
Factoring estimates for a 1024-bit RSA modulus

Arjen Lenstra1, Eran Tromer2, Adi Shamir2, Wil Kortsmit3, Bruce Dodson4, James
Hughes5, Paul Leyland6

1 Citibank, N.A. and Technische Universiteit Eindhoven,
1 North Gate Road, Mendham, NJ 07945-3104, USA, arjen.lenstra@citigroup.com

2 Department of Computer Science and Applied Mathematics,
Weizmann Institute of Science, Rehovot 76100, Israel,

{tromer,shamir}@wisdom.weizmann.ac.il
3 Technische Universiteit Eindhoven,

P.O.Box 513, 5600 MB Eindhoven, The Netherlands, rcwil@win.tue.nl
4 Lehigh University, Bethlehem, PA 18015-3174, USA, bad0@lehigh.edu

5 Storage Technology Corporation,
7600 Boone Ave No, Minneapolis, MN 55428, USA, James Hughes@StorageTek.com

6 Microsoft Research Ltd,
7 JJ Thomson Avenue, Cambridge, CB3 0FB, UK, pleyland@microsoft.com

Abstract. We estimate the yield of the number field sieve factoring algorithm when applied
to the 1024-bit composite integer RSA-1024 and the parameters as proposed in the draft
version [17] of the TWIRL hardware factoring device [18]. We present the details behind the
resulting improved parameter choices from [18].

Keywords: 1024-bit RSA, factorization, number field sieve, TWIRL

1 Introduction

RSA with 1024-bit moduli is widely used. It is unlikely that breaking a single 1024-bit RSA
modulus will change much, just as repeatedly breaking DES had, for obvious economic
reasons, limited effect on legacy applications. Nevertheless, despite the possible lack of
immediate practical relevance, in cryptographic circles there is wide-spread interest in the
question how hard it would be to factor a 1024-bit RSA modulus (cf. [2], [12]).

At the Asiacrypt 2002 rump session an innovative hardware device, ‘TWIRL’, was pre-
sented that would be able to factor 1024-bit RSA moduli at a much lower cost than before.
The work reported here was inspired by that presentation and the draft of TWIRL [17].
The draft presents cost estimates for a number field sieve (NFS) factorization of a 1024-bit
composite that rely on extrapolations of parameter settings used for a 512-bit NFS factor-
ization (cf. Section 4). To our knowledge the accuracy of long range extrapolation from 512
to 1024 bit parameter selection had never been properly tested. Our goal was therefore to
do a ‘reality check’ of the choices made in [17]. Given the many uncertainties involved in
the factoring process we did not expect conclusive results but hoped to get an indication
if the proposed parameters looked ‘reasonable’ or not. As it turned out, our results sug-
gested that the choices were over-optimistic. Our approach was subsequently adopted by
the authors of TWIRL. It allowed them to derive realistic parameters and to fine-tune the

improved design [18]. The additional cost of the new choices is offset, approximately, by
the greater efficiency of the new design, so that the overall cost estimates of [17] and [18]
are similar. The details of the parameter settings from [18] are presented in Appendix B.

A sketch of our approach follows. We assume elementary background on the NFS (cf.
Section 2). We selected the number RSA-1024 from [16] as a representative 1024-bit RSA
modulus. This choice was supported by experiments that did not reveal significant differ-
ences between RSA-1024 and several other 1024-bit products of randomly selected 512-bit
primes. We followed the search strategy from [13], [14], [15] to select number fields of de-
grees 5, 6, 7, 8, and 9 for RSA-1024, but we did not spend as much time on the search
as we would have done for an actual factoring attempt. The resulting number fields can
thus be regarded as somewhat worse than the number fields that would result from a more
extensive search and the resulting estimates are on the pessimistic side. The better polyno-
mial selection program of Jens Franke and Thorsten Kleinjung can handle only degree 5.
It was used in Appendix B.

For all these number fields and a wide range of factor base sizes and sieving regions
(including the choices made in [17]) we estimated the expected number of relations using
numerical approximation of the applicable smoothness and semi-smoothness probabilities.
Unfortunately, there is no a priori way to evaluate how close the resulting estimates are to
the actual yield. To validate the estimates, we therefore ran extensive (semi-)smoothness
tests on the actual numbers that would appear in an NFS factoring attempt, restricted to
the most promising degrees and subsets of the sieving regions. We used the relatively slow
test described in Section 3. This posed no problems because our object was determining
the yield, not optimizing the speed. It can be seen in Section 5 that although the different
methods do not produce identical results, the actual smoothness tests do inspire a high
level of confidence in the numerical approximations.

Furthermore, we computed similar estimates for the multiple number field approach
from [5], under the untested and possibly over-optimistic assumption that all number fields
are about equally ‘good’ as the number fields we generated (cf. Section 6). In the same
section we estimated the yield under the assumption that we are able to find much better
number fields than we found, for instance by adapting the Franke/Kleinjung program to
higher degrees. Corresponding actual smoothness experiments were not performed for these
variations, because they involve number fields that we did not actually manage to construct.

There is nothing new to our approach and neither are the results earthshaking. In
particular we did not attempt to address the uncertainties referred to above, namely to
analyse the cycle-matching behavior of relations involving large primes. We are not aware of
any progress in that area. Despite the lack of innovative results, we hope that the approach
presented in this paper is helpful to other researchers in this field. From that point of
view our work already proved useful, as witnessed by the evolution of [17] into [18] (cf.
Appendix B).

2

2 Number field sieve background

This section describes the parts of the number field sieve factoring algorithm which are
relevant for this paper. See [10] for further details. The number of primes ≤ x is denoted by
π(x). An integer is y-smooth if all its prime factors are ≤ y. An integer k is (y, z, `)-semi-
smooth if it is y-smooth except for at most ` prime factors that are > y and ≤ z (referred
to as large primes). If this is the maximal such `, then k is strictly (y, z, `)-semi-smooth.
Regular NFS. Let n be the number to be factored. Fix a degree d. Find an integer m
(close to n1/(d+1)), an irreducible polynomial f ∈ Z[X] of degree d such that f(m) ≡
0 mod n, and a corresponding skewness ratio s (cf. [13], [14], [15]). This f is chosen such
that the values bdf(a/b), for coprime pairs of integers (a, b) with b > 0, have a larger than
average y-smooth factor, for small y. For integer k, let η(y, k) denote the largest y-smooth
factor of k and λ(y, k) = log(η(y, k)) the natural logarithm thereof. For random integers,
the expected value E(y) of λ(y, k) is known to be

E(y) =
∑

p<y, p prime

(log p)/(p− 1).

The expected value Ef (y) of λ(y, bdf(a/b)) can be determined experimentally by averaging
λ(y, bdf(a/b)) over a large random set of coprime pairs (a, b) with b > 0. The correction
factor that measures f ’s advantage is defined as t = exp(Ef (230)− E(230)).

Fix rational smoothness and semi-smoothness bounds yr and zr and algebraic ones ya

and za, with yr ≤ zr and ya ≤ za. Fix the number of large primes on the rational side `a and
on the algebraic side `r. In the sieving step find relations: pairs of coprime integers (a, b)
with b > 0 such that the rational norm Nr(a, b) = |a− bm| is (yr, zr, `r)-semi-smooth and
the algebraic norm Na(a, b) = |bdf(a/b)| is (ya, za, `a)-semi-smooth. If Nr(a, b) is yr-smooth
and Na(a, b) is ya-smooth, the relation is referred to as a full relation, otherwise it is called a
partial relation. Approximately π(min(yr, ya))/d! full relations are free, namely one for each
prime p ≤ min(yr, ya) such that f has d roots modulo p (cf. [10]). A non-free relation (a, b)
for which Nr(a, b) is strictly (yr, zr, Lr)-semi-smooth and Na(a, b) is strictly (ya, za, La)-
semi-smooth will be called an (Lr, La)-partial relation. We use the standard abbreviations
ff for (0, 0)-partial relations, fp for (0, 1)-partial relations, pf for (1, 0)-partial relations and
pp for (1, 1)-partial relations.

For the Nr(a, b)’s the sieving step involves sieving with the primes ≤ yr, the rational
factor base of cardinality π(yr). For the Na(a, b)’s it involves sieving with pairs (p, r) with
p ≤ ya prime and f(r) ≡ 0 mod p, the algebraic factor base of cardinality ≈ π(ya). Let
T (yr, ya) = π(yr) + π(ya)− π(min(yr, ya))/d!.

The purpose of the sieving step is to find approximately T (yr, ya) independent cycles:
sets C of relations such that

∏
(a,b)∈C Nr(a, b) is a square times a yr-smooth number and,

simultaneously,
∏

(a,b)∈C Na(a, b) is a square times a ya-smooth number. The condition on
the last square is slightly more involved; see below. A full relation is a cycle of length 1.
Two (1, 0)-partial relations whose rational norms share a large prime can be combined into

3

a cycle of length 2. Similarly, for two (0, 1)-partial relations (a1, b1) and (a2, b2) whose alge-
braic norms share the large prime p, a length 2 cycle follows if the relations correspond to
the same root of f mod p, i.e., if a1/b1 ≡ a2/b2 mod p. Longer cycles may be built by pair-
ing matching rational large primes or matching algebraic large primes with corresponding
roots.

The part of the (a, b)-plane where relations are sought, the sieving region, consists of
a, b with −A < a ≤ A and 0 < b ≤ B for sufficiently large A,B > 0 with A/B ≈ s. The
size 2AB of the sieving region is denoted by S. A rectangular sieving region is in general
not optimal in the sense that certain carefully chosen and somewhat smaller regions may
yield the same number of relations (cf. [20]). For our yield computations this is hardly a
concern.

Given approximately T (yr, ya) independent cycles, the factorization of n follows by
applying the matrix step to the cycles and the square-root step to the results of the matrix
step; these final two steps are not discussed in this paper.
Cycle yield. The number of relations required to obtain T (yr, ya) independent cycles
is determined by the matching behavior of the large primes. This behavior varies from
factorization to factorization and is not yet well understood. Obviously, T (yr, ya) distinct
(non-free) full relations suffice, but this is necessary only if the large primes cannot be
paired at all — that has never occurred in practice so far. Furthermore, the behavior
gets considerably more complicated if more than a single large prime is allowed in the
rational and algebraic norms. This is customary in current factorizations because it leads
to a considerable speedup (cf. [4]). The uncertainty about the matching behavior of the
large primes is the main reason that it is currently impossible to give reliable estimates
for the difficulty of factoring numbers that are much larger than the numbers we have
experience with. For that reason, we mostly restrict ourselves to estimates of the sieving
region that would be required to find T (yr, ya)/c non-free full relations for a range of yr

and ya values and several values of c ≥ 1. Note that, for any number of large primes per
relation, π(zr) + π(za) relations always suffice.
Effort required. For smoothness bounds yr and ya, sieving region size S and assuming
a traditional implementation, the sieving effort is dominated by the number of times the
primes and (prime,root) pairs in the factor bases hit the sieving region. This value is
approximately proportional to

S(log log(yr) + log log(ya)).

Furthermore, memory for the sieve and the factor bases may be needed.
Coppersmith’s multi-polynomial version. As shown in [5] an improvement of the
regular NFS can be obtained by considering a set G of irreducible degree d polynomials
with shared root m modulo n. In that case, a relation is a pair of coprime integers (a, b) with
b > 0 such that Nr(a, b) is (yr, zr, `r)-semi-smooth and bdg(a/b) is (ya, za, `a)-semi-smooth
for a g ∈ G. The goal is to find π(yr)+#G(π(ya)−π(min(yr, ya))/d!) cycles. First, sieving
is used to find a set V of (yr, zr, `r)-semi-smooth rational norms (with a and b coprime).

4

Next, a smoothness test different from sieving is used (in [5] the elliptic curve method is
suggested) to test bdg(a/b) for (ya, za, `a)-semi-smoothness for all (a, b) ∈ V and all g ∈ G.
The approximate runtime of the relation collection becomes proportional to

S log log(yr) + E(#V)(#G)

where E is a constant of proportionality that depends on the (ya, za, `a)-semi-smoothness
test used. Its value is best determined empirically.

3 Number field sieve analysis and estimates

Let the notation be as above. This section describes the methods we used to estimate the
yield of the NFS. Let Lx[r, α] denote any function of x that equals

exp((α + o(1))(log x)r(log log x)1−r), for x →∞,

where α and r are real numbers with 0 ≤ r ≤ 1 and logarithms are natural.

Estimating smoothness and semi-smoothness probabilities. Let σ`(u, v) denote the
probability that a random integer ≤ x is strictly (x1/u, x1/v, `)-semi-smooth, for x → ∞.
In particular, σ0(u, v) is the probability of x1/u-smoothness, and equals the Dickman ρ(u)
function (cf. [1], [6]) which is u−u+o(1) for u → ∞ (cf. [3], [7]). Also, let σ̄2(u, v, w) be the
probability that a random integer ≤ x is x1/u-smooth except for exactly two prime factors
> x1/u and ≤ x1/v whose product is < x1/w (note that σ2(u, v) = σ̄2(u, v, v/2)). We assume
that these functions give good approximations of the semi-smoothness probabilities for the
finite values of x that we consider (cf. Section 5, [1], [9]).

Closed expressions for σ` are not known. Thus, for ρ and σ1 we used the numerical
approximation methods given in [1]. To compute σ2 and σ̄2 we used a natural generalization
of [9, Theorem 3.1] and performed the integration numerically using the GNU Scientific
Library.

Asymptotic runtime. It is heuristically assumed that with respect to smoothness prop-
erties Nr(a, b) and Na(a, b) behave independently as random integers of comparable sizes.
It follows that a pair of coprime integers (a, b) leads to a full relation with probability
ur

−ur+o(1)ua
−ua+o(1), where ur = log(Nr(a,b))

log(yr)
and ua = log(Na(a,b))

log(ya) . Optimization of the

parameters leads to the heuristic asymptotic expected NFS runtime Ln[1/3, (64/9)1/3] ≈
Ln[1/3, 1.923], for n → ∞, yr and ya both equal to Ln[1/3, (8/9)1/3] (the ‘square-root of
the runtime’), and the sieving region size S = Ln[1/3, (64/9)1/3]. The correction factor
t and large primes are believed to affect these values only by a constant factor (which
disappears in the o(1)). Coppersmith’s multi-polynomial variant [5] runs, asymptotically,
slightly faster in expected time Ln[1/3, 1.902]. These expressions provide some insight into
parameter selection, but the presence of the o(1) limits their practical value. See Section 4
for how they are often used in practice.

5

Estimating the yield using ρ and σ`. For actual yield estimates we include the correc-
tion factor t defined in Section 2. Redefine ua = log(Na(a,b)/t)

log(ya) , and define vr = log(Nr(a,b))
log(zr)

,

va = log(Na(a,b)/t)
log(za) . Then under the same assumptions as above, it follows that (a, b) forms

an (Lr, La)-partial relation with probability

σLr(ur, vr) · σLa(ua, va).

Integration of these probabilities over the sieving region gives an estimate for the total
yield of (Lr, La)-partial relations. An estimate for #V in the runtime of Coppersmith’s
variant is obtained by integrating the σLr(ur, vr) values over the sieving region. Similar
integrations are used to compute candidate frequencies in Appendix B. A correction factor
6/π2 ≈ 0.608 is applied to all results to account for the probability that a and b are coprime.
The integrations were carried out using Mathematica and the GNU Scientific Library.
Actual smoothness tests. To get an impression of the accuracy of the above ρ and σ1-
based estimates compared to the actual NFS yield, we tested Nr(a, b) and Na(a, b)-values
for smoothness for wide ranges of (a, b) pairs. Because it has never been doubted that the
probability that Nr(a, b) and Na(a, b) are smooth equals the product of the smoothness
probabilities, we did not test that assumption.

We had no access to a siever that allows the range of factor base sizes we intended to
test, nor to hardware on which it would be able to run efficiently. Therefore we wrote a
smoothness test that uses trial division up to 230 combined with the elliptic curve factoring
method (ECM). The choice 230 was partially inspired by our wish not to miss any semi-
smooth Nr(a, b) or Na(a, b)-values that would, in theory, be found when using one of the
parameter choices from [17].

The simplest approach would have been to subject each successive number to be tested
to trial division followed, if necessary, by the ECM. To obtain slightly greater speed, and
without having to deal with the imperfections (overlooking smooth values) and inconve-
niences (memory requirements, resieving or trial divisions to obtain the cofactor) of sieving,
the trial divisions were organized in such a way that a large consecutive range of a’s could
be handled reasonably efficiently, for a fixed b. For the algebraic norms this was achieved as
follows (the rational norms are processed similarly). Let [A1, A2] be a range of a-values to be
processed. For all (prime,root) pairs (p, r) with p < 230 calculate the smallest ap ≥ A1 such
that ap ≡ br mod p (i.e., p divides Na(ap, b)) and if ap ≤ A2 insert the pair (p, ap) in a heap
that is ordered with respect to non-decreasing ap values. Next, for a = A1, A1 + 1, . . . , A2

in succession compute ca = Na(a, b), remove all elements with ap = a from the top of the
heap, remove all corresponding factors p from ca, and if ap + p ≤ A2 insert (p, ap + p) in
the heap. Note that this can be seen as a variant of the ‘largish station’ design from [18].
The resulting ca values have no factors < 230, are prime if < 260, and subjected to the
ECM if composite. Due to the probabilistic nature of the ECM, factors between 230 and the
smoothness bound ya (or yr) may be overlooked. With proper ECM parameter settings and
reasonably sized ya (and yr) this does not occur often. Furthermore, no relation relevant
for the primary choice in [17] will be overlooked.

6

4 Traditional extrapolation

In this section we sketch the traditional approach to estimate the difficulty of factoring a
1024-bit RSA modulus. Let R indicate a resource required for a factorization effort. For
instance, R could indicate the computing time or it could be the factor base size, or the
total matrix weight, or any other aspect of the factorization for which one wants to measure
the cost or size.

For each resource R let CR(x) be a function that measures, asymptotically for x →∞
and in the relevant unit, how much of R is needed to factor x. For several resources a
theoretical expression for this function is known. For instance, when R measures the total
expected computing time, then

CR(x) ≈ Lx[1/3, (64/9)1/3],

with Lx[,] as in Section 3. If R measures the factor base size the constant (64/9)1/3 in this
expression would, in theory, be halved.

Assume that Rn′ units of some resource R are known to be required (or were used) to
factor some RSA modulus n′. Then CR(n)

CR(n′)Rn′ is used to estimate how much of R would be
required (or feasible) for the factorization of RSA modulus n. In this type of estimate it
is customary to ignore all o(1)’s, if they occur in CR. Based on frequent observations this
is not unreasonable if log(n′) and log(n) are close. For large scale extrapolations, however,
omitting the o(1)’s may be an over-simplification that might produce misleading results.

Furthermore, even if log(n′) and log(n) are close, CR-based extrapolation for resources R
that are well understood in theory, may lead to results that have no practical value. As an
example, for a 512-bit factorization, e.g. RSA-155, one would recommend a factor base size
that is about 2.5 times larger than for a 462-bit factorization (as RSA-140). In practice,
however, the entire concept of factor base size is obscured by the use of multiple large
primes and special q’s: it turned out that using the same factor base size did not lead to
severe performance degradation.

This particular effect that not-even-nearly-optimal factor base sizes still lead to only
slightly suboptimal performance is due to the behavior around the minimum of the runtime
curve as a function of the factor base size: the runtime only gradually increases for factor
base sizes that are much larger or somewhat smaller than the optimum. On the other hand,
it increases sharply if the factor base size gets much too small (cf. [20]). This explains the
potential dangers of o(1)-less factor base size extrapolation: a suboptimal small choice,
in the region where the curve is relatively well behaved, for the factor base for n′ may
extrapolate to a factor base size for n in the steep region of the curve, thereby leading to
a much larger total runtime for n than anticipated; see also Section 5, Table 2.

It is not uncommon to use n′ = RSA-155 (a 512-bit number) as the basis for the
extrapolation. In [11] the following parameters were proposed for 512-bit numbers (in the
notation of Section 2), which is close to the values used for the factorization of RSA-155
(cf. [4]):

7

512-bit moduli: yr = ya = 224, sieving region of size S = 1.6E16 (A = 9E9, B = 9E5; we
use ‘vEw’ for ‘v · 10w’). According to [17] the sieving step can be done in less than ten
minutes on a US$10K device.

Straightforward (o(1)-less) extrapolation suggests that 768 and 1024-bit moduli would
require smoothness bounds that are 75 and 2700 times larger and sieving regions that
are 6000 and 7.5E6 times larger, respectively: smoothness bounds approximately 230 and
235 and S ≈ 1E20 and S ≈ 1.2E23, respectively. As shown in [12] additional optimization
arguments may enter into and further complicate the extrapolation. In [17] this leads to
relatively small estimates for the smoothness bounds and relatively large sieving regions:

768-bit moduli: yr = ya = 1.2E7 (< 224), S = 4.2E20 (A = 1.5E12, B = 1.5E8). The
sieving step can be done within 70 days on a US$5K device.

1024-bit moduli: yr = ya = 2.5E8 (< 228), S = 6E23 (A = 5.5E13, B = 5.5E9). The
sieving step takes a year on a US$10M device.

Furthermore, the following is given in [17] and claimed to be an overestimate based on
traditional extrapolation:

1024-bit moduli, but not using partial relations: yr = ya = 1.5E10 (< 234), S =
6E23. The sieving step takes a year on a US$50M device.

5 Results

Let the notation be as in Section 2. In this section we present our ρ and σ1-based estimates
for the yield of the NFS when applied to RSA-155 and RSA-768 with the parameters as
suggested in [17] (and specified in Section 4) and to RSA-1024 for a wide variety of pa-
rameters, including those from [17]. Furthermore, we compare the estimates to the results
of smoothness tests applied to numbers that would occur in an actual NFS factorization
attempt. In Appendix B we give the corresponding estimates for RSA-1024 and the pa-
rameter choices from [18].
512-bit moduli. Let n = RSA-155, d = 5, f as in [4], s = 10800, and t = exp(5.3).
Application of our ρ and σ1-based estimates to yr = ya = 224, zr = za = 26yr = 230,
A = 9E9, and B = 9E5 result in an estimated yield of T (yr, ya)/8.9 ≈ 2.4E5 ff’s, 2.2E6 fp’s,
9.1E5 pf’s, and 8.1E6 pp’s. Because the parameter choice was intended for the use of more
than a single large prime per norm, these results look acceptable: if more than one tenth
of the matrix is filled with ff’s, combinations of multi-prime partial relations will certainly
fill in the rest.

With yr = 229, ya = 230, and B = 4.0E4 the same fraction of the matrix would be filled
with ff’s for a sieving effort that is more than 470 times lower, but T (yr, ya) would be 38.4
times larger, and sieving would have required more fast RAM than was available in 1999.
Because yr = ya = 224 is much smaller than the choice that would minimize the sieving
effort, extrapolation may result in very large sieving efforts, as mentioned in Section 4. See
also Table 2 below.

8

768-bit moduli. For n = RSA-768 we generated a fifth degree polynomial with s ≈ 26000
and t ≈ exp(5.3). To get S = 4.2E20, we use B = 9E7 and A = sB. With yr = ya = 224,
T (yr, ya) = 2.1E6, and zr = za = 210yr = 234 we estimate a yield of fewer than 40 ff’s,
1200 fp’s, 500 pf’s, and 2E4 pp’s. It is unlikely that this is feasible, unless a substantial
effort is spent on finding multi-prime partial relations. With yr = 229, ya = 230, and the
same sieving region, about T (yr, ya)/16 ≈ 5.2E6 ff’s can be expected. With reasonable use
of partial relations this may be feasible.
1024-bit moduli. For n = RSA-1024 we considered degrees d = 5, 6, 7, 8, 9, each with
corresponding integer m, d-th degree polynomial f , skewness ratio s, and correction factor t
as specified in Appendix A. For each of these degrees and S = 6E23 the estimated yield
figures are presented in the first two parts of Table 1, both for yr = ya = 228 and yr =
ya = 234. Because the skewness ratio s depends on d, the height B =

√
S/(2s) and

width 2A = 2sB of the sieving region depend on d. In the last two parts the effect is
given of doubling and quadrupling B, thereby increasing S (and the sieving effort) by
a factor 4 and 16, respectively (since the skewness ratio s is kept invariant). We used
zr = za = 2jyr for j ∈ {8, 12, 16} and indicate the expected fp, pf, and pp yield by fpj ,
pfj , and ppj , respectively. Note that [17] does not use partial relations for yr = ya = 234.
It follows from Table 1 that unless multi-prime partial relations are collected on a much

Table 1. Estimated yields for smoothness bounds from [17].

d s B ff fp8 pf8 pp8 fp12 pf12 pp12 fp16 pf16 pp16

yr = ya = 228, T (yr, ya) ≈ 2.9E7, S = 6E23, sieving effort 3.6E24
5 87281.9 1.9E9 22 4.7E2 2.3E2 5.1E3 9.2E2 4.3E2 1.8E4 1.6E3 6.9E2 5.1E4
6 458.9 2.6E10 74 1.7E3 6.3E2 1.4E4 3.3E3 1.1E3 5.0E4 5.8E3 1.8E3 1.4E5
7 40.9 8.6E10 1.5E2 3.6E3 1.0E3 2.4E4 6.9E3 1.8E3 8.1E4 1.2E4 2.8E3 2.2E5
8 107.3 5.3E10 34 8.2E2 1.8E2 4.5E3 1.6E3 3.2E2 1.5E4 2.8E3 4.8E2 4.0E4
9 8.5 1.9E11 3 69 14 2.5E2 1.3E2 24 8.2E2 1.8E2 37 2.2E3

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 6E23, sieving effort 3.8E24
5 87281.9 1.9E9 9.1E6 1.1E8 5.6E7 6.9E8 2.0E8 9.5E7 2.1E9 3.3E8 1.5E8 5.2E9
6 458.9 2.6E10 2.1E7 2.8E8 1.0E8 1.4E9 5.1E8 1.7E8 4.1E9 8.2E8 2.6E8 1.0E10
7 40.9 8.6E10 3.1E7 4.3E8 1.2E8 1.7E9 7.7E8 2.0E8 5.0E9 1.3E9 2.9E8 1.2E10
8 107.3 5.3E10 6.8E6 1.0E8 2.2E7 3.3E8 1.9E8 3.6E7 9.9E8 3.1E8 5.2E7 2.4E9
9 8.5 1.9E11 5.3E5 8.5E6 1.5E6 2.5E7 1.6E7 2.5E6 7.3E7 2.6E7 3.6E6 1.8E8

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 2.4E24, sieving effort 1.5E25
5 87281.9 3.7E9 1.9E7 2.4E8 1.2E8 1.5E9 4.4E8 2.0E8 4.6E9 7.1E8 3.1E8 1.1E10
6 458.9 5.1E10 4.0E7 5.6E8 2.0E8 2.7E9 1.0E9 3.3E8 8.1E9 1.6E9 5.0E8 2.0E10
7 40.9 1.7E11 5.2E7 7.4E8 2.0E8 2.9E9 1.3E9 3.3E8 8.7E9 2.2E9 5.0E8 2.1E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 9.8E24, sieving effort 6.1E25
5 87281.9 7.4E9 4.1E7 5.3E8 2.5E8 3.3E9 9.5E8 4.3E8 1.0E10 1.5E9 6.6E8 2.5E10
6 458.9 1.0E11 7.5E7 1.0E9 3.7E8 5.2E9 2.0E9 6.3E8 1.6E10 3.2E9 9.5E8 3.9E10
7 40.9 3.4E11 8.6E7 1.3E9 3.4E8 5.0E9 2.3E9 5.7E8 1.5E10 3.8E9 8.4E8 3.7E10

wider scale than customary or practical, the choice yr = ya = 228, and thus the smaller
choice yr = ya = 2.5E8 from [17], looks infeasible. Also the choice yr = ya = 234, and
therefore the choice yr = ya = 1.5E10 from [17], is infeasible if, as suggested in [17], partial
relations are not used and if a sieving region size S as proposed in [17] is used. To get the

9

choice yr = ya = 234 to work without partial relations, our estimates suggest that d = 6
with B ≈ 2.9E12 (corresponding to S ≈ 8E27) would suffice. This would, however, be about
13000 times more expensive than the estimate from [17]: the initial 2.6E10 b-values produce
about T (yr, ya)/72 ff’s, but the performance deteriorates for larger b’s so that much more
than 72 times the initial effort is needed to find T (yr, ya) ff’s. For d = 5 or 7 it would be
1.1 or 3.5 times more expensive, respectively.

Using partial relations is probably a more efficient way to get yr = ya = 234 to work,
as suggested by the last two parts of Table 1. Since there are no adequate methods yet to
predict if the partial relation yield as listed, in practice augmented with partial relations
with 3 or more large primes, would suffice or not, we cannot make any definite statements on
the resulting cost, the practical merit of the cost estimate from [17], or the semi-smoothness
bound that would be required. Note that the performance of d = 6, 7 deteriorates faster
than for d = 5, as expected.

In Table 2 the effect of low smoothness bounds is illustrated. The total expected sieving
effort to find T (yr, ya)/32 ff’s is listed for d = 6, yr = 2j with j = 28, 29, . . . , 51 and
ya = 2yr. The optimum 9.3E20 is achieved at j = 47. When j gets smaller the effort at
first increases slowly and gradually, but around j = 39 the effort grows faster than the
smoothness bounds shrink, and for smaller j the performance deteriorates rapidly.

Table 2. Sieving effort to find T (2j , 2j+1)/32 ff’s for d = 6.

j effort j effort j effort j effort j effort j effort
28 1.5E36 32 5.6E26 36 1.7E23 40 4.8E21 44 1.2E21 48 9.6E20
29 4.7E32 33 3.7E25 37 5.2E22 41 2.9E21 45 1.0E21 49 1.0E21
30 1.4E30 34 4.2E24 38 2.0E22 42 2.0E21 46 9.4E20 50 1.2E21
31 1.7E28 35 7.2E23 39 9.1E21 43 1.5E21 47 9.3E20 51 1.4E21

We now vary d and ir, ia ∈ {25, 26, . . . , 50} and minimize the sieving effort to find
T (2ir , 2ia)/c ff’s, for various c’s. The resulting sieving efforts with corresponding optimal
smoothness bounds are listed in Table 3. It can be seen that both effort and smoothness
bounds decrease with increasing c. This effect is stronger for larger d. Overall, d = 7 is the
best choice, with d = 6 better than d = 8 for small c but vice versa for larger ones. For
non-optimal smoothness bounds, however, d = 7 may not be the best choice, as illustrated
in Table 1.

Table 3. Minimal sieving efforts to find T (2ir , 2ia)/c ff’s.

c = 1 c = 8 c = 16 c = 32 c = 64 c = 128
d ir, ia effort ir, ia effort ir, ia effort ir, ia effort ir, ia effort ir, ia effort
6 48,49 1.6E23 47,48 7.2E21 47,48 2.6E21 47,48 9.2E20 47,48 3.3E20 46,47 1.2E20
7 47,49 9.4E22 47,49 3.5E21 46,48 1.1E21 46,47 3.5E20 45,47 1.1E20 45,46 3.6E19
8 48,50 3.7E23 47,49 1.0E22 46,48 3.0E21 46,48 8.7E20 45,47 2.5E20 45,47 7.5E19

10

Actual smoothness tests for RSA-1024. The accuracy of our ρ and σ1-based estimates
as derived for n = RSA-1024 was tested by applying smoothness tests (as explained in
Section 3) to Nr(a, b) and Na(a, b)-values for wide ranges of (a, b)-pairs with coprime a and
b and degrees and parameters as in Appendix A. More than 100 billion values have been
tested for degrees 6 and 7. No major surprises or unexpected anomalies were detected.
Thus, although it may be too early to have complete confidence in the ρ and σ1-based
estimates, there is neither any reason to dismiss them.

For d = 6 this is illustrated in Tables 4, 5, and 6. Tables 4 and 5 contain the accumulated
results of smoothness tests for Nr(a, b) and Na(a, b)-values, respectively, for more than 100
billion coprime (a, b) pairs and 176 different b values ranging from 29 to 231. They list the
number of (2i, 2j , 1)-semi-smooth Nr(a, b) and Na(a, b)-values (for i, j ranges as specified
in the tables) that were found using trial division up to 230, followed by the (ρ+σ1)-based
estimate between parentheses. Table 6 contains the accumulated results of more expensive
smoothness tests for Na(a, b)-values for 5.6 million coprime (a, b) pairs and 13 different
b-values ranging from 214 to 226. For 34 ≤ j ≤ 40 and 31 ≤ i ≤ j it lists the number
of (2i, 2j , 1)-semi-smooth Na(a, b)-values, found using trial division up to 230 followed by
ECM, again followed by the (ρ+σ1)-based estimate between parentheses. The fact that the
estimated value is systematically somewhat higher than the actual value can be attributed
to the fact that the estimated values average over all positive numbers less than some
bound, whereas most values that are actually tested are close to the bound. This is partly
offset by the use of asymptotic smoothness probabilities, which are somewhat smaller than
the concrete probabilities (e.g., for ρ(ur) the correction term is roughly +0.423ρ(vr −
1)/ log Nr(a, b); cf. [1]).

Table 4. Actual and estimated number of (2i, 2j , 1)-semi-smooth Nr(a, b)’s for d = 6.

j i
24 25 26 27 28 29 30

24 2.4E3(2.7E3)
25 4.9E3(5.5E3) 6.3E3(7.0E3)
26 7.7E3(8.6E3) 1.2E4(1.4E4) 1.5E4(1.7E4)
27 1.1E4(1.2E4) 1.9E4(2.1E4) 2.8E4(3.1E4) 3.4E4(3.7E4)
28 1.4E4(1.6E4) 2.6E4(2.9E4) 4.3E4(4.7E4) 6.1E4(6.7E4) 7.1E4(7.7E4)
29 1.8E4(2.0E4) 3.4E4(3.7E4) 5.8E4(6.4E4) 8.9E4(9.8E4) 1.2E5(1.3E5) 1.4E5(1.5E5)
30 2.2E4(2.4E4) 4.2E4(4.7E4) 7.5E5(8.2E4) 1.2E5(1.3E5) 1.8E5(1.9E5) 2.3E5(2.5E5) 2.5E5(2.7E5)
31 2.6E4(2.9E4) 5.1E4(5.7E4) 9.3E4(1.0E5) 1.5E5(1.7E5) 2.4E5(2.6E5) 3.3E5(3.6E5) 3.8E5(4.1E5)
32 3.1E4(3.4E4) 6.1E4(6.8E4) 1.1E5(1.2E5) 1.9E5(2.1E5) 3.0E5(3.2E5) 4.3E5(4.7E5) 5.1E5(5.5E5)
33 3.6E4(4.0E4) 7.2E4(8.0E4) 1.3E5(1.5E5) 2.3E5(2.5E5) 3.7E5(4.0E5) 5.5E5(5.9E5) 6.5E5(7.1E5)
34 4.2E4(4.7E4) 8.4E4(9.3E4) 1.6E5(1.7E5) 2.7E5(3.0E5) 4.4E5(4.8E5) 6.7E5(7.2E5) 8.0E5(8.7E5)
35 4.8E4(5.4E4) 9.7E4(1.1E5) 1.8E5(2.0E5) 3.2E5(3.5E5) 5.2E5(5.6E5) 8.0E5(8.6E5) 9.7E5(1.0E6)
36 5.5E4(6.1E4) 1.1E5(1.2E5) 2.1E5(2.3E5) 3.6E5(4.0E5) 6.0E5(6.5E5) 9.3E5(1.0E6) 1.1E6(1.2E6)
37 6.3E4(7.0E4) 1.3E5(1.4E5) 2.4E5(2.6E5) 4.2E5(4.6E5) 6.9E9(7.5E5) 1.1E6(1.2E6) 1.3E6(1.4E6)
38 7.1E4(7.9E4) 1.4E5(1.6E5) 2.7E5(3.0E5) 4.7E5(5.2E5) 7.8E5(8.5E5) 1.2E6(1.3E6) 1.5E6(1.6E6)
39 8.1E4(9.0E4) 1.6E5(1.8E5) 3.0E5(3.3E5) 5.3E5(5.8E5) 8.9E5(9.7E5) 1.4E6(1.5E6) 1.7E6(1.9E6)
40 9.1E4(1.0E5) 1.8E5(2.0E5) 3.4E5(3.8E5) 6.0E5(6.6E5) 1.0E6(1.1E6) 1.6E6(1.7E6) 1.9E6(2.1E6)

11

Table 5. Actual and estimated number of (2i, 2j , 1)-semi-smooth Na(a, b)’s for d = 6.

j i
24 25 26 27 28 29 30

28 0(0.15) 0(0.41) 0(0.96) 0(1.85) 0(2.53)
29 0(0.19) 1(0.54) 1(1.36) 1(2.94) 1(5.32) 1(7.01)
30 0(0.23) 1(0.69) 1(1.80) 1(4.14) 1(8.34) 5(14.18) 10(16.87)
31 0(0.29) 1(0.86) 2(2.28) 2(5.45) 5(11.63) 17(21.94) 24(28.52)
32 1(0.34) 2(1.04) 3(2.81) 3(6.88) 8(15.21) 27(30.34) 40(41.10)
33 1(0.41) 2(1.24) 5(3.40) 5(8.45) 12(19.11) 39(39.44) 58(54.70)
34 1(0.48) 2(1.47) 5(4.05) 5(10.17) 15(23.36) 49(49.31) 70(69.41)
35 1(0.56) 2(1.72) 6(4.76) 7(12.05) 21(28.00) 60(60.01) 82(85.33)
36 1(0.65) 2(2.00) 7(5.55) 10(14.12) 27(33.05) 71(71.63) 97(102.57)
37 1(0.75) 2(2.30) 8(6.42) 11(16.39) 31(38.58) 82(84.26) 111(121.26)
38 2(0.86) 3(2.65) 9(7.38) 12(18.88) 36(44.61) 95(97.98) 132(141.52)
39 2(0.99) 3(3.03) 10(8.45) 14(21.62) 41(51.20) 106(112.90) 148(163.51)
40 2(1.13) 3(3.46) 11(9.62) 19(24.63) 47(58.41) 115(129.13) 163(187.36)

For d = 7 we found comparable results. Because of the asymptotic nature of the es-
timates, it may be expected that they become even more accurate for the larger b’s that
may occur in practice (cf. Table 1).

Table 6. Actual and estimated number of (2i, 2j , 1)-semi-smooth Na(a, b)’s for d = 6.

j i
31 32 33 34 35 36 37 38 39 40

34 0(0.30) 0(0.49) 0(0.70) 0(0.82)
35 0(0.39) 0(0.66) 0(1.03) 1(1.41) 1(1.62)
36 0(0.48) 0(0.85) 0(1.38) 1(2.05) 1(2.73) 1(3.08)
37 0(0.58) 0(1.05) 0(1.75) 2(2.72) 2(3.90) 2(5.03) 2(5.60)
38 0(0.69) 0(1.26) 0(2.15) 2(3.44) 3(5.14) 4(7.11) 5(8.95) 5(9.84)
39 1(0.81) 1(1.49) 1(2.58) 3(4.21) 4(6.46) 8(9.30) 9(12.48) 12(15.36) 13(16.72)
40 1(0.93) 1(1.74) 1(3.04) 4(5.02) 6(7.86) 12(11.62) 15(16.20) 18(21.16) 21(25.51) 23(27.52)

6 More or better polynomials?

Estimating the performance of Coppersmith’s variant. We estimated the yield
and performance of Coppersmith’s multi-polynomial version of the NFS by assuming that
for any degree d we can find a set G of any reasonable cardinality consisting of degree d
polynomials with a shared root m modulo n and with skewness ratios and correction factors
comparable to those in Appendix A. Table 7 lists some estimates for d = 6, 7 and #G = 6
that can be compared to the estimates in Table 1. The dimension of the matrix increases
7/2-fold and the yield improves by a factor 6. The fp and pp yield increase may not be that
effective, since large primes match only if they occur in the norm of the same polynomial.
The relation collection effort changes from sieving effort 3.8E24 to sieving effort 1.9E24
plus a number of semi-smoothness tests (indicated by ‘ECM effort’) involving a constant
of proportionality E measuring the relative performance compared to sieving.

12

The practical implications are as yet unclear. For current implementations E would
be too large to make the multi-polynomial version competitive, but an entirely different
picture may emerge for dedicated non-sieving hardware smoothness tests. Also, our choices
d = 6, 7 and #G = 6 were not meant to optimize anything, they are just for illustrative
purposes to facilitate comparison with the regular NFS data in Table 1. Clearly, this subject
deserves further study.

Table 7. Estimated yields for smoothness bounds from [17] with 6 polynomials.

yr = ya = 234, goal ≈ 5.3E9, S = 6E23, sieving effort 1.9E24
d s B ff fp8 pf8 pp8 ECM effort fp12 pf12 pp12 ECM effort
6 458.9 2.6E10 1.3E8 1.7E9 6.2E8 8.2E9 E5.6E20 3.0E9 1.0E9 2.5E10 E8.7E20
7 40.9 8.6E10 1.8E8 2.6E9 7.1E8 9.9E9 E3.6E21 4.6E9 1.2E9 3.0E10 E5.4E21

The effect of much better polynomials. In an actual factorization attempt consider-
ably more time would be spent to find good polynomials. So, in practice, we may expect
correction factors t that are larger than the ones given in Appendix A for polynomials
which may have smaller coefficients. An example of such a polynomial is given in Ap-
pendix B. This effect can be approximated by applying our estimates to the same f and m
values but with incorrect (too large) correction factors t. In Table 8 the results are given
if t is replaced by t3 for d = 6, 7, with parameters as in Table 1 (i.e., mostly as in [17]).
With the current state of the art of polynomial selection methods it is unlikely that such
large correction factors can be found in practice. Thus, the figures in Table 8 are probably
too optimistic. Compared to Table 1 the yield improves by a factor about 3: a relatively
small effect that does not have an impact on the observations made in Section 5 about
yr = ya = 228 and yr = ya = 234. For d = 6 and yr = ya = 234 not using partial relations
(and correction factor t3) would require B = 9.4E11 with corresponding S = 8.2E26. This
is about 1300 times more expensive than the estimate from [17]. We conclude that our
limited polynomial search did not lead to overly poor estimates.

7 Conclusion

We applied numerical methods to estimate the yield of the NFS when applied to the 1024-
bit RSA modulus RSA-1024, and tested the accuracy of our results using actual smoothness
tests. Our methods and results were taken into account in the updated version [18] of the
draft version of TWIRL [17] and are presented in Appendix B. Accurate estimates of the
difficulty of factoring 1024-bit RSA moduli require a better understanding of the large
prime matching behavior than is available today. Continued large factorization efforts may
prove helpful.

Our results suggest that effective smoothness bounds for RSA-1024 are larger than the
ones proposed in [17]. Larger smoothness bounds stress the importance of the alternative

13

Table 8. Estimated yields for smoothness bounds from [17] with correction factor t3.

d s B ff fp8 pf8 pp8 fp12 pf12 pp12 fp16 pf16 pp16

yr = ya = 228, T (yr, ya) ≈ 2.9E7, S = 6E23, sieving effort 3.6E24
6 458.9 2.6E10 2.6E2 5.8E3 2.2E3 4.9E4 1.1E4 4.0E3 1.7E5 2.0E4 6.3E3 4.7E5
7 40.9 8.6E10 6.8E2 1.5E4 4.6E3 1.0E5 2.9E4 8.0E3 3.5E5 5.1E4 1.2E4 9.5E5

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 6E23, sieving effort 3.8E24
6 458.9 2.6E10 5.7E7 7.2E8 2.8E8 3.5E9 1.3E9 4.9E8 1.1E10 2.1E9 7.3E8 2.6E10
7 40.9 8.6E10 9.9E7 1.3E9 3.9E8 5.1E9 2.4E9 6.4E8 1.5E10 3.9E9 9.4E8 3.7E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 2.4E24, sieving effort 1.5E25
6 458.9 5.1E10 1.1E8 1.4E9 5.3E8 6.9E9 2.5E9 8.9E8 2.1E10 4.1E9 1.3E9 5.1E10
7 40.9 1.7E11 1.7E8 2.3E9 6.6E8 9.1E9 4.2E9 1.1E9 2.7E10 6.8E9 1.6E9 6.5E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 9.8E24, sieving effort 6.1E25
6 458.9 1.0E11 2.0E8 2.8E9 1.0E9 1.4E10 4.9E9 1.7E9 4.1E10 8.0E9 2.6E9 1.0E11
7 40.9 3.4E11 2.8E8 4.0E9 1.1E9 1.6E10 7.3E9 1.9E9 4.8E10 1.2E10 2.8E9 1.2E11

cost measure proposed in [2] and of approaches to smoothness testing that avoid sieving
and storage of the complete factor bases. TWINKLE and TWIRL (cf. [19], [18]) both
require processing elements or storage for essentially the complete factor bases and time
for the sieving. Such designs may eventually be surpassed by, say, a carefully designed
ECM-based smoothness test as proposed in [2], because the latter allows a better trade-off
between space and time. This does not disqualify TWIRL for the sizes proposed in [18],
but indicates that in the long term the approach from [2] may be more promising.

Acknowledgment. We thank Mike Szydlo for useful discussions, and for sharing his
observations about [17]. We are grateful to Thorsten Kleinjung and Jens Franke for their
polynomial selection program and subsequent discussions.

References

1. E. Bach, R. Peralta, Asymptotic semi-smoothness probabilities, University of Wisconsin, Technical
report #1115, October 1992

2. D.J. Bernstein, Circuits for integer factorization: a proposal, manuscript, November 2001; available at
http://cr.yp.to/papers.html#nfscircuit

3. E.R. Canfield, P. Erdös, C. Pomerance, On a problem of Oppenheim concerning “Factorisatio Numero-
rum”, J. Number Theory 17 (1983) 1–28

4. S. Cavallar, B. Dodson, A.K. Lenstra, W. Lioen, P.L. Montgomery, B. Murphy, H.J.J. te Riele, et
al., Factorization of a 512-bit RSA modulus, Proceedings Eurocrypt 2000, LNCS 1807, Springer-Verlag
2000, 1–17

5. D. Coppersmith, Modifications to the number field sieve, Journal of Cryptology 6 (1993) 169–180
6. R. Crandall, C. Pomerance, Prime numbers, Springer-Verlag, 2001
7. N.G. De Bruijn, On the number of positive integers ≤ x and free of prime factors > y, II, Indag. Math.

38 (1966) 239–247
8. International Technology Roadmap for Semiconductors 2002 Update, http://public.itrs.net/

9. R. Lambert, Computational aspects of discrete logarithms, Ph.D. thesis, University of Waterloo, 1996.
10. A.K. Lenstra, H.W. Lenstra, Jr., (eds.), The development of the number field sieve, Lecture Notes in

Math. 1554, Springer-Verlag 1993
11. A.K. Lenstra, A. Shamir, Analysis and optimization of the TWINKLE factoring device, Proceedings

Eurocrypt 2000, LNCS 1807, Springer-Verlag 2000, 35–52

14

12. A.K. Lenstra, A. Shamir, J. Tomlinson, E. Tromer, Analysis of Bernstein’s factorization circuit, Pro-
ceedings Asiacrypt 2002, LNCS 2501, Springer-Verlag 2002, 1–26

13. P.L. Montgomery, B. Murphy, Improved polynomial selection for the number field sieve, extended
abstract for the conference on the mathematics of public-key cryptography, June 13-17, 1999, The
Fields institute, Toronto, Ontario, Canada

14. B. Murphy, Modelling the yield of the number field sieve polynomials, Proceedings ANTS-III, LNCS
1423, Springer-Verlag, 1998, 137–151

15. B. Murphy, Polynomial selection for the number field sieve integer factorisation algorithm, PhD thesis,
The Australian National University, July 1999

16. RSA Challenge Administrator, see
http://www.rsasecurity.com/rsalabs/challenges/factoring/index.html

17. A. Shamir, E. Tromer, Factoring large numbers with the TWIRL device (preliminary draft), February
4, 2003; available at www.wisdom.weizmann.ac.il/~tromer/papers/twirl-20030208.ps.gz

18. A. Shamir, E. Tromer, Factoring large numbers with the TWIRL device, Proceedings Crypto 2003,
LNCS 2729, Springer-Verlag 2003, 1–26

19. A. Shamir, Factoring large numbers with the TWINKLE device, Proceedings CHES’99, LNCS 1717,
Springer-Verlag, 1999

20. R.D. Silverman, Optimal parameterization of SNFS, Manuscript, 2002

A Polynomials for RSA-1024

Let the notation be as in Section 2. RSA-1024 = 135 . . . 563 is a 1024-bit number whose
309 decimal digits can be found in [16]. For d = 5, 6, 7, 8, 9 we present the value of m,
the skewness ratio s, the correction factor t, and the d-th degree polynomial f . For all d
we have that f(m) = RSA-1024 and the number of free relations behaves as estimated in
Section 2.

d = 5: m = 40166061499405767761275922505205845319620673223962394269848,
s = 87281.9, t = exp(4.71),
f(X) = 1291966090228800X5 − 640923572655549773652421X4

+22084609569698872827347541432045436154518749958885X3

+395968894120701874630226095753546547718334332711719805X2

− 96965973957066386285836042292532199420340774279358321957826X
− 4149238485198657863882627412883817567549615187136520422680871493.

d = 6: m = 6290428606355899027255723320027391715970345088070, s = 458.857, t = exp(3.10),
f(X) = 2180047385355840X6 − 3142872579455569636X5

− 1254155662796860036208992514969847001569768X4

− 12346184596682129311885354974311793670338999X3

+326853630498301587526877377811152784944999520522X2

+4609395911122979440239635705733809071478223546768X
− 11074692768758259967955017581674706364925519996590997.

d = 7: m = 103900297567818360319524643906916425458585, s = 40.9082, t = exp(3.66),
f(X) = 1033308066924956844000X7 − 160755011543490353038479X6

− 195303627236151056576676296300427751X5

− 67322997660970472962322331424620518857X4

+852886687422682194441338494667584979283X3

+122261247387346205137507554160155213223449X2

− 941042262598628457425892609296624845278218X
− 38806712095590448575304126518627120637325432.

15

d = 8: m = 1364850538695913738402818687041215458, s = 107.255, t = exp(5.13),
f(X) = 11216738509080904800X8 + 4126963962861489385859X7

− 1175791917822439782941507504635X6 + 2996639999067533888196133035298645X5

+ 208240147656019048048262524877102283X4

− 27357702926139861867857609251152887873X3

− 3424834099100207742896726960114709926535X2

− 12957538712647811491436510238283188219229X
+ 8733287829967486818441309661955398847347705.

d = 9: m = 1310717071544062886859477360545488, s = 8.51584, t = exp(3.89),
f(X) = 11829510000X9 − 323042712742X8 − 2296009166444361125150144310X7

− 17667833832765445702215975840307X6 + 104750984243461509795139799847908X5

+ 684082899341824778960200186325064X4 − 8558486132848151826178414424938636X3

+ 32301718781994667946436083991144874X2 − 42118837302218928303637260451515638X
− 1293558869408225281960437545569172565.

B The parameter settings from [18]

This appendix provides analysis of the NFS parameters used in the revised TWIRL de-
sign [18]. It follows the approach of Section 3, extended to produce estimates for the
frequency of intermediate candidates.
Polynomials. We used the NFS polynomial selection program of Jens Franke and Thorsten
Kleinjung, which contains several improvements on the strategy of [13][14][15] which was
used to obtain the polynomials of Section 3 and Appendix A. We employed several Pen-
tium 1.7GHz computers, for a total CPU time of about 20 days. However, most of this time
was spent on experimentation with search parameters; the conclusions can be reused for
other composites, so future experiments would require just a few hours. We observe that
with this polynomial selection program there is a lot of flexibility in the search parameters:
at a small cost in yield, one can obtain polynomials with much larger or much smaller
skew, trade root properties for size properties, etc. Appendix B.2 of [18] gives the best
polynomial we found for RSA-1024, which is as follows:

d = 5: m = 2626198687912508027781823689041581872398105941296246738850076103682306196740
55292506154513387298663560887146183854975198160502278243245067074820593711054723850
57002739575614001142020313480711790373206171881282736682516670443465012822281608387
169409282469138311259520392769843104985793744494821437272961970486,
s = 1991935.4, t = exp(6.33),
f(X) = 1719304894236345143401011418080X5

− 6991973488866605861074074186043634471X4

+27086030483569532894050974257851346649521314X3

+46937584052668574502886791835536552277410242359042X2

− 101070294842572111371781458850696845877706899545394501384X
− 22666915939490940578617524677045371189128909899716560398434136,

g(X) = 93877230837026306984571367477027X
− 37934895496425027513691045755639637174211483324451628365.

Here the rational-side polynomial g is non-monic; thus we redefine Nr(a, b) = |b · g(a/b)|.
Table 9 estimates the yield of this polynomial using the parameter sets from [17] that were
considered in Section 5. A comparison with Table 1 shows that this polynomial has much
higher yield; indeed, both its size properties and its root properties are better (cf. [15]).
Throughout this appendix we shall use this polynomial, except where noted otherwise.

16

Table 9. Estimated yields with [18]’s RSA-1024 polynomial and [17]’s parameters.

d B ff fp8 pf8 pp8 fp12 pf12 pp12 fp16 pf16 pp16

yr = ya = 228, T (yr, ya) ≈ 2.9E7, S = 6E23, sieving effort 3.6E24
5 3.88E8 9.9E2 2.0E4 9.7E3 2.0E5 3.8E4 1.8E4 6.8E5 6.6E4 2.8E4 1.9E6

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 6E23, sieving effort 3.8E24
5 3.88E8 1.8E8 2.1E9 1.0E9 1.2E10 3.7E9 1.7E9 3.5E10 5.9E9 2.6E9 8.6E10

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 2.4E24, sieving effort 1.5E25
5 3.88E8 3.8E8 4.5E9 2.2E9 2.5E10 8.1E9 3.7E9 7.7E10 1.3E10 5.6E9 1.9E11

yr = ya = 234, T (yr, ya) ≈ 1.5E9, S = 9.8E24, sieving effort 6.1E25
5 3.88E8 8.2E8 9.9E9 4.7E9 5.7E10 1.8E10 8.0E9 1.7E11 2.9E10 1.2E10 4.2E11

Note that Section 5 gives strong indication that d = 5 is suboptimal, but the program
we used is limited to d = 5. One can expect that an adaptation of the improved algorithm
to d = 6 or d = 7 will yield even better results. In this light, the parameters of [18] merely
imply an upper bound on cost; further improvement is likely to be possible.

Yield. To increase yield, [18] uses higher smoothness bounds than [17]: yr = 3.5E9,
ya = 2.6E10, zr = 4.0E11, za = 6.0E11. This has a dramatic effect, suggesting that the
choice from [17] indeed resides on the steep region of the run-time curve (cf. Section 4).
Also, the number of allowed large primes is increased to `r = `a = 2. Conversely, the
sieving region size is reduced to S = 3.0E23. Table 10 gives the corresponding estimates
of yield, as well as the number of intermediate candidates (see below). Note that [18] uses
different notation: there R, H, BR and BA stand for our 2A, B, yr and ya, respectively.

Table 10. RSA-1024 parameters and estimates for [18].

yr = 3.5E9, ya = 2.6E10, zr = 4.0E11, za = 6.0E11, T (yr, ya) ≈ 1.3E9, S = 3.0E23 d = 5, s = 1991935.4, B = 2.7E8

yield of (La, Lr)-partial relations
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
5.6E7 3.0E8 6.7E8 3.1E8 1.7E9 3.8E9 6.6E8 3.5E9 7.9E9 1.9E10

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
1.1E20 5.0E12 6.2E10 4.9E10 3.4E10 2.7E10 5.2E63 3.1E103

Ultimately we are interested in the number of cycles among the relations found. Alas,
the dependence of the number of cycles on the number (and type) of relations is poorly
understood (cf. Section 2). As noted, π(zr) + π(za) relations always suffice, and in past
experiments the number of relations collected was always somewhat lower. Here, the esti-
mated number of relations is 0.49·(π(zr)+π(za)). Using `a, `r > 2, as in the aforementioned
experiments, would further increase the relation yield. Note that there are T (yr, ya)/23.2
ff’s, which seems very reasonable.

It is worth observing that while the most ‘fertile’ area of the sieving region is close
to the origin, the relation yield of the sieving region is not yet ‘dried out’: for example,
doubling S to 6E23 increases the number of relations significantly, to 2.8E10. The practical
significance is that if someone builds a TWIRL device with hard-wired smoothness bounds

17

and (for whatever reason) does not find enough relations using the above parameters,
recovery may be possible simply by increasing S, i.e., by sieving for a longer time using
the same hardware.
Candidates. For integer k, let µ(y, k) = k/η(y, k) denote the non-y-smooth cofactor of
k. Sieving per se (i.e., the task handled by TWIRL) merely identifies the pairs (a, b) for
which µ(yr, Nr(a, b)) ≤ zr

`r and µ(ya, Na(a, b)) ≤ za
`a . For `a = `r = 2, not all such pairs

form relations. Thus subsequent filtering is applied, and it should be verified that its cost is
manageable. Also, in the “cascaded sieves” variant employed by the revised TWIRL design,
the algebraic-side sieve handles only the pairs (a, b) that passed the rational sieve, and it
should be verified that the latter are sufficiently infrequent (cf. [18, A.6]; this is crucial
for achieving the high parallelism factor of 32768 inspected pairs per clock cycle). Thus,
we estimate the number of candidates at the relevant points in the algorithm by writing
down the appropriate probability, integrating it over the sieving region and multiplying the
result by the correction factor 6/π2 (cf. Section 3).

The types of candidates are listed below; the results of the integrations are given in
Table 10. In the following, let k1, k2 (k1 ≥ k2) denote the two largest prime factors of
Nr(a, b), and let κ1, κ2 (κ1 ≥ κ2) denote the two largest prime factors of Na(a, b).

Pass rational sieve (PRS): The pairs that pass the rational sieve are those that fulfill
µ(yr, Nr(a, b)) ≤ zr

2. Noting that zr
2 < za

3, we get that the above is equivalent to
the following: (k1, k2 < yr) ∨ (yr < k1 ≤ zr

2 ∧ k2 < yr) ∨ (yr < k1, k2 ∧ k1k2 ≤
zr

2). Accordingly, the probability that (a, b) fulfills this can be estimated by ρ(ur) +
σ1(ur, vr/2) + σ̄2(ur, vr/2, vr/2).

Pass both sieves (PBS): the probability that a pair (a, b) passes both sieves is obtained
by multiplying the above by the analogous expression for the algebraic side: (ρ(ur) +
σ1(ur, vr/2) + σ̄2(ur, vr/2, vr/2)) · (ρ(ua) + σ1(ua, va/2) + σ̄2(ua, va/2, va/2)).

Pass primality testing (PPT): For pairs that passed both sieves, the smooth factors
are divided out to obtain µ(yr, Nr(a, b)) and µ(ya, Na(a, b)) (note that most prime
factors smaller than yr or ya are reported by TWIRL). If µ(yr, Nr(a, b)) is prime and
> zr, or µ(yr, Na(a, b)) is prime and > za, then the pair is discarded. A pair (a, b) reaches
and survives this test iff (k1, k2 < yr)∨ (yr < k1 ≤ zr ∧ k2 < yr)∨ (yr < k1, k2 ∧ k1k2 ≤
zr

2) and analogously for the algebraic side. The probability that this holds is estimated
by (ρ(ur) + σ1(ur, vr) + σ̄2(ur, vr/2, vr/2)) · (ρ(ua) + σ1(ua, va) + σ̄2(ua, va/2, va/2)).

Rational cofactor factorizations (RCF): For pairs that survived primality testing,
if the cofactor µ(yr, Nr(a, b)) is composite then it needs to be factored and tested
for zr-smoothness. The size of the cofactor to be factored is bounded by zr

2. This
step is reached and the factorization is performed if (yr < k1, k2 ∧ k1k2 ≤ zr

2) and
(κ1, κ2 < ya)∨ (ya < κ1 ≤ za ∧ κ2 < ya)∨ (ya < κ1, κ2 ∧ κ1κ2 ≤ za

2). The probability
that this holds is estimated by σ̄2(ur, vr/2, vr/2)·(ρ(ua)+σ1(ua, va)+σ̄2(ua, va/2, va/2)).

Rational semi-smooth (RSS): A pair reaches the rational cofactor factorization step
and passes (or skips) it if indeed Nr(a, b) is (yr, zr, `r)-smooth and (a, b) passed the
algebraic sieve. For this to happen, the condition on the rational side is (k1, k2 <

18

yr) ∨ (yr < k1 ≤ zr ∧ k2 < yr) ∨ (yr < k1, k2 ≤ zr), and the condition on the algebraic
side is as in the previous step. Thus the probability is estimated by (ρ(ur)+σ1(ur, vr)+
σ2(ur, vr)) · (ρ(ua) + σ1(ua, va) + σ̄2(ua, va/2, va/2)).

Algebraic cofactor factorizations (ACF): For pairs that passed all of the above, if
the cofactor µ(ya, Na(a, b)) is composite then it needs to be factored and tested for za-
smoothness. This step is reached and the factorization is performed iff (ya < κ1, κ2 ∧
κ1κ2 ≤ za

2) and also the rational-side condition of the previous step holds. The corre-
sponding probability is estimated by (ρ(ur)+σ1(ur, vr)+σ2(ur, vr)) · σ̄2(ua, va/2, va/2).

Relations (Total): A pair that passes all of the above forms a relation; the probability
of this occurring is estimated by (ρ(ur) + σ1(ur, vr) + σ2(ur, vr)) · (ρ(ua) + σ1(ua, va) +
σ2(ua, va)).

The above describes one plausible ordering of the filtering steps; other variations are pos-
sible (e.g., performing the algebraic cofactor factorization before the rational cofactor fac-
torization, or even before the rational primality testing).
Cost of cofactor factorization. As indicated above, we expect to perform about
#RCF + #ACF = 7.7E10 factorizations of integers whose size is at most max(zr, za)2 =
3.6E23. Such factorizations require under 30ms on average using a modern CPU. Thus, the
cofactor factorization can be completed in 1 year (i.e., in parallel to the operation of the
TWIRL device) using about 74 bare-bones PCs. This cost is negligible compared to the
cost of TWIRL, and in large volumes custom hardware would reduce it further.
Optimality and effect of technological progress. The revised TWIRL parameters
were essentially determined by practical concerns. Most crucially, they employ the largest
value of ya for which the algebraic-side TWIRL device still fits on single silicon wafer.
Theoretically, this ya is suboptimal; it would be beneficial to increase it. Such increase
will become possible when progress in chip manufacturing technology allows fitting larger
circuits into a single wafer, either by increasing the wafer size or by decreasing the feature
size. Thus, for the foreseeable future we may expect the cost of TWIRL to decrease more
than linearly as a function of the relevant technological parameters, i.e., faster than naively
implied by Moore’s law.

For a concrete example, one may consider an implementation of TWIRL using 90nm
process technology, which is expected to be widely deployed during 2004. Compared to
the 130nm process technology considered in [18], we may assume a reduction in area by a
factor of 2 and an increase in speed by a factor of 2, for a total cost reduction by a factor
of 4 (cf. [8]). Table 11 presents two appropriate NFS parameter sets. The first set is about
as plausible as the one in Table 10; the cost of such a TWIRL implementation is roughly
1.1M US$×year (predicted analogously to [18]) — considerably lower than 2.5M US$×year
one may expect.

The second parameter set in Table 11 shows the effect of improved technology on yield,
when keeping the cost constant at 10M US$×year (i.e., the same as in [18]). Here, the
estimated number of relations is 1.95 · (π(zr) + π(za)), which is nearly twice the trivially
sufficient number. Also, there are T (yr, ya)/3.6 ff’s, which is much more than in any

19

Table 11. RSA-1024 parameter sets for TWIRL with 90nm process technology.

yr = 1.2E10, ya = 5.5E10, zr = 8.0E11, za = 1.0E12, T (yr, ya) ≈ 2.9E9, S = 8.0E22 d = 5, s = 1991935.4,
B = 1.4E8

yield of (La, Lr)-partial relations
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
2.2E8 9.8E8 1.8E9 9.2E8 4.0E9 7.5E9 1.4E9 6.1E9 1.1E10 3.4E10

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
6.3E19 1.1E13 9.8E10 7.2E10 5.9E10 4.5E10 2.7E63 1.1E102

yr = 1.2E10, ya = 5.5E10, zr = 9.0E11, za = 1.2E12, T (yr, ya) ≈ 2.9E9, S = 7.3E23 d = 5, s = 1991935.4,
B = 4.3E8

yield of (La, Lr)-partial relations
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
7.9E8 3.9E9 7.9E9 3.4E9 1.7E10 3.4E10 5.4E9 2.7E10 5.5E10 1.5E11

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
5.2E20 4.6E13 4.6E11 3.4E11 2.7E11 2.1E11 8.1E63 2.8E104

recent factoring experiment. Thus, we may conclude that using 90nm technology, a budget
of 10M US$×year per factorization (in large quantities) leaves an ample safety margin —
arguably, more than enough to account for estimation errors, relations that are lost due to
approximations in the sieving process, and sub-optimal cycles-finding algorithms.
Parameter settings for 768-bit composites. For RSA-768, [18] uses the following
polynomial, obtained by the same method as above:

d = 5: m = 2980427354552256959621694668022969720925142335553136586170340190386865951921
42458430585097389943648179813292845509402284357573098406890616147678906706078002760
825484610584689826591183386558993533887364961255454143572139671622998845,
s = 1905116.1, t = exp(3.78),
f(X) = 44572350495893220X5

+1421806894351742986806319X4

− 1319092270736482290377229028413X3

− 4549121160536728229635596952173101064X2

+6062531470679201843447146909871507448641523X
− 1814356642608474735992878928235210850251713945286,

g(X) = 669580586761796376057918067X − 7730028528962337116069068686542066657037329.

The parameter choice and yield estimates using this polynomial are given in Table 12.

Table 12. RSA-768 parameters and estimates for [18].

yr = 1.0E8, ya = 1.0E9, zr = 2.0E10, za = 3.0E10, T (yr, ya) ≈ 5.7E7, S = 3.0E20 d = 5, s = 1905116.1, B = 8.9E6

yield of (La, Lr)-partial relations
(0, 0) (0, 1) (0, 2) (1, 0) (1, 1) (1, 2) (2, 0) (2, 1) (2, 2) Total
3.5E6 2.2E7 5.5E7 2.5E7 1.5E8 3.9E8 6.2E7 3.8E8 9.7E8 2.1E9

#PRS #PBS #PPT #RCF #RSS #ACF avg(Nr(a, b)) avg(Na(a, b))
5.3E17 3.4E11 7.5E9 6.3E9 3.9E9 3.2E9 3.4E49 7.1E82

20

	Abstract
	1 Introduction
	2 Number field sieve background
	3 Number field sieve analysis and estimates
	4 Traditional extrapolation
	5 Results
	6 More or better polynomials?
	7 Conclusion
	References
	A Polynomials for RSA-1024
	B The parameter settings from STF

