be useful in case

some device’s secret key is compromised. Continuing the

above description of certificates, one way of doing so is adding

a hash digest of the camera’s public key to the image, and

letting the compliance predicate (a) check it for the base case

of the original image and (b) check that it remains unchanged

after every transformation. Thus, keys can be revoked a

posteriori, by a conventional key revocation mechanism (such

as CRL or OCSP). Of course, images originating in the same

camera can then be identified.

Multiple compliance predicates. A recent work [13] ex-

tends PCD to multiple compliance predicates, allowing us

to use a separate compliance predicate for each permissible

transformation, thereby making the proving costs dependent

on the (constraint system) size of the transformation actually

employed, rather than the sum of the (constraint system) sizes

across all permissible transformations. This also allows for

multiple smaller proving keys (instead of a single large key),

thus making it more feasible for an entire key to fit in a proving

machine’s RAM during a proving operation.

Proof channel. Proofs can be attached to image files in an

associated but separate “sidecar” file. Alternatively, they can be

incorporated into the image file, within a metadata extension

header (e.g., EXIF tags in JPEG and TIFF files). For seamless

integration, the proof could even be embedded in the image

pixels, using a lossless embedding technique (e.g. [28], [40]).

PhotoProof plugin. A plugin for image-editing software

(e.g., the GNU Image Manipulation Program) will allow users

to conveniently edit images and generate proofs. The plugin

can handle PhotoProof algorithms and keys transparently.

The user only needs to edit the image, as done in any

image editing program, while the plugin keeps track of the

applied (permissible) transformations. Only when the editing

is complete does the plugin call the prover for the required

number of times with the correct parameters, and output the

proof.

Copyright message and metadata protection. Metadata

information is sometimes as important as the image content,

but can easily be edited or forged. In our prototype, we

demonstrated protection of a metadata field by including a

protected timestamp (see Section V-A). In the same way, it

is possible to protect GPS location tags, name of camera

owner, or any other type of information that can be added

automatically by the camera.

We can also protect fields that are added “manually” by

the user after the image was signed, e.g., caption, copyrights

message, face tags, etc. This is made possible by allowing

certain fields to be edited with access to the original image
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only (this can be checked by the compliance predicate). The

original can then be destroyed, ensuring that no one will be

able to edit these fields without invalidating the proof.

Image provenance tracking. For some applications it may

be desirable to keep track of (and perhaps limit) the list

of transformations that the image went through (and their

order). This is possible using a provenance metadata field.
The original (signed) image will be generated with an empty

list. The set of permissible transformations will include only

transformations that append themselves to the provenance
field. Note that the length of this field is bounded due to the

limit on the overall image size. Alternatively, it is possible

to keep track only of the length of the provenance. This,

in particular, would mitigate the risk of numerous small

permissible changes accumulating into an overall change that

is considered impermissible.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We presented IA schemes, a cryptographic primitive for

image authentication, and constructed PhotoProof, an IA

scheme based on Proof-Carrying Data and digital signatures.

We also implemented a working prototype together with

a collection of supported permissible transformations. Our

implementation is the first proof-of-concept of an IA scheme.

Further improvements are required to make the technology

usable for real world applications. This includes lowering

generation and proving times, extending the set of supported

transformations and raising the limit on image size. This may

be achieved by faster SNARK technology that will be available

in the future to prove larger predicates in less time, better

circuit designs for image transformations that will lower the

required constraint-per-pixel ratio for the compliance predi-

cate, and accelerated implementations using GPGPU, FPGA

or ASIC.

One could also implement a variant of PhotoProof, includ-

ing its zero-knowledge guarantees, using a PCD-like mecha-

nism based on trusted hardware with attestation capabilities

such as TPM (also used by CertiPics; see Section I-B) or

Intel’s SGX. In this alternative implementation, every editing

step attests for the correct execution of the computation that

verified the previous step’s attestation and did a permissi-

ble transformation. This would yield succinctness and zero-

knowledge comparable to PhotoProof, with much higher per-

formance, but based on trusted hardware and careful platform

configuration, instead of cryptographic proofs.

Increased image size and decreased proof size will enable

practical use of methods to embed the proof inside the image

in an invisible way.

PhotoProof demonstrates the power of PCD in tracking

and enforcing authenticity and provenance for digital images,

while still offering the editing flexibility required by applica-

tions. Analogous needs for authenticity and provenance arise

also for other document types, such as text (e.g., tracking

citations), audio (e.g., proving authenticity of a recording),

databases (e.g., tracking use of sensitive or unreliable infor-

mation), and other structured data. We pose the challenge of

identifying, and implementing, specific applications in these

domains.
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APPENDIX

Secure camera: caveats

Most existing image authentication solutions rely on a

secure camera as a root of trust. Like any other secure device,

the camera may be prone to attacks resulting from software

and hardware vulnerabilities, side channel and fault injection

attacks, and reverse engineering.

One example of this is Canon’s Original Decision Data
(ODD), a feature in some of their high-end cameras which
proves authenticity of images by digitally signing them inside

the camera. Unfortunately, their implementation was insecure

[50], [15]. The same holds for Nikon’s analogous Image

Authentication system [36].

Even when ignoring issues like implementation bugs and

hardware flaws, there are several attack vectors at the camera

level. One possible attack is image injection. An attacker can
exploit the insecure link between a camera’s sensor and its

Image Signal Processor (ISP), by connecting physically to the

ISP, transmitting raw data of an arbitrary image and retrieving
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a digital signature for it. One way to prevent this is to encrypt

the sensor-to-ISP channel. Another way is to program the ISP

to sign only signals that bear a specific analog fingerprint

unique to its matching sensor (e.g., its PRNU [37]). A third

way is to use accelerometers to check whether the video feed

just before taking the picture shows movements that match

their reading, and only then sign.

Another attack is 2D scene staging, discussed also in [21],
[31]. An attacker can fabricate an arbitrary image, print or

project it in high quality, and photograph it with a secure cam-

era. In this case the output image will be signed and considered

genuine, although it is merely a picture of a picture. One partial

solution is to include some additional data in the image that

will help determine whether the visual content of the image

corresponds to the physical surroundings of the camera at

the time of its capture. Examples of such data include the

focus distance of the lens [21], or the range from target [31]

(measurable with a laser beam). One more possibility is to

check the timestamp information (already supported by our

prototype) against external information about event timing.

Another idea is for the camera to take a 3D picture (using

2 lenses and sensors) and determine whether the captured

picture is of a 2D or 3D object, using (nontrivial) image

processing algorithms. Finally, we note that a sufficiently

dedicated attacker might precisely fabricate a 3D scene and

photograph it in a studio — in which case it will be deemed

authentic no matter what.
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