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Abstract. Physical computational devices leak side-channel information that may, and often
does, reveal secret internal states. We present a general transformation that compiles any
circuit into a new, functionally equivalent circuit which is resilient against well-defined classes
of leakage. Our construction requires a small, stateless and computation-independent leak-
proof component that draws random elements from a fixed distribution. In essence, we reduce
the problem of shielding arbitrarily complex circuits to the problem of shielding a single,
simple component.

Our approach is based on modeling the adversary as a powerful observer that inspects the
device via a limited measurement apparatus. We allow the apparatus to access all the bits of
the computation (except those inside the leak-proof component) and the amount of leaked
information to grow unbounded over time. However, we assume that the apparatus is limited
either in its computational ability (namely, it lacks the ability to decode certain linear encod-
ings and outputs a limited number of bits per iteration), or its precision (each observed bit
is flipped with some probability). While our results apply in general to such leakage classes,
in particular, we obtain security against:
– Constant depth circuits leakage, where the measurement apparatus can be implemented

by an AC0 circuit (namely, a constant depth circuit composed of NOT gates and un-
bounded fan-in AND and OR gates), or an ACC0[p] circuit (which is the same as AC0,
except that it also uses MODp gates) which outputs a limited number of bits.

– Noisy leakage, where the measurement apparatus reveals all the bits of the state of the
circuit, perturbed by independent binomial noise. Namely, each bit of the computation
is perturbed with probability p, and remains unchanged with probability 1− p.

1 Introduction

The best of cryptographic algorithms are insecure when their implementations inadver-
tently reveal secrets to an eavesdropping adversary. Even when the software is flawless,
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practical computational devices leak information via numerous side channels, including
electromagnetic radiation (visible and otherwise) [30,23], timing [7], power consumption [22],
acoustic emanations [33], and numerous effects at the system architecture level (e.g., cache
attacks [5,26,27]). Leaked information is even more easily accessible when the computa-
tional device is at the hands of an adversary, as is often the case for many modern devices
such as smart-cards, TPM chips and (potentially stolen) mobile phones and laptops. Reduc-
ing such information leakage has proven excruciatingly difficult and costly, and its complete
elimination is nowhere in sight.

There has lately been a growing amount of interest in coming up with precise defini-
tions of security against side-channel attacks and in designing cryptographic algorithms
that withstand these attacks (e.g., [24,19,28,17,11,8,29,3,25,9] and others). Micali and
Reyzin [24] were the first to propose a general model of side-channel attacks. They model a
side-channel attacker as a two part entity – the first is the measurement apparatus that per-
forms measurements on the physical state of the device. This is done on behalf of the second
entity which is the adversarial observer. The observer is assumed to be computationally
powerful (e.g., polynomial-time or even unbounded), and takes as input the measurements
of the apparatus. Thus, the power of the adversarial observer is primarily constrained by
the quality of the information provided by the measurement apparatus.

It is interesting to note that even though computational devices leak abundantly, many
side channel attacks are hard to carry out and some devices remain unbroken. This is due
to the fact that useful measurements can often be difficult to realize in practice. Physical
measurement apparatuses typically produce a “shallow” or “noisy” measurement of the
state of the object, by combining some of its salient physical properties in a simple way.
The measurement consists of a limited amount of information, obtained as a simple leakage
function applied to the physical state of the device; any in-depth analysis happens only in
the form of post-processing by the observer (rather than in the measurement apparatus).

In this work, we follow the paradigm of Ishai, Sahai, and Wagner [19] who construct
a general transformation from any cryptographic algorithm into one that is functionally
equivalent, but also leakage-resilient. The particular class of leakage functions they consider
is the class of spatially local measurement functions, namely functions that read and output
at most t bits of information. In particular, the leakage functions are completely oblivious
of a large portion of the circuit’s state.

In contrast, we are interested in security against global measurements, which are of-
ten easier to carry out than localized measurements that require a focus on specific wires
or memory cells; in many side-channel attacks, the main practical difficulty for the at-
tacker lies precisely in obtaining high spatial resolution and accuracy. Furthermore, global
measurements are typically also more informative than local measurements. The question
that motivates our work is whether, analogously to [19], we can construct a general circuit
transformation that tolerates global side-channel measurements.
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1.1 Our Results

Similar to Ishai et al. [19], we present a general transformation for arbitrary circuits that
makes them resilient against certain classes of leakage. We now explain what these classes
of leakage are and describe our techniques.

Measurement Apparatus. As in most prior work, the measurement apparatus in our
model is not allowed to access some (very limited) portions of the computation. It can
observe the rest of the computation, and return either a “computationally bounded” or a
“noisy” function of the entire state.5 Specifically, the measurement apparatus is modeled
as computing either of the following types of leakage functions:

– a computationally-bounded leakage function f applied to the state of the device and all
intermediate results that occur during the computation. The class of functions L from
which f can be chosen models the practical limitations of the physical experimental
setting available to the attacker. For example, Lmay consist of all functions computable
by circuits of small depth.
For the computational limitation to be meaningful, the function must also be limited in
its output length (otherwise, the measurement apparatus could simply leak the entire
state by “computing” the identity function).

– a noisy leakage function, where the measurement apparatus returns the accessed bit
with probability 1− p and flips it with probability p. The measurement apparatus can
potentially access all the bits of the computation this way.

There are specific components of the circuit that we consider to be leak-free. We di-
verge from previous solutions by requiring that these components be simple, stateless and
computation-independent. By this, we mean that the complexity of implementing the leak-
free component is independent of the complexity of the computed function, and that it
neither holds secrets nor maintains state. In particular, the leak-free component cannot
hold the secret data used in the computation.

Specifically, our leak-free components, which we call opaque gates, are defined as follows.
The opaque gate has no inputs and it outputs an element sampled according to a fixed
distribution which is independent of the computation being carried out. For example, an
opaque gate that we consider is one that samples t uniformly random bits subject to the
condition that they have even parity.

The leakage function cannot observe the innards of the opaque gate, but it can ob-
serve the wires going into and coming out of it. Although the requirement of a leak-free
component is a strong one, the leak-free components we require are minimal in many senses:

5 When we refer to the state of a computation, we mean all the intermediate values produced during
the computation on a particular input. Once this computation is done, the intermediate state is erased
to make room for new computations. Thus, the leakage function can access all the bits of the current
computation, but not the past computations. In fact, this is necessary to achieve security.
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1. It is a fixed standardized functionality which can be designed and validated once and
added to one’s VLSI “cell library” — which is far better than having to devise separate
protection mechanisms for every circuit of interest.

2. It has no secret keys, no inputs and no internal state, i.e., it is independent of the
computation in the circuit and merely samples from a distribution.

3. Alternatively, because we only need samples from a distribution, we can have the opaque
“gate” simply read them one by one from a precomputed list. Thus, it suffices to have
leak-proof one-time storage (a consumable “tape roll”) instead of leak-proof computa-
tion. This is a viable option if the computation is performed only a bounded number
of times.

Many variations of the leak-proof component assumption have been made in the liter-
ature. We highlight some of these works below.

– The “Oblivious RAM” model of Goldreich and Ostrovsky [15,16] considered memory
to be leaky and the computation to be on a leak-free secure processor which stores a
long-term secret key.

– The model of Micali and Reyzin [24] (and subsequent works [11,29,12]) reversed these
roles: they assume that the memory cells that are not accessed during a computation
step do not affect the observable leakage from that stage and cannot be measured by
the apparatus. They called it the “only computations leaks” assumption.6

– The model of Goldwasser et al. [17] (which, although presented in the one-time programs
setting, can be transformed into the leakage-resilient setting) relaxes the assumption
of Micali and Reyzin, assuming only that some read-only memory (which holds secrets
correlated to the computation) is leak-free if it is not “touched”. The circuit, however,
can only be executed a single time (or more generally, a bounded number of times).

The adversarial observer is all-powerful, and in each invocation of the circuit, it comes up
with an input to the circuit as well as a leakage function, and obtains the output of the
computation (on the given input), together with the leakage. The adversary decides which
leakage function to use in a particular invocation adaptively, depending on all the informa-
tion it received so far. We design circuit transformations that withstand such adversaries,
and obtain the following main results.

Theorem 1 (Informal). Let t be a (statistical) security parameter. There are circuit
transformations that convert any (possibly stateful) circuit C into a circuit Ĉ that is re-
silient against the following leakage functions:

– Constant-depth AC0 circuits whose output length in each invocation is bounded by t1−δ,
for any δ > 0, and whose output length over the course of time is unbounded.

– Noisy measurements that leak the entire state of the circuit in each invocation, where
each bit flipped independently with probability p, for any constant p ∈ (0, 1/2].

6 [11,29] point out that this requirement can be somewhat relaxed – it suffices that leakage of memory
that is not used is independent of the leakage from computation.
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In both cases, the size of the transformed circuit Ĉ is larger than the size of the original
circuit C by a factor of O(t2).

Both results follow from a more general transformation that protects against any leakage
class, provided that it has an associated encoding scheme (See Theorem 2 for details). We
should note that although AC0 is not a particularly strong class of functions, it is strong
enough to allow for measuring approximate Hamming weight of the values on the wires [2]:
something routinely measured by side-channel attacks in practice.

1.2 Overview of the Techniques

To protect against the kinds of information leakage described above, we encode the com-
putation in a way that prevents the powerful computing observer from gaining additional
information about the computation. We show that, indeed, for certain classes of leakage,
any computation can be so encoded: namely, we give a method for transforming arbi-
trary circuits into new circuits, which are still leaky but whose leakage is useless to the
attacker (in the sense of offering no advantage over black-box access to the original circuit’s
functionality).

More precisely, given any linear secret sharing scheme Π and a leakage class L which
cannot decode Π7, we show an explicit construction that transforms any circuit C into a
circuit Ĉ that is resilient against leakage in L.

The gist of the construction is to encode every wire of C into a bundle of wires in Ĉ
using Π, where each wire in the bundle carries a single share. Similarly to Ishai et al. [19],
we transform each gate in C into a gadget in Ĉ which operates on encoded bundles.
The gadgets are carefully constructed to use Π internally in a way that looks “essentially
random” to leakage functions in L, and we show that this implies that the whole content
of the transformed circuit remains “essentially random” to a leakage in L. Hence, the
adversary gets no advantage from his observation of the leakage; formally, this is captured
by a simulation-based definition.

An important contribution of this work is a general technique for proving security of
leakage-resilient circuit transformations. Namely, we capture a strong notion of leakage-
resilience for circuits or parts thereof, by saying that they are reconstructible if there exist
certain efficient simulators for their internal wires that fool the leakage class. We then show
a composition lemma: if all parts of a circuit are reconstructible then so is the whole circuit.
This implies security of the transformation. Thus, security of the overall transformation is
reduced to the reconstructibility of the individual gadgets. Our specific results using linear
secret-sharing schemes follow this route, and other transformations can be built by devising
different gate gadgets and merely showing that each is reconstructible by itself.
Other Related Approaches. Recently, starting from the work of Akavia et al. [3], several
results have appeared that show security against adversaries that learn arbitrary functions
7 Technically, the requirement that we make for the class L is a little bit stronger then not being able to

decode.
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of the secret state of a device without requiring leak-free components (see [3,4,9,21,25]
and the references therein). All these constructions assume that the total leakage does not
exceed the size of the secret key; in contrast, the total leakage in our case can be unbounded
(subject only to the condition that in every time period, it is bounded). Furthermore, these
works design specific cryptographic primitives such as encryption and signatures, whereas
we focus on a general leakage-resilient transformation.

Standaert et al. [35] consider security against particular attacks such as Hamming
weight attacks and analyze in [28] the security of a block-cipher based construction of a
pseudorandom number generator.

2 Preliminaries and Definitions

Notation. Throughout the paper, we let t denote the security parameter. For n ∈ N,
let [1, n] denote the set of integers {1, . . . , n}. We denote function composition by f ◦ g :
x 7→ f(g(x)). If L1 and L2 are two sets of functions, then L2 ◦ L1 is a set of functions
{f ◦ g | f ∈ L2, g ∈ L1}. Vectors, denoted v = (v1, . . . , vn), will be treated as column
vectors.

If D is a probability distribution, then the notation d ←− D means that the random
variable d is drawn from D. (If D is a set with no distribution specified, then by default we
assume the uniform distribution.) If D is a randomized algorithm, then d←− D(x) denotes
the output of D on input x. The notation D ≡ D′ means the distributions D and D′ are
identical.

Circuits. We consider circuits whose wires carry elements of an arbitrary finite field K;
in particular, we may set K = GF (2) to speak of a Boolean circuit. We consider circuits
composed of the following gates operating on elements of K (in addition to the input,
output, and memory gates): ⊕,	, and � (which compute, respectively, the sum, difference,
and product in K, of their two inputs), the “coin flip” gate $ (which has no inputs and
produces a random independently chosen element of K), and for every α ∈ K, the constant
gate constα (which has no inputs and simply outputs α). Fanout is handled by a special
copy gate that takes as input a single value and outputs two copies. Notice that copy gates
compute the identity function (pass-through wires) and are present mainly for notational
convenience.

For a circuit C containing w wires, a wire assignment to C is a string in Kw, where
each element represents a value on a wire of C. By WC(X), we denote a distribution of
wire assignments that is induced when a circuit C is being evaluated on an input X (in
particular, if C is deterministic, then WC(X) has only one element in its support). By
WC(X|Y ), we denote the same distribution conditioned on the fact that the output of
C(X) was Y .

Two classes of circuits figure prominently in this paper.

6



– The first class of circuits is SHALLOW(d, s), the class of all deterministic circuits (i.e.,
ones without $ gates) that have at most s ⊕,	, and � gates that are arranged at most
d deep (i.e., the longest path in the circuit has at most d such gates on it).8

– The second is a class that contains a single probabilistic circuit Np that gets as input a
string v, and outputs w = v⊕r, where each bit of r is independently 1 with probability
p, and 0 with probability 1− p.

Stateful Circuits. A stateful circuit additionally contains memory gates, which have a
single incoming edge and any number of outgoing edges.9 Memory gates maintain state: at
any clock cycle, a memory gate sends its current state down its outgoing edges and updates
it according to the value of its incoming edge. Any cycle in the circuit must contain at least
one memory gate.

The state of all memory gates at clock cycle i is denoted by Mi, with M0 denoting the
initial state. Inputs to and outputs from clock cycle i are denoted, respectively, by xi and
yi. When a circuit is run in state Mi−1 on input xi, the computation will result in a wire
assignment Wi; the circuit will output yi and the memory gates will be in a new state Mi.
We will denote this by (yi,Mi,Wi) W C[Mi−1](xi).

2.1 Leakage-Resilient Circuit Transformation

In this work, we construct a circuit transformation that takes as input a circuit and outputs
a functionally equivalent, and yet, leakage-resilient circuit. Our definition generalizes the
notion of a private transformation from Ishai, Sahai and Wagner [19]. For readers familiar
with the model of Ishai et al., we note that the main difference is that whereas they speak
of a “t-private transformation” that is secure against observers who can access at most t
wires, we consider the general notion of a “L-secure transformation” that is secure against
observers who can evaluate any leakage function f within a class L. One can recover the
definition of Ishai et al. from our definition by simply letting L be the class of functions
that output a subset of their input bits.

In order to understand our definition, it helps to keep the following scenario in mind.
Imagine a circuit that has a secret stored within it (possibly in an encoded form) and it
uses the secret together with a (public) input to come up with an output; the encoding
of the secret itself may get modified during the computation. For example, the circuit
may implement a block cipher or the RSA signing algorithm, where the keys are secret.
An adversarial observer (who we denote OBS) gets to interact with the circuit and the
measurement apparatus by iterating the following process polynomially many times, in an
adaptive manner: choosing an input for the circuit and a leakage function for the mea-
surement apparatus, and receiving the output of the circuit on the chosen input and the
physical leakage from the measurement apparatus. We would like to make sure that the

8 Note that copy and constα gates do not count towards the depth d or the size s.
9 Formally, our notion of a stateful circuit is essentially the same as the one in [19].
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ability to observe physical leakage does not help the observer: that is, the observer learns
nothing more about the state of the circuit from the leakage than it could have learnt from
input-output access.
Circuit Transformer. A circuit transformer TR takes as input a security parameter t,
a circuit C, and an initial state M0 and produces a new circuit Ĉ and new initial state
M̂0.10 We require the transformer to be sound : for all C and M0, C[M0] should behave
identically to Ĉ[M̂0]. By “behave identically” we mean that for any number of clock cycles
q and any set of inputs x1, x2, . . . , xq (one for each clock cycle) the distribution of the
outputs y1, y2, . . . , yq is the same for C starting at state M0 and Ĉ starting at state M̂0.
Security. We want to ensure that the transformed circuit leaks no useful information to
an observer other than what the observer could have obtained by input-output access to
the circuit’s functionality. We define an (L, τ, q)-observer OBS to be an algorithm that: 11

– Queries the circuit q times with inputs xi, and receives the outputs yi.
– For each execution of the circuit (say, with input xi), chooses a leakage function f ∈ L,

and obtains f(WC(xi)). That is, the leakage function f takes as input the circuit’s wire
assignment on input xi, and outputs the resulting leakage.

– Runs for at most τ steps (not including the computation by the leakage function itself).

The observer makes the choice of which leakage function to use in a particular execution
adaptively, depending on all the information it has received so far. To formalize that such
an observer learns nothing useful, we show the existence of a simulator SIM, and prove
that anything the observer learns can also be learned by SIM which only sees inputs and
outputs of the circuit.

Consider the following two experiments that start with some circuit C in state M0, and
allow it to run for q iterations. In both experiments, we assume that OBS and SIM are
stateful, namely, they remember their state from one invocation to the next.

Expreal
TR (OBS,L, q, C,M0):

(Ĉ, M̂0)←− TR(C,M0)
(x1, f1)←− OBS(Ĉ), with f1 ∈ L
For i = 1 to q − 1

(yi, M̂i,Wi) W Ĉ[M̂i−1](xi);
(xi+1, fi+1)←− OBS(yi, fi(Wi))

(yq,Mq,Wq) W Ĉ[M̂q−1](xq);
Return output of OBS(yq, fq(Wq)).

Expsim
TR (SIM,OBS, q, C,M0):

(Ĉ, M̂0)←− TR(C,M0)
(x1, f1)←− OBS(Ĉ), with f1 ∈ L
For i = 1 to q − 1

(yi,Mi)←− C[Mi−1](xi)
Λi ←− SIM(xi, yi, fi), with Λi being the leakage
(xi+1, fi+1)←− OBS(yi, Λi)

(yq,Mq)←− C[Mq−1](xq);
Λq ←− SIM(xq, yq, fq)
Return output of OBS(yq, Λq).

10 Throughout this paper, we use the hat notation 2̂ (reminiscent of the proverbial “tinfoil hat”) to designate
circuit or components that are transformed for leakage-resilience.

11 The number of observations q, the observer’s running time τ , and various other running times and
success probabilities are all parameterized by a security parameter t, which is given as input to the
transformation TR. For readability, we will omit t from most of our discussion.
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The definition below says that the transformed circuit is leakage-resilient if the outputs
of the two experiments above are indistinguishable.

Definition 1. Let L be a class of circuits, and let τ = τ(t), τ ′ = τ ′(t), q = q(t) and
ε = ε(t) be functions of the security parameter t. A circuit transformer TR is said to be
(L, τ, τ ′, q, ε)-secure if for every (L, τ, q)-observer OBS, there is a simulator SIM that runs
in time τ ′ such that for all circuits C and all initial states M0,∣∣Pr[Expreal

TR (OBS,L, q, C,M0) = 1]− Pr[Expsim
TR (SIM,OBS, q, C,M0) = 1]

∣∣ ≤ ε,
where the probabilities are taken over all the coin tosses involved in the experiments.
We refer to a circuit transformer being L-secure, as a shorthand for saying that it is
(L, poly(t), poly(t), poly(t), negl(t))-secure in the above sense.

Remark. We note that a stronger result is obtained when L, τ and q are as large as possible
(as it allows for more leakage functions, and stronger observers), when τ ′ is as close as
possible to τ , and when the distinguishing advantage ε is as small as possible (because
either of these indicate a tighter simulation).

3 Circuit Transformation from Linear Secret-Sharing

Our main result states that if there exists a linear encoding scheme for elements of any
field K (taking a single element to t elements) for which encodings of any two values are
indistinguishable by functions in a class L, then there exists a circuit transformation that is
secure against a slightly less powerful leakage class LTR. (Jumping ahead, we remark that
the leakage class L is essentially the same as the class LTR “augmented with” a depth-3
circuit of size O(t2)).

We now describe the main elements in the circuit transformation.

Encoding for the wires. Our transformation can be based on any linear encoding scheme
Π = (Enc,Dec), which maps a single element of K to a vector in Kt and back. In the simplest
case of K = GF(2), an encoding of a bit x is a random string of t bits whose exclusive-or is x.
More generally, for security parameter t, a linear encoding schemeΠ is defined by a decoding
vector r = (r1, . . . , rt) ∈ Kt and the decoding function Dec : (y1, . . . , yt) 7→

∑
i yiri = r Ty.

Enc is a (probabilistic) algorithm that, on input x, chooses uniformly at random an element
of Dec−1(x).

Linear encoding schemes include the aforementioned parity encoding, as well as any
threshold or non-threshold linear secret sharing scheme, e.g., [32,6,20].

We need the notion of leakage-indistinguishability of an encoding scheme which, roughly
speaking, formalizes what it means for an encoding of two values to be indistinguishable in
the presence of leakage. In conjunction with formalizing this notion, let us first introduce a
more general definition that speaks about leakage-indistinguishability of two distributions.

9



Definition 2. Two distributions X and Y are said to be (L, p, τ, ε)-leakage-indistinguishable,
if for any observer OBS, running in time τ and making at most p queries to its oracle where
each query f is a function in L,

|Pr[x← X; OBSEval(x,·)(1t) = 1]− Pr[y ← Y ; OBSEval(y,·)(1t) = 1| ≤ ε,

where Eval(x, ·) takes as input a leakage function f and outputs f(x).
We say that an encoding scheme Π is (L, p, τ, ε)-leakage-indistinguishable if for any

a, b ∈ K the two distributions Enc(a) and Enc(b) are (L, p, τ, ε)-leakage-indistinguishable. If
τ = poly(t) and ε = negl(t), then we abbreviate this to (L, p)-leakage-indistinguishable.

Opaque gates. In our scheme, the transformed circuit Ĉ is built of the same gate types
as the original circuit, with the addition of a new opaque gate denoted O. As mentioned
in the introduction, the O gate has no inputs, and outputs an encoding sampled from the
distribution Enc(0). Crucially, while the wires coming out of this gate can be observed by
the leakage function, we assume that its internals do not leak (we show how to somewhat
relax this condition in the full version). For the case of K = GF(2) our leak-free component
can be implemented by a circuit that works as follows: generate t random bits b0, . . . , bt−1

and output the bits ci := bi ⊕ bi+1 mod t for 0 ≤ i ≤ t− 1.
As mentioned in the introduction, our leak-free component is minimal in many senses;

the only sense in which it is not minimal is that its size is proportional to the security
parameter t. Improving on this is left as an important open problem.

We now state our main theorem. The rest of this section describes the transformation,
and the next section contains an overview of the proof of security.12

Theorem 2. Let t be the security parameter, and let LTR be some class of leakage func-
tions. If there exists a linear encoding scheme Π that is (LΠ , 2)-leakage-indistinguishable,
then there exists a circuit transformation TR that is LTR-secure provided that:

LΠ ⊇ LTR ◦ SHALLOW(3, O(t2))

The transformation increases the size of each multiplication gate by a factor of O(t2)
and the rest of the circuit by a factor of O(t), where the constants hidden in O(·) are small.

3.1 The Transformation for Stateless Circuits

We will first describe our transformation for circuits without any memory gates, which
we call, like in [19], stateless circuits. We then show how to extend the transformation to
general (i.e., stateful) circuits.

12 A complete statement of the theorem keeps track of other parameters such as the running-time of the
observer as well as the simulator, and the distinguishing advantage. We postpone the more detailed
theorem statement to the full version.
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Given a stateless circuit C, our transformation TR produces the transformed circuit Ĉ
as follows (see Figure 1 for an example). Each wire w in C is replaced by a wire bundle
in Ĉ, consisting of t wires w = (w1, . . . , wt), that carry an encoding of w. Each gate is
transformed into a gadget, built out of gates, which takes encodings and outputs encodings.
Crucially, note that the internals of these gadgets may leak. The gadgets themselves are
described in Figure 2.

  

Fig. 1. Example of a circuit C for the function (a, b, c) 7→ ((a⊕b)�c, c), and the correspond-
ing transformed circuit Ĉ. Three parallel lines denote encoding (t wires). Dashed borders
indicate a gadgets, whose internal wires leak. Note that in C, the special gates encoder,
decoder, mask and copy are just the identity and are present for notational convenience.

Since our gadgets operate on encoded values, Ĉ needs to have a subcircuit at the
beginning that encodes the inputs and another subcircuit at the end that decodes the
outputs. However, in our proofs, we want to be able to also reason about transformed
circuits without encoding and decoding. Thus, we do not require that every transformed
circuit Ĉ should have such encoding and decoding. Instead, we introduce artificial input
and output gates that can be part of C for syntactic purposes. If such gates are present (as
they would be on any “complete” circuit that one would actually wish to transform), then
Ĉ will include input encoding and output decoding. If they are not, then Ĉ will operate
on already encoded inputs and produce encoded outputs.

More precisely, if we wish for Ĉ to include input encoding and output decoding, then
the circuit C given to TR must have two special gates in sequence on every input wire:
an encoder gate followed by a mask gate, both of which are simply the identity. Also, on
every output wire there must be a special decoder gate, which is also the identity. These
special gates must not appear anywhere else in C. In Ĉ each encoder gate is replaced by
an ̂encoder gadget which performs encoding (see below), each decoder gate is replaced by
a ̂decoder gadget that performs decoding (see below), and each mask gate is replaced by
a m̂ask gadget (that is needed for security and is described in Figure 2).

The ̂encoder gadget takes an input a ∈ K and outputs an encoding (i.e., a wire bundle)
a ∈ Kt of a. The encoding can be chosen arbitrarily from the support of Enc(a): a =
(r−1

1 a, 0, . . . , 0). The ̂decoder gadget takes an encoding (i.e., a wire bundle) a ∈ Kt of a
and outputs a ←− Dec(a). This is computed by a decoding circuit with just constα, ⊕,
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Transformation c← a� b ⇒ c← ab�b:
Compute the t× t matrix

B ← ab T = (aibj)1≤i,j≤t using t2 � gates
Compute the t× t matrix S

where each column of S is output by O
U ← B + S (using t2 ⊕ gates)
Decode each row of U using t− 1 ⊕ gates,

t � gates, and t constα gates
to obtain q ← Ur,
where r is the decoding vector
(it does not matter how this decoding is
performed as long as there are O(t) wires
in the decoding subcircuit and each one
carries some linear combination of the
wires being decoded, plus possibly a
constant)

o← O
c← q + o (using t ⊕ gates)

Transformation c←− $ ⇒ c←− b$:
ci ←− $ for i ∈ [1, t]
Output c

Transformation c← a⊕ b ⇒ c← ab⊕b
(or c← a	 b ⇒ c← ab	b):

q ← a+ b (or q ← a− b)
using t ⊕ (or 	) gates

o← O
c← q + o (using t ⊕ gates)

Transformation b← mask(a) ⇒ b← m̂ask(a)
o← O
b← a+ o (using t ⊕ gates)

Transformation a← constα ⇒ a← ĉonstα,
for any α ∈ K

Let α be a fixed arbitrary encoding of α.
o← O
a← α+ o (using t ⊕ gates)

Gadget (b, c)← ĉopy(a)
o1 ← O, o2 ← O
b← a+ o1 (using t ⊕ gates)
c← a+ o2 (using t ⊕ gates)

Fig. 2. Gadgets used in the stateless circuit transformation TR.

and � gates. The operation of all the gadgets is described in 2. For the soundness of our
transformation, we refer the reader to the full version.

Incidentally, observe that because every gadget other than ̂encoder or ̂decoder ends
with a masking by an output of O,13 and wire bundles do not fan-out (instead, they go
through the ĉopy gadget), each connecting wire bundle carries an encoding of its value
that is chosen uniformly and independently of all the wires in the transformed circuit. This
fact, together with the construction of the gadgets, is what enables the simulation.

Handling Stateful Circuits. To augment the above stateless circuit transformation to
a full circuit transformation, we have to explain how to transform the initial state M0 and
what to do with each memory gate. The initial state is replaced by a randomly chosen
encoding Enc(M0). Each memory gate is replaced by a gadget that consists of t memory
gates to store the encoding followed by a m̂ask gadget to guarantee re-randomization of
the state.14

13 One can instead define the basic gadgets as not including this masking with O, and instead place a mask

gate on every wire. The resulting transformation is similar.
14 Masking the output of the memory gadget has two reasons: first, we want to allow the total leakage to

be much larger than the size of the state, and second, we want to allow the adversary to choose leakage
functions adaptively.
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4 Proof of Security

Conceptually, the proof of security for the circuit transformation in Section 3 proceeds
in two steps. First, consider a mental experiment where each gadget in the transformed
circuit Ĉ is perfectly opaque. Namely, the only wires that the observer OBS can “see” are
the external wires of the gadgets that connect the output of a gadget to the input of another
gadget (these are exactly the wires that carry encodings of the values in the circuit C).
The wires internal to the gadgets are off-limits to OBS. Once in this (imaginary) world, we
use the first key property of our gadgets, namely

Re-randomizing: The output of each gadget in Ĉ is a uniformly random encoding of the
output of the corresponding gate in C.15

Letting w1, . . . , wm denote the values of the wires in C, the re-randomizing property says
that the wire-bundles in Ĉ that are external to the gadgets are distributed like (w1, . . . ,wm)
where the wi ← Enc(wi) are random and independent encodings of the bit wi.

The simulator does not know the value wi (because it does not know the secret state
in the circuit), but will simulate it with a random encoding of a random value w′i. Now,
the leakage indistinguishability of the encoding scheme tells us that given the leakage from
any of these encodings (individually), it is hard to tell if the underlying value is wi or w′i.
By a hybrid argument, the same holds for a vector of independent encodings of m values
as well, which is what the simulator uses.

Before we declare victory (in this imaginary world), let us look a little more closely at
the hybrid argument. At each hybrid step, we will prove indistinguishability by a reduction
to the security of the encoding scheme. In other words, we will show by reduction that
if OBS equipped with functions from LTR can distinguish two hybrid wire distributions,
then some adversary OBSΠ , equipped with functions from a slightly larger class LΠ , can
distinguish two encodings. Given an encoding, our reduction will need to fake the remaining
wires of the circuit and give them as input to the function from LTR.

Efficiency of such a reduction is particularly important. If OBS specifies a leakage
function f ∈ LTR for Ĉ, then OBSΠ will specify its own leakage function fΠ for the
encoding and return its result to OBS. This leakage function fΠ has to fake (in a way that
will look real to f and OBS) all the wires of Ĉ before it can invoke f . At the same time,
fΠ should not be much more complex than f , because our result is more meaningful when
difference between the power of LΠ and the power of LTR is smaller. The main trick is for
OBSΠ to hardwire as much as possible into fΠ , so that when fΠ observes the encoding,
it has to do very little work before it can invoke f . In fact, in this imaginary situation, all
the remaining wires can be hardwired into fΠ because of independence of encodings, so
fΠ has to simply invoke f on its input wires and hardwired values.

15 Of course, given the values of the internal wires of the gadgets as well, the outputs of the gadgets are
not independent encodings any more. But, note that we are still in the mental experiment where the
observer does not get to see the internals of the gadgets.
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The second step in the proof is to move from the mental experiment to the real world,
where the internals of the gadgets also leak. Unlike in the mental experiment, where the
values of all wire bundles were independent, values of wires inside a gadget are correlated
to its input and output wire bundles. Thus, they cannot be hardwired into fΠ . Nor can
they be computed by fΠ , because the complexity of the gadgets is too high.

Handling this problem requires invoking the second key property of the gadgets, namely:

Reconstructibility: We say that a pair of strings (X,Y ) is plausible for Ĝ if Ĝ might
output Y on input X. For every gadget Ĝ, there exists a distribution REC bG over low-
complexity functionsR, which takes as inputX,Y and produces a simulated distribution
of the internal wires of Ĝ. If for any plausible X,Y this distribution is (L, τ, ε)-leakage-
indistinguishable from the actual distribution of the internal wires of Ĝ (conditioned
on X and Y ), then we say that Ĝ is (L, τ, ε)-reconstructible by R, and call REC bG a
(L, τ, ε)-reconstructor.

In the following we will often omit the parameters τ and ε.
We use this property to handle leakage from gadgets. Given reconstructors for each

single gadget we can show that a transformed circuit that is encoding-based (i.e. the gadgets
operate on encodings) and composed of reconstructible gadgets is secure according to
Definition 1. On a high-level we will replace each gadget with its reconstructor in addition to
replacing connecting wire bundles with random encodings. The proof that the simulation is
indistinguishable requires first doing a hybrid argument over gadgets as they are replaced
by reconstructors one-by-one, and then modifying the hybrid argument over the wires
described above. In the hybrid argument over the wires, fΠ can have hardwired values for
every wire in the circuit except the gadgets connected to the challenge encoding, which
will be computed by fΠ using the low-complexity function given by the reconstructor.
This allows for a very efficient reduction. The formal statement of the composition lemma
is given in Lemma 3.

Let us now move on to building reconstructors for two simple gadgets.

4.1 Reconstructors for Single Gadgets

We present proof sketches for the reconstructibility of the ⊕̂ and �̂ gadget.

Lemma 1 (⊕̂ and 	̂ gadgets are reconstructible). For any class of circuits L, the
⊕̂ and 	̂ gadgets are (L,∞, 0)-reconstructible, where the reconstructor can be computed by
SHALLOW(2, O(t)).

Proof. In this sketch we will do the proof only for ⊕̂. The reconstructor RECb⊕ is the
distribution whose only support is the following circuit Rb⊕. On inputs (X,Y ) where X =
(a, b) (i.e., the desired input of the ⊕̂ gate), and Y = (c) (i.e., its desired output), Rb⊕
assigns the wires of ⊕̂ to q ←− a⊕ b and o←− c	 q.

14



If X,Y are chosen as in the definition of a reconstructor, then the resulting output
of Rb⊕ is identically distributed to the wire distribution Wb⊕(X|Y ), since in both cases o
takes the only possible consistent value o←− c	 q. Notice that Rb⊕ can be computed by a
circuit of depth 2 because on inputs X,Y it first computes q ←− a ⊕ b and based on that
o←− c	 q. The 	 and ⊕ gates above operate only on single field elements, so Rb⊕ requires
O(t) size. ut

Let us now give a proof sketch for the �̂ reconstructor. Notice that the main technical
difficulty is the fact that our simulation has to be shallow whereas the real �̂ gadget is
already a deep circuit. In the following, let K = GF(2).

Lemma 2 (�̂ is reconstructible). Let Lb� be a class of functions, and assume that
the encoding Π is LΠ-leakage-indistinguishable, where LΠ ⊇ Lb� ◦ SHALLOW(2, O(t2)).
Then, the �̂ gadget is Lb�-reconstructible, where the reconstructor can be computed by
SHALLOW(2, O(t2)).

Proof (sketch). The reconstructor RECb� takes as inputs (X,Y ), where X = (a, b), and
Y = (c) and is defined as follows:

1. Sample U uniformly from Kt×t and compute the values on the wires in the subcircuits
for the computation of q. Hard-wire the results as Rb�’s outputs.

2. On input X, Rb� computes the matrix B ←− (ai � bj)i,j , i, j ∈ [1, t] and outputs it as
part of the wire assignment.

3. Rb� computes S ←− B − U and o←− c− q.

RECb� has size O(t2) (because it needs to compute matrices B and S) and depth 2, because
S is computed from B, that in turn has been computed from the inputs.

It remains to show that the distribution Rb�(X,Y ) produced by the reconstructor and
the actual wire distribution Wb�(X|Y ) are leakage-indistinguishable by leakage functions
in Lb�. Since U is computed as B+S it suffices to show that S can be replaced by a matrix
sampled uniformly at random from Kt×t.

We prove it by a hybrid argument and define hybridsW`b�(X|Y ) (` ∈ [0, t]) asWb�(X|Y ),
except that for the first ` columns of S the elements are drawn uniformly from K. We
show the leakage-indistinguishability between two consecutive hybrids by a reduction to
the encoding leakage-indistinguishability. As part of this reduction we build the observer
OBSΠ that runs OBSb� and has to answer its leakage queries fb� ∈ Lb�. OBSΠ runs fb�
as part of its own leakage function fΠ ∈ LΠ . However, fΠ only expects a single target
encoding e as input, whereas functions from Lb� expect a full wire assignment for �̂. Thus,
before fΠ runs fb�, a wire simulator fS , computes a wire assignment for �̂ given only the
target encoding e. To keep the reduction tight (and our result meaningful), fS has to be
very simple; i.e. we use the input e as little as possible and hard-wire most of the values
of the wires of �̂ into fS . For any X,Y :

1. From X compute B = (aibj)i,j∈[1,t] and hard-wire a, b, B into fS .
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2. Hard-wire the columns 1 . . . ` − 1 to random encodings and ` + 1 . . . t to Enc(0). The
`th column is filled with the challenge encoding e.

3. Hard-wire all elements of U = B + S into fS except for the `th column. For the `th
column, compute for each i ∈ [1, t], the value Ui,` ← Bi,` + ei.

4. The wires in the decoding sub-circuits to compute q from U carry the ⊕ of some row
{Ui,j}j . If a wire in the sub-circuit does not depend on Ui,` (i.e., the input to fS),
then pre-compute its value and hard-wire the intermediate result. On the other hand,
if it depends on Ui,` = Bi,` + ei, then pre-compute a partial sum except the term that
depends on ei and hard-wire the result. On input e, fS computes the missing outputs
by ⊕-ing the relevant parts of e.

5. With fixed Y and q from (3) compute o←− Y − q and output it.

It is not difficult to check that fS outputs a valid wire assignment for �̂ that is either
distributed as W`−1b� (X|Y ) or W`b�(X|Y ). If e is drawn from Enc(0), then the `th column
of S is assigned an encoding drawn from Enc(0). Since all the other wires are computed
honestly using either hard-wired values or the input e, fS(Enc(0)) and W`−1b� (X|Y ) are
distributed identically. If e ←− Enc(x), for x ∈ K, then the `th column of S is assigned an
encoding drawn from Enc(x), hence, we get that fS(Enc(x)) and W`b�(X|Y ) are distributed
identically. Since fS needs to compute the `th column of U , the values in the decoding
sub-circuits, and from q the value of o, fS ∈ SHALLOW(2, O(t2)). Together with the t
hybrids, we get that Wb�(X|Y ) and Rb�(X,Y ) are (Lb�, tε)-leakage-indistinguishable, if Π
is (LΠ , ε)-leakage-indistinguishable (where LΠ ⊇ Lb� ◦ SHALLOW(2, O(t2))). ut

The rerandomizing property of the simple gadgets follows immediately from the fact
that every gadget’s output is masked by the output of O.

4.2 Security of Full Circuit Transformation

Until now we showed that individual gadgets are re-randomizing, and reconstructible. The
following central lemma, that is proved in the full version, states how to compose recon-
structors for single gadgets to yield a reconstructor for the entire circuit.

Lemma 3 (Composition Lemma). Let L bC be some set of leakage functions and εΠ >
0, τΠ > 0, t > 0. Let Π be (LΠ , τΠ , εΠ)-leakage-indistinguishable. Let C be a stateless circuit
of size s, without encoder or decoder gates with kI inputs and kO outputs. Then the trans-
formed circuit Ĉ is rerandomizing and (L bC , τ bC , ε bC)-reconstructible by SHALLOW(2, (kI +
kO)O(t2)) where LΠ = L bC ◦ SHALLOW(3, O(t2)), ε bC = εΠs(t+ 2), and τ bC = τΠ −O(st2).

There is one caveat that remains in proving security according to Definition 1: the
̂encoder and ̂decoder gadget are not reconstructible, however, the simulator can easily

include them into his simulation since the inputs and outputs of these gadgets are known.
We would like to make a final remark: the circuit transformation that we discussed so far

are based on any linear encoding scheme, however, the proof techniques that we introduced
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along the way are more general. Note that Lemma 3 relies essentially on the fact that the
gate gadgets are rerandomizing and reconstructible. One can obtain an analogously result
using any (not necessarily linear) encoding scheme and a corresponding set of sound gate
gadgets that are rerandomizing and reconstructible. We refer the interested reader to the
full version.

5 Security against Constant Depth Leakage

In this section, we show how to use the general circuit transformation from Section 3 to
achieve security against leakage functions that can be computed by constant-depth circuits.

5.1 AC0 Leakage

The first leakage class we consider is AC0, the class of constant-depth, polynomial-size
circuits formed out of NOT gates and unbounded fan-in AND and OR gates. Let C(d, s, λ)
denote the class of AND-OR-NOT Boolean circuits with depth d, size s and λ bits of
output.
The Encoding. The encoding we use in this case is the parity encoding. The (randomized)
parity encoding of a bit b is a sequence of bits (b1, . . . , bt) which are uniformly random
subject to the condition that their parity is the bit b. This encoding can be computed in
many different ways, for example, as:
enc(b): Generate bits b1, . . . , bt−1 uniformly at random, and set bt := b⊕

⊕t−1
i=1 bi.

Obviously, the decoding function for the parity encoding is simply the parity function,
namely the function that outputs the exclusive-or of the t bits in the encoding.

The parity encoding is hard to decode for AC0 circuits. The classical result of H̊astad [18]
(which builds on [1,14]), translated to our definition, states that the parity encoding of the
bits 0 and 1 are indistinguishable by circuits in the class C(d, 2t1/d , 1) for any constant d.
This protects against AC0 circuits that output 1 bit. Using a recent result of Dubrov and
Ishai [10, Theorem 3.4], we can protect against the circuit class C(d, eO(tδ/d), t1−δ) for any
0 < δ < 1, namely AC0 circuits that output up to t1−δ bits.

We obtain the following theorem by instantiating Theorem 2 with the parity encoding,
and using the above observations about the leakage-indistinguishability of the parity en-
coding against AC0 circuits. The reader is referred to the full version for a tight statement
and a formal proof of security.

Theorem 3. Let t be the security parameter, and 0 < δ < 1, and d ∈ N be constants.
Then, there exists a circuit transformation that is LAC0,d,δ-secure where LAC0,d,δ = C(d −
4, eO(tδ)/d, t1−δ) is the class of all Boolean AND-OR-NOT circuits of depth at most d− 4,
size at most eO(tδ)/d and output length at most t1−δ.

In particular, the theorem states that the transformation is secure against AC0 circuits
(constant depth, polynomial-size circuits) that output at most t1−δ bits, for any constant
δ > 0.
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5.2 ACC0[q] leakage

A natural way to extend the class of leakage functions from AC0 to something more general
is to allow the leakage function to have parity gates. Clearly, such circuits can decode the
parity encoding, but are there still other linear encoding schemes that cannot be decoded
by even such circuits? It turns out that such encodings indeed exist. For any integer q, let
MODq be the gate that outputs 0 if the sum of its inputs is 0 modulo q, and 1 otherwise.
The class CMOD-q(d, s, λ) is defined to be the functions computable by circuits made of NOT
gates and unbounded fan-in AND, OR and MODq gates, with depth d, size s and output length
λ. For example, letting q = 2, we get the class of depth d circuits that include parity gates
as well.

The encoding scheme we use in this case is the mod-q′ encoding scheme, for some q′

that is co-prime to q, defined analogously to the parity encoding scheme in Section 5.1. By
a result of Razborov and Smolensky [31,34], for any distinct primes q′ and q, the mod-q′

encoding is leakage-indistinguishable for functions in the class CMOD-q(O(1), poly(t), 1), i.e.,
ACC0[q] circuits with output length 1. Since the mod-q′ encoding is linear, we can apply
Theorem 2 to get a secure circuit transformation.

6 Security against Noisy Leakage

So far, we considered leakage classes that are constrained in terms of their computational
power and output length. In this section, we consider the noisy leakage model, where the
leakage consists of the values of all the wires in the circuit, except that each bit is flipped
with some probability p ∈ [0, 1/2]. More precisely, the class of noisy leakage functions is
represented by the circuit class L = {Np}p∈[0,1/2], where each circuit Np is probabilistic,
and is defined as follows: Let Bp be the binomial distribution with parameter p which
outputs 1 with probability p and 0 otherwise. Then, Np(x) = x ⊕ b, where each bit bi is
drawn from the distribution Bp and the different bi are independent.

Ideally, we would hope that the circuit transformation in Section 3 provides security
against noisy leakage as well. However, this turns out to be false, and in fact, there is an
explicit attack against the transformation in Section 3 (as well as the circuit transformation
of Ishai et al. [19]) in the presence of noisy leakage, even when the noise is very small.

We outline the basic idea of the attack here. Specifically, the attack is against the
construction of the multiplication gadget �̂ in Figure 2. The gadget takes as input two
encodings a and b and first computes the t2 bits {ai ∧ bj : i, j ∈ [t]}. Consider the first
t bits (a1 ∧ b1, . . . , a1 ∧ bt). If a1 = 0, then all these bits are 0, whereas if a1 = 1, then
roughly half of them are 1. Given such disparity, the observer can determine whether a1 is
0 or 1, even if he is given a noisy version of these t bits (for any noise parameter p < 1/2).
Proceeding in a similar way, he can reconstruct all the bits ai, and thus the input bit a
itself. The fundamental reason why this attack works is that the construction of the �̂
gadget in Figure 2 has high input locality, namely it accesses the input bits a large number
of times.
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6.1 A New Circuit Transformation against Noisy Leakage

We construct a new circuit transformation against noisy leakage. The transformation pro-
ceeds in the same way as in Section 3, except for the construction of the multiplication
gadget �̂. The new construction of the multiplication gadget avoids the attack outlined
below, and is constructed using a new opaque gate that we call M (in addition to the
opaque gate O). We stress that the opaque gate M that we design and use, inherits the
main characteristics of the opaque gate O in that it is stateless, and independent of the
computation. In other words, M simply produces samples from a fixed distribution.

In what follows, we describe the specification of the opaque gate M as well as the
construction of the �̂ gadget.
The Opaque Gate M. The opaque gate M is probabilistic, takes no inputs and op-
erates in the following way: Sample 2t uniformly random 0-sharings r1, . . . , rt ← O and
s1, . . . , st ← O. Let R and S be the following two t× t matrices:

R =



r1
...⊕i

j=1 rj
...⊕t

j=1 rj

 and S =



s1
...⊕i

j=1 sj
...⊕t

j=1 sj


Let Ri,j (resp. Si,j) denote the (i, j)th entry of the matrix R (resp. S). Define R ⊗ S to

be the “inner product of the matrices R and S”, when written out as bit-strings. That is,

R⊗ S =
⊕
i,j

Ri,jSi,j

The output of the opaque gate M is the tuple (r1, . . . , rt, s1, . . . , st, u) where u = R⊗ St,
the inner product of the matrices R and the transpose of S.
The new Multiplication Gadget �̂. The operation of the multiplication gadget �̂
proceeds in two stages.

– The first stage uses a gadget m̂ult that takes as input two encodings a = (a(1), . . . , a(t))
and b = (b(1), . . . , b(t)), and outputs a longer encoding q = (q(1,1), . . . , q(t,t)) of size t2.

– The second stage “compresses” this longer encoding into an encoding c = (c(1), . . . , c(t)),
using a gadget ̂compress.

We first describe how the (sub-)gadget m̂ult works.

1. First, generate (r1, . . . , rt, s1, . . . , st, u)←M.
2. Define a0 := a and b0 := b. Compute the encodings ai and bi iteratively as follows.

For 1 ≤ i ≤ t, set
ai = ai−1 ⊕ ri, and bi = bi−1 ⊕ si
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3. Let a(j)
i (resp. b(j)i ) denote the jth bit of the vector ai (resp. bi). Output q = (q(1,1), . . . , q(t,t))

defined as follows:

q(i,j) =

{
a

(1)
1 ∧ b

(1)
1 ⊕ u if (i, j) = (1, 1)

a
(j)
i ∧ b

(i)
j otherwise

(Note the asymmetry in the evaluation, namely the bit a(j)
i is multiplied with the bit

b
(i)
j , where the subscript and the superscript are switched; this asymmetry is intentional,

and indeed, crucial to the correctness).
4. Generate z← Ot2 (thus, z is a uniformly random t2-bit string whose entries xor to 0).

Output w := q ⊕ z.

Now, we invoke the ̂compress gadget on the output of the m̂ult gadget. The ̂compress
gadget takes t2 bits (q(1,1), . . . , q(t,t)) and outputs t bits (c(1), . . . , c(t)) such that

⊕
i,j q

(i,j) =⊕
i c

(i). The construction of the ̂compress gadget proceeds in the following way.

1. Split the bits q(i,j) into t blocks of t bits each.
2. Construct a tree of ⊕̂ gadgets that takes as input t blocks of t bits each, and outputs

one block of t bits. (The structure of the tree can be arbitrary.) Apply the tree to the
bits q(i,j) and call c = (c(1), . . . , c(t)) the output.

The correctness of the �̂ gadget can be verified by a simple computation, and is omit-
ted. The efficiency of implementation is practically the same as that in 3. Namely, the
transformation converts a circuit of size s into another circuit of size O(s · t2), where t is
the security parameter. We now outline the main ideas behind the proof of security of the
new transformation against noisy leakage.

Outline of the Security Proof. As in Section 3, the proof proceeds in two steps. First,
we show that the gadgets are re-randomizing and reconstructible. In other words, this says
that the internals of a gadget reveal no more useful information than its inputs and output.
Secondly, we apply a general version of the Composition Lemma (Lemma 3) to conclude
that since each individual gadget is re-randomizing and reconstructible, the entire circuit
transformation is leakage-resilient. We describe these two steps in a little more detail below.

It is easy to see that the gadgets are re-randomizing. The key difference from Section 3
is that in the proof of reconstructibility, we are not concerned about the computational
efficiency of the reconstructor, but rather the number of times the reconstructor accesses
its input. This is a consequence of the fact that the larger the number of noisy copies
of an encoding e (with independent binomial noise) the observer sees, the easier it is for
him to tell if e is an encoding of 0 or 1. Thus, the bulk of the effort in the design of the
circuit transformation as well as the reconstructor is in ensuring that the inputs and the
intermediate values are “touched” as few times as possible. The technical heart of the proof
(similar to the theorems of [13,18,10] for the AC0 case) is a lemma which states that for any
constant c and any fixed vectors f1, . . . ,f c, the distribution of (Np(e⊕f1), . . . ,Np(e⊕f c))
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when e is an encoding of 0 or 1 are statistically close. We refer the reader to the full version
for the design of the reconstructors and the formal proof.
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