
Drive-by Key-Extraction Cache Attacks from Portable Code

Daniel Genkin
University of Pennsylvania and

University of Maryland
danielg3@cis.upenn.edu

Lev Pachmanov
Tel Aviv University
levp@tau.ac.il

Eran Tromer
Tel Aviv University and
Columbia University
tromer@tau.ac.il

Yuval Yarom
The University of Adelaide and

Data61
yval@cs.adelaide.edu.au

January 31, 2018
(Initial public disclosure: August 22, 2017)

Abstract
We show how malicious web content can extract cryptographic secret keys from the user’s

computer. The attack uses portable scripting languages supported by modern browsers to in-
duce contention for CPU cache resources, and thereby gleans information about the memory
accesses of other programs running on the user’s computer. We show how this side-channel
attack can be realized in both WebAssembly and PNaCl; how to attain very fine-grained mea-
surements; and how to use these to extract ElGamal, ECDH and RSA decryption keys from
various cryptographic libraries.

The attack does not rely on bugs in the browser’s nominal sandboxing mechanisms, or on
fooling users. It applies even to locked-down platforms with strong confinement mechanisms
and browser-only functionality, such as Chromebook devices.

Moreover, on browser-based platforms the attacked software too may be written in portable
JavaScript; and we show that in this case even implementations of supposedly-secure constant-
time algorithms, such as Curve25519’s, are vulnerable to our attack.

1 Introduction

Since their introduction over a decade ago [68, 6, 59, 58], microarchitectural side channel attacks
have become a serious security concern. Contrary to physical side channels, which require physical
proximity for exploitation, microarchitectural attacks only require the attacker to have the ability
to execute code on the target machine. Even without any special privileges, such code can contend
with concurrently-executing target code for the use of low-level microarchitectural resources; and by
measuring timing variability induced by this contention, an attacker can glean information from the
target code. Many such resources have been analyzed and exploited, including branch prediction
units and arithmetic units, but contention for cache resources has been proven to be particularly
devastating. Cache attacks allow fine grained monitoring of the target’s memory access patterns,
and have been demonstrated to successfully extract secret information such as secret cryptographic
keys [6, 59, 58], website fingerprinting [57], and keyboard sniffing [31]; see Ge et al. [22] for a survey.

Less is known, however, about realistic attack vectors by which cache attacks (and other mi-
croarchitectural attacks) be deployed in practice. Most research has assumed that the attacker has

1

mailto:danielg3@cis.upenn.edu
mailto:levp@tau.ac.il
mailto:tromer@tau.ac.il
mailto:yval@cs.adelaide.edu.au

the ability to run native code on the target machine. This makes sense for scenarios such as attacks
across virtual machines [60, 34, 72], especially in public compute clouds, or attacks between different
users sharing the same PC. But in the typical end-user setting, hardware devices are not shared
by multiple mistrusting users. Moreover, native code, run locally by a user, usually executes in a
security context that allows access to that user’s data, making security-savvy users reluctant to run
such untrusted code.1

Recent works [57, 29] made progress towards effective cache attacks on end-user devices, us-
ing JavaScript code running in the target’s browser and without requiring native code execution.
However, since JavaScript is far-removed from the native platform, the information obtained by a
JavaScript attacker is severely degraded. Indeed compared to attacks which are based on native-
code execution, those works were only able to detected coarse-scale events (distinguishing between
websites loaded in another browser tab or ASLR de-randomization), leaving open the feasibility of
monitoring and exploiting fine-grained events.

Thus, in this work we focus on the following question: (a) Are there practical deploy-
ment vectors for microarchitectural attacks on single-user devices, that are capable of
extracting fine-grained information (such as cryptographic keys), and do not require
privileged user operations (such as software installation or native code execution)? In
particular, do such attacks apply to locked-down platforms, such as Chromebook devices running
Chrome OS, where functionality is restricted to sandboxed web browsing?

Even when microarchitectural information leakage occurs, its exploitability depends on the im-
plementation of the attacked software. Modern cryptographic software is often designed with side
channels in mind, employing mitigation techniques that require the programmer to carefully craft
low-level details of the code execution — first and foremost, to make it constant-time. This picture
changes when cryptographic software deployed as portable high-level code (as is desired for porta-
bility, and indeed necessary in the aforementioned locked-down platforms), where the final code
and memory layout are left to the whims of a just-in-time compiler. On the one hand, defensively
exercising the requisite control becomes more difficult. On the other hand, the attacker too has
to cope with increased variability and uncertainty, so it is not obvious that leakage (if any) is at
all exploitable. We thus ask: (b) Do portable program representations compromise the
side-channel resilience of (supposedly) constant-time algorithms?

1.1 Our Results

We answer both questions in the affirmative. (a) We present cache side-channel attacks which
can be executed from a web page loaded in a sandboxed browser environment, and are capable of
extracting keys from ElGamal and RSA implementations. (b) We demonstrate key extraction even
from an implementation of Curve25519 Elliptic Curve Diffie-Hellman, which was explicitly designed
to minimize side channel leakage, but becomes susceptible due to use of high-level JavaScript.

Our attacks do not require installing any software on the target machine, and do not rely
on vulnerabilities in the browser’s nominal isolation mechanisms (e.g., they work even if Same
Origin Policy and Strict Site Isolation are perfectly enforced). Rather, they gleans information
from outside the browser’s sandbox purely by inducing and measuring timing variability related to
memory accesses outside its sandbox. All the target user has to do in order to trigger the attack is
to have its browser execute malicious code embedded in a comprised website.

1One exception is mobile platforms such as Android, where it was shown that a malicious app can use cache
attacks to spy on touch screen activity and even cryptographic operations, despite the highly constrained security
context — but still, only after the user has actively installed the malicious app [45].

2

1 2 3

Figure 1: Attack scenario screenshot. The targeted user opens an online streaming web-site in
Tab 2. Clicking within this tab (fe.g., to start a movie) causes a pop-under to open up as Tab
3. The malicious advertisement in Tab 3 then monitors the cache activity on the target machine.
When an encrypted email is received and decrypted using Google’s encrypted email extension (in
Tab 1), the malicious advertisement in Tab 3 learns information about the user’s secret key.

Drive-by Attack. The main attack scenario we investigate is a “drive-by” web attack, where
the attacker’s code is embedded in a web page and is automatically activated when this web page
is rendered by the user’s browser. This can happen when the user explicitly visits the attacker’s
web page (e.g., enticed by phishing), or a web page into which the attacker can inject HTML code
(e.g., by a cross-site scripting attack). Most deviously, the attack may be automatically triggered
when the user visits unrelated third-party web sites, if those sites display advertisements from web
advertising services that support non-static ads (whether as JavaScript, pop-under or IFRAME
ads).

Concretely, we have embedded the attack code in an advertisement, which we submitted to
a commercial web advertisement service. Whenever a user navigated to a web site that uses that
service, and our advertisement was selected for display, the attack code was triggered (see Figure 1).
This attack code measured the memory access patterns on the user’s machine, and sent it to our
server for analysis. When the targeted cryptographic software happens to be repeatedly invoked
using some secret key during the time when the advertisement was shown in some browser tab (even
in the background), our code extracted the secret key in as little as 3 minutes. This works even
across processes and browsers (e.g., JavaScript ad in Firefox attacking cryptographic code running
in Chrome).
Attacking Curve25519. One of our attacks targets a JavaScript implementation of Curve25519
Elliptic Curve Diffie-Hellman (ECDH) [7]. The implementation attempts to mitigate side-channel
leakage by using a nearly constant-time Montgomery-ladder scalar-by-point multiplication, but the
in-browser compilation from JavaScript introduces key-dependent control flow, which we can detect
and exploit by a portable code-cache side-channel attack.

3

Measurement Technique. We implement the cache measurement procedure using portable code
running within the browser. To achieve the measurement resolution required to mount an attack on
ElGamal and ECDH, we used PNaCl [26] or WebAssembly [69]. These are architecture-independent
code representations which browsers execute in a sandbox — analogously to JavaScript, but lower-
level and more efficient. PNaCl is supported by desktop versions of the Chrome and Chromium
browsers starting from version 31 (Nov. 2013), and automatically executed by the browser without
user involvement. WebAssembly is the standardization of the idea behind PNaCl. It is supported
by all major browsers including Google’s Chrome and Mozilla’s Firefox and enabled by default since
March 2017.

Like JavaScript, PNaCl and WebAssembly are strongly sandboxed, subject to Same Origin
Policy, and isolated from host resources such as the filesystem and other processes. However,
the portable code (inevitably) uses the underlying microarchitectural resources of the CPU it is
executing on, and in particular the data cache. Thus, it can induce the memory-contention effects
required for cache side-channel attacks. Moreover, the portable architectures support arrays, which
are naturally implemented as contiguous ranges of virtual memory on the host platform; this offers
the attacker’s portable code some control over the addresses of the memory accesses induced by its
execution, and thus some specificity in the part of the cache where contention is induced. Using these
phenomena, and additional techniques, the portable code can execute a variant of the Prime+Probe
attack of [58], to detect which memory addresses are accessed by other processes running on the
same CPU.

Compared to the two prior works on portable-code cache attacks (see Section 1.3), our use of a
portable but low-level program representation, as opposed to JavaScript in [57], reduces measure-
ment overheads and provides better timing sources on modern browsers; and by using a precise
eviction set construction algorithm (following the approach of [47] and adapted to the portable set-
ting) we moreover reduce the eviction sets’ size by a factor of 64 compared to [29]. Taken together,
these let us attain the requisite temporal resolution for implementing several cryptanalytic attacks.
Challenges. Launching cache attacks involves numerous challenges, such as recovering the map-
ping between the memory and the cache, and identifying cache sets corresponding to security-critical
accesses (see [47] for a detailed list). Mounting the attack from portable code introduces several
additional challenges:
1. Emulated environment: Both PNaCl and WebAssembly modules run inside an emulated 32-bit

environment, preventing access to useful host platform services such as huge pages, mlock() and
posix_memalign().

2. Slower memory access: memory accesses using (current implementations of) portable architec-
tures incur an overhead compared to native execution, reducing the measurements’ temporal
resolution.

3. Inability to flush CPU pipeline: PNaCl and WebAssembly do not support instructions for flushing
the CPU pipeline or avoiding out-of-order execution, as needed by many native-code attacks.

4. Inability to flush the cache: PNaCl and WebAssembl do not include instructions for flushing
memory blocks from the CPU cache, as used in FLUSH+RELOAD [72].

5. Inaccurate time source: Architecture independence forces PNaCl applications to only use generic
interfaces or indirect measurements to measure time. WebAssembly modules can interact with
external APIs only using JavaScript, hence they are limited to the time sources available to
JavaScript code.

Moreover, the cryptographic software we attack is implemented in JavaScript, which introduces yet
more challenges:

4

6. Unpredictable memory layout: The target’s JavaScript code is compiled anew at every page load,
and moreover, its memory allocations are done in an unpredictable way at every invocation.

7. No shared memory: Many prior cache attacks relied on the attacker code and target code having
some shared memory (e.g., AES S-tables or code), due to shared libraries or memory deduplica-
tion, which are not unavailable here.

Our attack approach addresses or circumnavigates all of these.

1.2 Targeted Hardware and Software

Chrome OS. Chrome OS is an operating system designed by Google, based on the Linux kernel
the Chrome web browser. Its primary functionality is as a thin web client. Concretely, Chrome OS is
a locked-down operating system where users are essentially constrained to browser functionality, and
most of the platform administrative capabilities (i.e. as available via the Unix “root” account or the
Windows “Administrator”) are not available to users.2 Google claims that “Chromebook is the safest
computer one can buy” [21], boasting that Chrome OS is the “first operating system designed with
[malware] threat in mind” [25]. Security measures including verified boot, a stripped-down operating
system, enforced auto-updates, and numerous process-isolation and hardening mechanisms. The
advertised security features, together with the low price-tag of Chromebooks has seen an increase
in the popularity of the platform, for example in K-12 education [65].

Hence, we observe that Chromebooks (running Google’s Chrome OS) present a particularly hard
target for microarchitectural side channel attacks.
Chromebook. We demonstrate the attacks on a Chromebook device (Samsung XE550C22) which
is tailored for running Chrome OS 58.0.3029.112 , including all of its security measures. It is
equipped with an Intel Celeron 867 Sandy-bridge 1.3GHz CPU featuring a 2048KB L3 cache divided
into 4096 sets and 8 ways.
HP Laptop. The attacks are mostly independent of the operating system, and of the precise CPU
model (within a CPU family). To demonstrate this, we also execute the attacks on an HP EliteBook
8760w laptop, running Kubuntu 14.04 with Linux kernel 3.19.0-80, with an Intel i7-2820QM Sandy
Bridge 2.3GHz CPU featuring a 8192KB L3 cache divided into 8192 sets and 16 ways.
Elliptic. Elliptic [35] is an open-source JavaScript cryptographic library, providing efficient imple-
mentations of elliptic-curve cryptographic primitives such as Elliptic Curve Diffie-Hellman (ECDH)
and Elliptic Curve Digital Signatures (ECDSA). Elliptic is widely used (over 1M downloads per
week according to NPM package manager [54]), and underlies more than a hundred dependent
projects including crypto-currency wallets [36, 48, 53, 77]. Elliptic supports state-of-the-art elliptic
curve constructions such as Curve25519 [7], which was designed to offer increased resistance to
side channel attacks. In particular, Elliptic uses a Montgomery Ladder based implementation of
the scalar-by-point multiplication operation, which performs the same arithmetic operations irre-
spective of the values of the secret key bits. While our techniques do achieve key extraction, we
empirically verified that Elliptic’s implementation does not leak the secret key via timing variations.
Instead, our techniques recover the key using memory access leakage induced by Elliptic’s JavaScript
implementation of the Montgomery ladder.
Google’s End-to-End Library. End-to-End [28] is an open-source cryptographic library devel-
oped by Google. Designed for facilitating End-to-End encryption in web applications, it is written
entirely in JavaScript with the aim of being used by websites and incorportaed into browser plu-
gins. End-to-End supports both public-key operations, such as digital signatures and asymmetric

2This can be overriden by switching the system into developer mode, which entails deleting all user accounts and
their files, voiding the warranty of the device, and on some devices, activating a hidden hardware switch.

5

encryption, and secret-key operations, such as symmetric encryption and hashing. To facilitate
email encryption and signing directly inside the user’s browser, End-to-End supports the OpenPGP
standard, as documented in RFC 4880 [12]. End-to-End is the cryptographic engine for many
browser plugins such as E2EMail [17], Google encrypted email extension [28], and Yahoo’s fork of
EndToEnd [71].
OpenPGP.js. OpenPGP.js [11] is a popular open-source library for browser-based cryptographic
operations, and in particular encrypted email. Similarly to End-to-End, OpenPGP.js implements
the OpenPGP standard and is widely deployed in web applications and browser plug-ins that re-
quire cryptographic functionality. These include password managers [5], secure transport layer
provider [16], encrypted mail clients [76, 20] and other applications. To create seamless user ex-
perience, some of those plug-ins (e.g., ProtonMail [76] and CryptUp [20]) automatically decrypt
received content upon opening the received email.
Ethical Considerations. When using the commercial advertisement service for demonstrating
attack deployment, we took care to avoid impacting unrelated users who were shown our ad. The
attack page first checks for an existence of a specific browser cookie (which was manually set only
in our intended targets), and exits immediately if the cookie is amiss. On the server side, we indeed
did not observe any unexpected receipt of measurement data.

1.3 Related Work

Cache Attacks. Cache attacks were introduced over a decade ago [68, 6, 59, 58]. Initial attacks
exploited the L1 and L2 data caches [58, 67], however later attacks targeted other caches, such as
the L1 instruction cache [1, 4] the shared last level cache [47, 33] and specialized caches including
the branch prediction unit [2, 3, 19] and the return stack buffer [10]. Recent works [63, 29] were
able to extract information without using huge pages. See [22] for a survey.
Cache Attacks from Portable Code. The first published browser-based cache attack was shown
by [57]. Using JavaScript, they detected coarse cache access patterns and used them to classify web
sites rendered in other tabs. They did not demonstrate attacks that use fine-grain cache monitoring
(such as key extraction attacks). Moreover, following [57] web browsers nowadays provide reduced
timer precision, making the techniques of [57] inapplicable.

Recently, [29] achieved higher cache-line accuracy, and used it to derandomize the target’s ASLR
from within it’s browser. They relied on constructing very large eviction sets, resulting in low
temporal resolution of the memory access detection, well below what is required for key extraction
attacks (see Section 3).

The Rowhammer attack [40] was also implemented in JavaScript by Gruss et al. [30].
Speculative Execution Attacks. Going beyond cryptographic keys, microarchitectural attacks
can be also leveraged to read memory contents across security domains. The Meltdown [46] and
Spectre [41] attacks exploit the CPU’s speculative execution to let a process glean memory content
to which it does not have access permissions, by accessing that memory directly (Meltdown) or by
inducing the valid owner of that memory to access it within a mispredicted branch (Spectre). In
both attacks, the read is invalid and the nominal architectural state will eventually be rewound,
but the (carefully crafted) side-effects on the cache can be observed by the attacker.

These attacks rely on cache covert channels (i.e., information transmission that is intention-
ally crafted to make it easy to discern by cache timing observation), for which very coarse cache
measurements suffice, as opposed to our side-channel setting, which necessitates fine-grained cache
measurements. Meltdown further requires the attacker to access a protected memory that is mapped

6

into its own address space; this is inapplicable to portable code (barring compiler bugs), so Melt-
down is unexploitable from within the target’s browser. Web-based Spectre does not let one user
process attack another, and thus does not work across browsers or (on modern browsers) across
tabs.
Side-Channel Attacks on ElGamal Encryption. Several works show side-channel attacks on
implementations of ElGamal encryption. Zhang et al. [78] show a cross-VM attack on ElGamal that
exploits the L1 data cache and the hypervisor’s scheduler. Our attack is loosely modeled after Liu
et al. [47], who implemented a Prime+Probe attack [58] targeting an implementation of ElGamal.
Recently, [23] show a physical (electromagnetic) side-channel attack on an ElGamal implementation
running on PCs.

2 Preliminaries

2.1 Portable Code Execution

A major current trend is the migration from native desktop applications to web applications running
inside a browser, for reasons including platform compatibility, ease of deployment and security, fa-
cilitiated by increasing performance of browser platforms. JavaScript is the oldest and most common
portable programing language that can be executed inside the web browser. Since it’s introduction
in 1995, a lot of effort has been made in order to increase the performances, including complicated
optimizations and Just-In-Time (JIT) compilation heuristics. Unfortunately, for intensive compu-
tational tasks, even advanced JIT engines can not compete with native applications. NaCl, PNaCl
and WebAssembly are alternative, more efficient solutions.
PNaCl. Modern Chrome browser support Google Native Client (NaCl) [75]. This is a sandboxing
technology which enables secure execution of native code as part of untrusted web applications,
which can run compiled code at near-native speeds and includes support for vectors, parallel pro-
cessing and fine-grained control over the memory usage. While NaCl deploys architecture-dendent
(through OS-independent) code, the subsequent Portable Native Client (PNaCl) [26] achieves full
cross-platform portability by splitting the compilation process into two parts. First, the developer
compiles the source code into an intermediate representation, called a bitcode executable. Next, as
part of loading the code to the host browser, the bitcode executable is automatically translated to
the host-specific machine language. PNaCl is enabled by default on Chrome browsers and does not
require user interaction.
WebAssembly. WebAssembly [69] is the standardized successor of PNaCl, standardized by the
World Wide Web Consortium (W3C), and supported by all major web browsers on all operating
systems, including mobile platforms. Similarly to PNaCl, WebAssembly defines a binary format
which can be executed in a sandboxed environment inside the browser. Code is represented in
simple stack machine with, a limited set of operations (mostly arithmetical and memory accesses).
This is translated, by the browser, to the host’s native instruction set, allowing it to be executed in
near-native speed.

The simple abstract machine severely limits the environment observable to WebAssembly code.
As oppose to PNaCl, the limited instruction set of WebAssembly does not directly expose any of the
system’s APIs; functionality beyond simple computation is exposed only via call-outs to interpreted
JavaScript code, which are relatively slow.
Web Workers and JavaScript’s SharedArrayBuffer. Web Workers is an API designed to allow
JavaScript code to run heavy computational tasks in a separate context, without interfering with
the user interface, using multiple threads. The communication between the main JavaScript context

7

and Web Workers threads can be done using an asynchronous messaging system, or (for improved
cross-thread latency and bandwidth) via the SharedArrayBuffer API which can allocate a shared
memory buffer and coordinate access to it using synchronization primitives.

2.2 Memory Hierarchy of Intel CPUs

Cache Structure. The execution speed of modern CPUs is higher than the speed of typical
memory hardware. To bridge this speed gap, CPUs are equipped with a hierarchy of caches, with
each layer in the hierarchy being larger and slower then the previous layer. Intel CPUs typically
have two or three levels of caches, ranging from very small (typically 64 KB) and fast level-1 (L1)
caches, located close to each core, to a relatively large (a few megabytes) and slow last level cache
(LLC), which is shared among all of the cores.
Cache Lookup Policy. When the CPU attempts to access the memory, the cache hierarchy is
first consulted to check if a copy of the required data is cached, thereby avoiding a slow memory
access. The CPU first tries to find the required memory address inside each successive cache layer.
In a cache hit, when the requested address is found in the cache, the cached content is made available
to the CPU without the need to perform a memory access. Otherwise, in a cache miss the main
memory is accessed, bringing the contents of the requested memory address to all the cache layers,
while evicting older entries from the caches.
Cache Sets. Modern caches are typically set associative. They consist of multiple sets each
containing multiple ways. Every memory block (typically 64 bytes) is mapped to a specific set
based on its physical address. A memory block can only be stored in a way of the set it maps to.
Consequently, whenever a memory block is entered into the cache it can only evict blocks from the
same cache set.
Cache Slices. For L1 and L2 caches, the mapping from addresses to cache sets is based on a
consecutive range of (physical) address bits. The Intel LLC, however, has a more complex design.
The cache is divided into multiple slices, each operating as an independent cache. While Intel
does not disclose the mapping of memory blocks to cache sets, past works have reverse-engineered
it [73, 32, 49, 37]. These show that the processor uses a hash function that converts the physical
address to a slice number, and uses a range of consecutive bits of the address (bits 6–16 before
Skylake and 6–15 in Skylake) to determine the cache set within the slice.
Cache Attacks. When multiple processes access memory block that map to the sames cache sets,
memory block of one process might be evicted from the cache to make room for the memory of
the other process. As a result of such evictions, future memory accesses of the first process will be
considerably slower. Thus, measuring the time it takes to perform memory access operations may
leak information about the memory access patterns of other processes. Starting with [59, 58], this
observation has led to numerous side and covert channel attacks utilizing this cache channel. We
now proceed to describe the Prime+Probe attack of [58] which we utilize in this paper. At high
level, the attack consists of three main phases.

• Prime. The attacker process first primes the cache by performing memory accesses to some
carefully-chosen memory blocks, selected to fill-up some specific cache sets with the attacker’s
data. We use the name eviction set for a collection of memory blocks that all map to the same
cache set.
• Wait. The attacker process then waits for some time, during which the victim process performs

its memory accesses. If the target process accesses memory blocks that map to previously-primed
cache sets, the victim’s data will evict the attacker’s data from these sets. This eviction will

8

Page Number Page O�setVirtual Address

Page O�set
PNaCl's Emulated

Virtual Address
Emulated Page Number

06121732

Physical Address LLC SetLLC slice (hashed) LLC
O�set

64

Low order bits
WebAssembly's Memory

Bu�er
High order bits

Figure 2: Physical vs. Virtual vs. PNaCl’s vs. WebAssembly’s address spaces on a CPU with 4096
last level cache sets. Dashed lines indicate equal parts. Notice that the portable environments have
only the lower 6 bits of the cache-set.

cause future cache misses when the attacker attempts to access the previously-cached data again,
increasing the time required to complete the attacker’s memory accesses.
• Probe. The attacker then probes the cache by accessing the memory addresses used for priming

the cache, while monitoring the time required to perform each access. When a memory access is
slow, the attacker deduces that the victim accessed a memory block that map to the corresponding
cache set.

3 Constructing Eviction Sets

The Prime+Probe attack relies on having an eviction set for every targeted cache set. The main
obstacle to constructing these sets is the requirement of finding the mapping between the internal
addresses used in the attacker’s program and the cache sets they map to. In the case of both
PNaCl and WebAssembly, the mapping from memory addresses to cache sets consists of multiple
abstraction layers which we now describe, as follows (and illustrated in Figure 2).

First, the portable runtime emulates a 32-bit execution environment, mapping the internal
addresses to the hosting process’s virtual address space. Since a running portable code only handles
pointers to its emulated address space, it does not have access to the mapping from the emulated
address space to the hosting processes virtual address space. Next, the virtual memory subsystem
of the operating system, together with the hardware memory management unit of the processor
map the virtual address space into the physical memory. In a nutshell, the virtual address space
is divided into fixed size chunks (typically 4096 bytes) called pages where each page is mapped to
a frame in the physical memory. In Linux, until kernel version 4.0, processes had access to this
mapping. However, due to the Rowhammer attack [40] this access has been removed and in modern
operating systems the mapping is no longer available to user processes [14].3

The final layer of the mapping converts physical memory addresses to cache sets. As we men-
tioned, Intel does not disclose this mapping, but it has been reverse-engineered. Despite two levels
of indirections with unknown mapping, and complications introduced by the third one, we can find
the mapping of memory blocks to sets.
Past Approaches. Several prior works [47, 30, 50] describe techniques for creating the eviction
sets required for implementing microarchitectural attacks using huge pages: a CPU feature that

3Even had this mapping remained available for user processes, the sandoxeded PNaCl and WebAssembly environ-
ments make it inaccessible for portable code.

9

allows pages in the page table to have a very large size (in Intel processors, typically 2MB instead
of 4 kB), for improved address translation efficiency (e.g., reduced TLB thrashing).

Because both the physical and the virtual starting addresses of a huge page must be a multiple of
a huge page size, the virtual address and its corresponding physical address share the least significant
21 bits. In particular, that means that given a virtual address in a huge page, we know bits 0–20
of the physical address and consequently we know the index within a slice of the cache set that the
virtual address maps to.
Avoiding Huge Pages. Recent attacks [63, 29] were able to avoid huge pages, at the cost of
imposing other limitations. The attack of [63] assumes consecutive physical memory allocation and
deterministic heap behavior. The assumption that physical memory allocations are made consecu-
tively is not generally applicable. Furthermore, assuming consecutive allocation allows the attacker
to find the cache set index up to a fixed offset. Consequently, the consecutive allocation provides
as much information as using huge pages. However, for JavaScript code running in a browser envi-
ronment, we empirically did not observe any allocation pattern between different execution of the
decryption operations. We conjecture that this is due to JavaScript’s complex garbage collection
pattern.

Next, the work of [29] avoided huge pages by only using the 6 bits shared between the virtual
address and physical address to construct the eviction-sets. In this approach, all cache-sets sharing
the 6 least significant bits are mapped to a single large eviction set. However, using such large
eviction sets increases probing time by a factor of ×64 (compared to smaller eviction sets which are
designed to only evict a single cache set) thus reducing the channel’s bandwidth. Large eviction sets
also induce higher measurement noise due to unrelated memory accesses. While [29] was able to
use this approach to obtain memory access patterns which are sufficiently accurate to derandomize
ASLR, our attack can not be launched using these techniques. This is since, in addition to increasing
measurement noise, the reduction in the channel’s bandwidth prevents accurate rapid measurements
of the target’s memory access, which are necessary for key extraction attacks (for temporal resolution
on the order of a big-integer-multiplication or curve-point-addition).

3.1 Methodology

We now describe our methodology of constructing eviction sets by recovering the mapping from
memory blocks to cache sets. As described above, the mapping consists of several layers. The work
of [47] introduced an algorithm (described below) for uncovering the mapping between the physical
address and cache slices, without the knowledge of the CPU’s internals. However, the algorithm
assumed knowledge of the cache set index, acquired by using huge pages. This assumption does
not hold for PNaCl and WebAssembly since they currently do not provide access to huge pages,
preventing us from using the least significant bits of the virtual address tot acquire the cache set
index. Instead we generalize this algorithm to the portable environment.

We start by describing the technique of [47] to recover the mapping between memory blocks and
cache slices
Eviction Testing. The main component of all eviction set construction techniques is eviction
testing. This operation finds whether accessing a list of memory blocks forces a cache eviction of a
specific memory block, to which we shall refer as the witness memory block.

The assumption is that accessing a list of blocks will evict the witness memory block if the list
contains enough blocks that map to the same cache set as the witness. Thus, to test a list, we first
access the witness to ensure that it is in the cache. We then access all of the memory blocks in the
list before performing a final memory access to the witness block. To test whether the witness was
evicted from the cache we measure the time this final access takes. If the witness block is still in

10

the cache, this final access would be faster than if the witness block was evicted, where the final
access results in a cache miss. This process is typically repeated several times to remove noise from
unrelated system activity.
Algorithm. To construct an eviction set for some witness memory block, we first start with a
pool of memory blocks that all have the same cache set index. We repeatedly process the pool to
find memory blocks that all map to the same cache set. This process consists of three phases:

Expand: create a list of memory blocks that forces the eviction of a known witness block. We
start with an empty list of memory blocks and repeatedly pick a witness from the pool. We then
perform eviction testing, i.e. we access the entire list of memory blocks, to check if it evicts the
witness block. In case it does then the expand phase is over and we proceed to the next phase.
Otherwise, we add the witness block to the list of memory blocks and proceed to pick a new witness
block. Assuming the pool of witness blocks is large enough, at some stage the list will have enough
memory blocks that map to the cache set of the current witness, at which time the list is found.

Contract: process the above list in order to remove all of the memory blocks that do not map
to the witness’s cache set. To that aim, we iterate over the memory blocks in the list. We remove
a memory block from the list and check whether the list still evicts the witness block. If it does,
we proceed to removing the next memory block from the list. Otherwise, we return the removed
memory block to the list and proceed to pick a different memory block. At the end of the process we
remain with only those memory blocks that are essential for evicting the witness in the list. These
form the eviction set for the witness’s cache set.

Collect: remove redundancies. To avoid having multiple eviction sets for the same cache set, we
remove from the pool all of the memory blocks that map to the same cache set as the witness block.
This is done by iterating over the pool and remove any memory block that the eviction set evicts.
Constructing Eviction Sets From Portable Environment. Portable code only has access to
the 12 least significant bits of the physical address (see Figure 2), . Thus, the portable code knows
the six least significant bits of the cache set index, but is missing the four or five most significant
bits.

To overcome this, we first find eviction sets for all of the cache sets that have indices with 6
least significant bits being zero. To that end, we create a large pool of memory address whose
least significant 12 bits are zero, preserved by the mapping between the portable virtual memory
environment and physical addresses. Applying the above algorithm on the pool results an initial
eviction set for each cache set index with 6 least significant bits equal to 0. Then, by enumerating
each of the possible values for the 6 least significant bits, we extend each initial eviction set to 64
eviction sets. This results in an eviction set for each of the cache sets.

However, for the algorithm to work, we need to modify the eviction testing procedure. This
is since when running on a system configured with regular-size memory pages, performing eviction
testing as described accesses a large number of memory pages. This stresses the address translation
mechanism, and in particular causes evictions from the Translation Lookaside Buffer (TLB), which
is a specialized cache used for storing the results of recent address translations. These TLB evictions
causes delays in memory accesses even when the accessed memory block is cached. In particular,
this introduces noise when checking if the witness block is successfully evicted.
Handling TLB noise. To address the TLB noise, we modify the eviction testing approach,
ensuring that the TLB entry for the witness block is updated before we measure the access time
for accessing the witness memory block. We achieve this by accessing another memory block in the
same page as the witness. Thus the eviction testing above algorithm becomes:

1. access the witness to ensure it is in the cache.

11

2. access each memory block in the list of memory blocks.
3. access a memory block in the same page as the witness, to ensure the TLB entry for the page is

updated.
4. measure the access time to the witness. This will be short if the witness is in the cache or long

if accessing the list of memory blocks evicts the witness from the cache.

Handling Additional Noise. We find that even when handling the above-described noise from
the TLB, significant noise remains in our measurements. We speculate that this is the result of
system activity and the fact that the cache footprint of our algorithm is much larger than the
footprint of previous works. To alleviate the effects of the noise, we check that the size of the
eviction set produced the contract phase matches the number of ways in the cache. If the size of the
eviction set is too large, we attempt to repeat the contract phase several times. If it is too small,
or if it is too large after several contractions, we restart the entire attempt.

3.2 Implementation

PNaCl Implementation. The above approach requires several capabilities. In order to distin-
guish between slow memory accesses (corresponding to cache misses) and fast memory accesses
(corresponding to cache hits) the attack code must gain accesses to a timing source of sufficient
resolution. Conveniently, PNaCl provides a clock_gettime() function which provides time at
nanosecond accuracy (when called with clock_realtime parameter). Next, in order to construct
the eviction sets in PNaCl’s execution environment we allocate a sufficiently large contiguous buffer
(approximately 4 times larger than the size of the LLC). Using this buffer and the aforementioned
timing source, we performed the phases outlined above for the construction of the eviction sets.
WebAssembly Implementation. As discussed in Section 2.1, PNaCl has been available for a
few years, but only on Chrome browser. Using the newer WebAssembly standard, along with Web
Workers and SharedArrayBuffers allowed us to reimplement the approach without using browser-
specific features. Similarly to PNaCl, in order to construct eviction sets we obtain a high-precision
timer, and a contiguous allocated memory buffer.

The work of [57] prompted the web browser developers to reduce the precision of the time source
available to JavaScript code. Unlike PNaCl, WebAssembly does not have access to system’s APIs
like clock_gettime(). Thus, we use an alternative technique, based on an intentional inter-thread
race condition (see [62] for a recent survey of JavaScript timing sources, including this one).

In this approach, we allocate a SharedArrayBuffer array within the main JavaScript context,
and pass it to a "Timer" Web Worker which iteratively increments the value in the first cell of the
array in a tight loop. To acquire the value of our timer, the main context simply has to read that
value from the array. The naive implementation, accessing the array directly, did not work due to
runtime optimizations: since the incrementing iteration runs in a separate context of Web Worker,
the engine assumes that repeatedly reading the same memory location will yield the same result,
and optimizes the code to return a constant value. To overcome this, we used the Atomics API to
force reading from the array (with sufficiently small performance penalty).

Next, we construct our eviction sets using WebAssembly.Memory contiguous buffer accessible
both for JavaScript and WebAssembly. Accessing to this buffer from WebAssembly, and using the
time source described above, allows us to distinguish between accesses corresponding to cache-misses
and accesses corresponding to cache-hits, using the above techniques.
Exprimental Results. On the Chromebook machine described in Section 1.2 we used the PNaCl
implementation. Constructing the initial 64 eviction sets took about 42 seconds and resulted in

12

63-65 initial evictions sets (sharing the 6 least significant bits of the set index) constructed in
95% of attempts made. Since the Chromebook’s cache contains 64 possible initial eviction-sets, one
duplicate eviction set was not removed during the collect phase described above. We than expanded
the initial eviction sets using the above-described procedure, obtaining 4032–4160 eviction sets,
covering 98%–101% of the Chromebook’s cache. For the HP EliteBook 8760w laptop, constructing
the eviction sets took 11 minutes using the PNaCl implementation and resulted in 120–130 initial
eviction-sets constructed in 95% of attempts made (out of 128 possible initial eviction sets). Using
the WebAssembly implementation we were able to construct eviction sets on Chrome ans Firefox as
well. Constructing the eviction sets took 60–70 minutes and resulted 110–120 initial eviction-sets.
These were again expanded to 7040–8320 eviction sets.

4 Covert Channel

We now show that two collaborating websites are able to use PNaCl code running in the target’s
browser in order to establish a covert channel via the last level cache. Using this channel, two
collaborating websites are able to transfer information between them (such as cookies or login
permissions) in a way that violates browser’s policy regarding cross-domain communication. We
observe that since Chrome browser executes PNaCl and WebAssembly code without prompting
any notifications or requiring user’s permission, the user has virtually no indication that such an
exfiltration is taking place.

We now describe our implementation of the covert channel sender and receiver using PNaCl
code running in a Chrome browser.
Sender. To send a message, the sender starts by mapping the eviction sets using the process
described in Section 3. Next, the sender seeks for an eviction set corresponding to a quiescent cache
set, which is not frequent used by system activity. This is done by going over all the eviction sets,
and sampling each of them for some duration. Each acquired trace, corresponding to some cache
set, contains a timed series where each element is the number of cache-misses occurred during the
time period between two consecutive samples. Going over the trace for each cache set, the sender
locates a trace containing a relatively low number of cache misses which indicates a quite cache set
suitable for cover channel transmission. Once such a cache set found, the sender begins to transmit
the message M = m1, · · · ,mn as follows. In case mi = 0 the sender accesses the memory blocks
inside the chosen eviction set for a predefined period of time t0. Otherwise, if mi = 1 the sender
accesses the memory blocks inside the chosen eviction for a predefined period of time t1. Finally, to
separate between the bits, after each of them the sender waits another period of time twait before
transmitting the next bit.
Receiver. To receive a message the receiver starts by mapping the eviction sets using the process
in Section 3. After acquiring the eviction sets, a naive receiver will try to monitor a priorly agreed
eviction set in an attempt to measure the sender’s cache activity. Unfortunately, since the receiver
and sender run in a different browser tabs (and therefore in different processes), the receiver’s
memory space has a different mapping between the virtual and the physical memory compared
to the sender’s mapping. Hence, eviction sets mapping procedure yields an independent mapping
between the and sender and receiver.

In order to overcome this issue, the sender first transmits a pre-determined message for a duration
tsync, while the receiver samples all the available eviction sets looking cache-miss patterns of length
t0 and t1 separated by cache-hits of length twait which correspond to the pre-determined message.
Once a common eviction set was found, as long as the sender and receiver preserve their mapping
of the eviction sets (i.e. the browser tabs were not closed), the receiver can sample only the right

13

0
5
10
15
20
25
30
35

0 0.2 0.4 0.6 0.8 1 1.2 1.4

11

{ {

1

{

1

{

1

{

1

{{

0

{

0

{

0

{

0

{

0

{

0

{

0

{

0

{

0

{

0

{

0

{

0

{

0

E
vi
ct
io
n
se
t
nu

m
be

r
Time (ms)

Figure 3: Cache accesses as detected by the receiver during message transferring. The intensity of the
green color represents the number of cache misses (estimated by the receiver’s measurements).The
transmitted message can be clearly seen in the 27-th eviction set.

eviction set thus increasing the channel’s capacity. The receiver then goes over the acquired trace
for the common eviction set and decodes the transmitted message by translating the sequences of
cache-misses of length t0 and t1 to their corresponding message bits.
Experimental Evaluation. We empirically set t0 = twait = 30ms, t1 = 60ms and, tsync = 1.5sec
which seem to produce the best results in terms of channel capacity. Using these parameters,
after the receiver finds the common eviction set chosen the sender (i.e., after 1.5sec) we achieve a
transmission rate of 13.3 kilobits per second. Figure 3 portrays the cache accesses detected by the
receiver. The sequence of received bits can be clearly observed.

5 Attacking Elliptic

This section shows that even highly regular algorithms, which do not perform key-dependent op-
erations or memory accesses, can produce exploitable side channel leakage when implemented in
high-level programming languages such as JavaScript. We empirically demonstrate this on Ellip-
tic’s Curve25519-based ECDH implementation, which uses the Montgomery ladder method as the
underlying scalar-by-point multiplication routine.

5.1 Deployment

Our attack scenario is based on running cache-monitoring portable code, using either of PNaCl or
WebAssembly, inside the target’s browser. We now describe a specific attack scenario which does
not require the user to install any malicious application or even actively browse to the attacker’s
website.
Pop-Under Advertisement. Pop-Under advertisement is a common technique to circumvent
pop-up protection used in modern web browsers. Once the user clicks anywhere inside the web
page, a new browser tab containing the requested web page is shown with while the previous tab
(which is now hidden) is redirected to an advertisement loaded from the attacker’s website.
Attack Scenario. We created an advertisement leading to a web page containing our portable
attack code and submitted it to a web advertisement service. The targeted user opened a web
browser (either Chrome or Firefox, and on either the Chromebook or HP laptops described in
Section 1.2), accessed a third party web page which uses the advertisement service, and clicked
anywhere within the page. Consequentially (courtesy of the ad service), our advertisement was
opened in a background browser tab and started monitoring the cache access patterns on the target

14

Algorithm 1 Elliptic’s Point Multiplication (simplified).

Input: A scalar k and a point P where the k =
∑n−1

i=0 ki2
i.

Output: b = [k]P .
1: procedure scalar_by_point_multiplication(k, P)
2: a← P, b← O . O is the point of infinity
3: for i← n to 1 do
4: if ki = 0 then
5: a← a.add(b) . a+ b
6: b← b.double() . [2]b
7: else
8: b← a.add(b) . a+ b
9: a← a.double() . [2]a

10: return b

machine. Concurrently, the user opened a third tab, in the Chrome browser, which performed
ECDH key-exchange operations using Ellipstic’s Curve25519 implementation.

To stress, neither the website used to trigger the attack, nor the ad service, were controlled by
the attacker; and the user never typed or followed a link to an attacker-controlled website.

5.2 Key extraction

ECDH. Elliptic curve Diffie Hellman (ECDH) is a variant of the Diffie-Hellman key exchange
protocol [15] performed over suitable elliptic curves. Given a curve over a finite field F and a
generator point G ∈ (F × F), in order to generate a key Alice chooses a random scalar k as a
private key and computed the public key by [k]G (here and onward, we use additive group notation
with and [k]G denoting scalar-by-point multiplication of k and G). In order to compute the shared
secret, Bob sends his public key G′ = [k′]G to Alice (where k′ is Bob’s secret key). Alice and Bob
then recover the shared secret by computing [k]G′ and [k′]G, respectively. Notice that [k]G′ =
[k]([k′]G) = [k′]([k]G) = [k′]G.
Curve25519. Curve25519 is an elliptic curve introduced by [7] and standardized by RFC 7748 [43].
Curve25519 was specifically designed to increase resistance to side channel attacks and other com-
mon implementation issues.
Scalar-By-Point Multiplication. In order to increase side channel resistance, implementations
of Curve25519-based ECDH often use the Montgomery ladder [52] to perform the scalar-by-point
multiplication operation. See Algorithm 1. Notice that algorithm performs the same number and
order of addition and double operations, regardless of the value of ki, making it more side channel
resistant compared to other scalar-by-point multiplication algorithms [38, 55].
Inapplicability of Data Cache Leakage. The Montgomery ladder scalar-by-point multiplication
routine attempts to achieve side channel resistance by being highly regular. Each iteration of the
main loop of Algorithm 1 accesses both of the internal variables (a and b) and performs a single
elliptic curve add operation followed by a single elliptic curve double operation. In particular, both
operations are performed, in the same order, irrespective of the value of the current secret key bit
(ki). Thus, the Montgomery powering ladder avoids many side-channel attacks, such as leaking the
secret key via key-dependent sequences of double and add operations, or performing key-dependent
memory accesses to a table of precomputed values. As we have empirically validated, Elliptic’s

15

implementation of the Montgomery ladder Algorithm 1, running on Chrome 58.0.3029.112, is almost
constant time, without key-dependent timing deviations.

While Algorithm 1 does leak the secret key via memory accesses performed to the operand of
the elliptic curve double operation (Lines 6 and 9) as well as the memory accesses to the result of
the elliptic curve add operation (Lines 5 and 8), this leakage is hard to exploit due to JavaScript’s
memory allocation mechanism. Concretely, since each iteration of the main loop of Algorithm 1 al-
ways updates both variables, Elliptic’s implementation always allocates new objects for the updated
values, at different and changing memory addresses. As we empirically verified, the addresses of the
objects pointed by a and b change with each iteration of the main loop of Algorithm 1, without any
obvious patterns. This makes monitoring memory accesses to a and b difficult, since the attacker
has to predict and subsequently monitor a different cache set at every iteration of the main loop of
Algorithm 1.

While the memory re-allocation countermeasure was probably unintentional, this countermea-
sure combined with the inherent regularity of the Montgomery ladder scalar by point multiplication
routine prevent the use of the data cache as a source of side channel leakage.
Finding a Leakage Source. We choose, instead, to conduct a code-cache side-channel attack.
In this approach we identify a key-dependent change in the target’s control flow. During the ECDH
operation, we monitor the code cache accesses via PNaCl or WebAssembly, deduce control flow
changes, and from these, recover the key.

An immediate candidate for such key-dependent control flow would be the if-else statement in
Line 4 of Algorithm 1. However, distinguishing between different cases of the if-else statement in
Line 4 appears to be difficult, since both case are very similar, call the same functions in the same
order, have the same length and are relatively small (each consisting of only two code lines).

While a high-level examination of Algorithm 1 does not reveal any additional key-dependent
control flow, we do observe that Algorithm 1 invokes the double operation in Line 6 on variable b,
while in Line 9 it is invoked on object a. While in a low-level programing language the execution
of different code paths is usually explicit, in a high-level language such as JavaScript, the com-
piler/interpreter is at liberty to select different execution paths for performing identical operations
on different data. Empirically, this indeed occurs here. We were able to empirically distinguish,
using code cache leakage, between the double operation performed in Line 6 (on variable b) from
the double operation in Line 9 (performed on a) — thus attaining key extraction.
Monitoring Elliptic’s Side Channel Leakage with WebAssembly. We demonstrated our
WebAssembly attack in a cross-browser, cross-process scenario. We used the HP laptop to launch
two separate web browser instances: Chrome, running a page that uses Elliptic’s implementation
of Curve25519-based ECDH, and Firefox, running a third-party web site presenting advertisements
from our advertisement provider. After clicking inside the third-party web site, our WebAssembly
attack code was loaded as a pop-under advertisement, and automatically started the eviction-set
construction procedure described in Section 3. The CPU of this HP laptop has 8192 cache sets,
and each Curve25519 ECDH key exchange lasts 2.5ms. Hence, after the construction procedure,
our code sampled each of the 8192 eviction sets, performing Prime+Probe cycle every 380µs for a
duration of 22ms, for a total sampling time of about 3 minutes.
Monitoring Elliptic’s Side Channel Leakage with PNaCl. Alternatively, we opened two
tabs in the Chromebook’s browser: one tab running our PNaCl attack code, and the other running
Elliptic’s implementation of Curve25519-based ECDH, with each key exchange lasting 4.5ms. Next,
we sampled each of the 4096 eviction sets, performing Prime+Probe cycle every 3µs for a duration
of 35ms, totally sampling for less than 3 minutes.

16

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1{1{ 1{1{ 1{ 1{ 1{ 1{0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 1{ 1{ 1{ 1{ 1{ 1{ 1{0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{ 0{
Tr

ac
e
nu

m
be

r

Time (ms)

0
1
2
3
4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
1

000000000

1
1
1
1

000000

111
1

0

1

0
1
00

1
1

0000
1

#
of

ca
ch
e-
m
is
se
s

Time (ms)

Figure 4: Cache accesses as detected by the attacker during ECDH key exchange over Curve25519
by Elliptic. Trace 3 (top) contains cache misses observed by the attacker during the scalar-by-point
multiplication. The bottom, which only shows Trace 3, it can clearly be noticed that the cache-
misses corresponds to key bits of 1, while sequence without cache-misses of approximately 20µs
corresponds to bits of 0.

Leakage Analysis. Out of the acquired traces, for each of the sampling methods we identified 5
as containing the side channel leakage described above. Figure 4 shows some out of the acquired
traces using PNaCl on the Chromebook machine, Trace 3 (left) contains the information regarding
the secret key. As can be seen from the right part of Figure 4, showing only Trace 3, a sequence of
10µs of cache-misses cache-misses followed by 5µs of cache-hits in the monitored set corresponds to
a bit of 1, while 20µs of cache-hits corresponds to 0 bit.

Using this observation, we automated the extraction of keys from the aforementioned traces,
yielding correct extraction of up to 236 (out of 252) bits of the secret key from individual traces.
Combining 4 traces of key-exchange operations we were able to extract all the 252 bits of the secret
key. For the WebAssembly attacks, the acquired traces and automated algorithm are very similar,
and likewise result in full key extraction.

6 Attacking End-to-End

6.1 ElGamal Implementation

ElGamal. ElGamal [18] is a public-key crptosystem based on hardness of computing discrete
logarithms. To generate a key, Alice chooses a large prime p, a generator g ∈ Z∗p and a private key
x ∈ {1, ..., p− 2}. The public key is the triple (p, g, y) where y = gx mod p. To encrypt a message

17

Algorithm 2 End-to-End’s Modular Exponentiation (simplified).

Input: Three integers c, x and p where the x =
∑n−1

i=0 xi2
i and n is a multiple of 8.

Output: s = cx mod p.
1: procedure modular_exponentiation(c, x, p)
2: t[0]← 1
3: for u← 1 to 15 do
4: t[u]← c · t[u− 1] mod p

5: s← c, e← n− 1
6: while e ≥ 0 do
7: for i← 1 to 4 do
8: s← s · s mod p

9: u← xe · · ·xe−3
10: s← t[u] · s mod p
11: e← e− 4

12: return s

m ∈ Z∗p, Bob chooses a random nonce k ∈ {1, ..., p− 2} and computes the encrypted message
c = (c1, c2), where c1 = gk mod p, c2 = m·yk mod p. To decrypt a ciphertext (c1, c2), Alice computes
the shared secret s = cx1 mod p and then recovers the message by computing m′ = c2 · s−1 mod p.
We observe that Alice can compute s−1 = cp−x−11 mod p directly, avoiding the inversion.
Choosing The Secret Exponent. The performance of ElGamal decryption can be improved by
using a short private key [56]. This does not affect the security of the scheme as long as brute forcing
the secret key is harder than solving the associated discrete logarithm problem. A common way
of choosing key size is consulting the so called “Wiener table”, which contains recommended secret
exponent sizes for popular sizes of public primes. For keys using 3072-bit moduli, Wiener’s table
recommends using an exponent of size 269 bits. Below, we utilize short keys in conjunction with an
implementation choice made by End-to-End to accelerate the offline processing time required for
our key extraction attack.
End-to-End’s ElGamal Implementation. To compute the modular exponentiation required
for decrypting messages, End-to-End uses a variant of the fixed-window (m-ary) modular exponen-
tiation algorithm. (See [51, Algorithm 14.109].) The algorithm divides the exponent to groups of m
bits, called digits. It processes the digits from the most significant to the least significant, perform-
ing m squaring operations and a single multiplication for each digit. For the multiplication, the
current exponent digit indexes a table t of precomputed multipliers. See pseudocode in Algorithm 2
for m = 4.
End-to-End ElGamal Key Generation. End-to-End does not use the browser in order to
generate secret keys. Instead it requires the user to generate the key outside the browser environment
and subsequently import it. In all the experiments described in this paper, we used GnuPG [66] in
order to randomly generate 3072-bit ElGamal keys.

6.2 Key extraction

We now describe our attack on the End-to-End implementation of ElGamal encryption. For each
multiplication operation performed in Line 10 of Algorithm 2, we aim to find the index u used in or-
der to obtain one of the multiplication’s operands. Key extraction is possible using this information
since the values of u directly reveal bits of the secret key.

18

0

5

10

15

20

0 20 40 60 80 100 120 140
T
ra
ce

nu
m
b
er

Time (ms)

Figure 5: Cache accesses as detected by the attacker during ElGamal decryption by End-to-End.
Intensity represents the number of cache misses. Notice traces 3 and 19, which contain cache misses
observed by the attacker during the multiplication operations in Line 10 of Algorithm 2.

Our attack largely follows the technique of Liu et al. [47] and consists of two phases. In the online
phase we collect a large number of memory access traces, with the aim of capturing enough samples
of accesses to memory locations that store the table of pre-computed multipliers. In the offline
phase we analyse the collected traces to identify the traces that correspond to memory locations
that store pre-computed multipliers. From these traces, we recover the sequence of the indexes u
used in order to obtain the operands for the multiplications performed by Algorithm 2, and from
this, we can deduce the secret key..

6.3 The Online Phase

The main aim of the online phase is to collect traces of victim access to the pre-computed multipliers.
These traces are later processed to extract the key. The main challenge that the attacker needs to
overcome is that the locations of the multipliers in memory changes with each invocation of the
decryption. Consequently, the attacker does not know which memory address to monitor in order
to capture access to the multipliers.

Following Liu et al. [47], we overcome this challenge using statistical capturing. If we select a
random cache set, there is a non-zero probability that one of the multipliers is allocated in a memory
location that maps to the selected set. Consequently, by collecting a large number of traces from
random cache sets we are likely to collect multiple traces of the accesses to each multiplier.

Concretely, we follow the experimental approach in Section 5.1. First, we opened two tabs in
the Chromebook’s browser: one tab running our PNaCl attack code, and the other running End-
to-End’s implementation of ElGamal. Next, we select 8 random cache sets and monitor them in
parallel, performing a Prime+Probe cycle on each of the cache sets once every 31.5µs for a period
of 5s. Because the decryption operation lasts 1.58s, a sampling period of 5s allows enough time for
most decryption operations that start during the sampling period to complete within the period.
We repeat this process sequentially for about 74 minutes, acquiring 7100 traces. Because each
multiplier occupies 6 cache sets, and since the cache has 4096 different sets, we expect to find on
average 7100 · 6/4096 ≈ 10.4 traces of each precomputed multiplier in the traces we acquire.

After the traces are collected, they are sent to a server for offline processing. A sample of
collected traces is shown in Figure 5.

19

6.4 The Offline Phase

The aim of the offline phase is to process the traces collected in the online phase and to recover the
key. To achieve that, the attacker first needs to identify which of the traces corresponds to memory
access to precomputed multipliers. The attacker then has to match the traces against the algorithm
and determine constraints on the possible sequence of multiplications based on the traces. The last
step in the process is to combine the constraints and recover the order of accesses to the multipliers.
We now describe these steps in greater details.

6.4.1 Identifying Traces of Multipliers
Like Liu et al. [47], we identify the traces of accesses to multipliers by looking for temporal patterns
in the data. Recall that Algorithm 2 performs one multiplication for every four exponent bits.
Hence, for the 3072 bit exponent we use, the algorithm performs 768 multiplications. Next, since
Algorithm 2 uses 16 precomputed multipliers, each of these is accessed 48 times during a decryp-
tion, on average. Note, however, that because the exponent is random, the number of times each
multiplier is used may vary and usually is slightly higher or slightly lower than 48.

In End-to-End’s ElGamal implementation running on the Chromebook machine, a multiplication
operation takes about 410µs. In our attack we perform a Prime+Probe cycle once every 31.5µs.
Hence, we expect each multiplication to span over about 13 samples.

Combining the information above, we scan the traces, counting the number of sequences that
consist of 13 consecutive samples that indicate access to the monitored cache set. If the number of
such sequences is below 30, we assume that the monitored cache set is unlikely to correspond to a
precomputed multiplier. After rejecting all these we are left with 750 candidates that may contain
information about multiplier access in Algorithm 2. We can see examples of two such traces in
Figure 5.

Observing Figure 5 we see that many traces, including those that correspond to a precomputed
multiplier, contain noise in the form of sporadic memory accesses, lasting well below 13 samples.
To remove this noise, we scan each trace sequentially, looking for a memory access. We then look
at the window of 13 samples starting at the access and check how many of the samples indicate
memory accesses. If nine or more of the samples in the window indicate memory access, we treat all
of the samples in the window as access and skip the window. If, however, less than nine samples in
the window indicate access, we ignore the first access, treating it as noise. This results in “denoised”
traces that consist of sequences of 13 or more consecutive accesses, separated by long stretches of
no-access.

6.4.2 Generating Annotated Multiplication Sequences
The next task is to recover, for each u in the range of indexes of the table t of precomputed
multipliers, an approximation of the sequence of the multiplications performed by Algorithm 2,
where a multiplication is marked if u was the index used to obtain one of the operands in Line 10.
We call such sequences annotated multiplication sequences.

We first generate annotated multiplication sequences from the captured traces. Recall that
each multiplication operation spans over about 13 samples in the trace. We, therefore, convert
sequences of samples into sequences of multiplications by simply dividing the length of the sequence
of samples by 13, rounding to the nearest integer. Sequences of samples that indicate memory
access are converted into marked multiplications and sequences of samples with no memory access
are converted to unmarked multiplications.

Next, in order to further reduce measurement noise in the collected sequences, we rely on the
observation (due to Liu et al. [47]) that sequences corresponding to the same multiplier are similar.
We first cluster the annotated multiplication sequences we collected based on their similarity. We

20

consider two sequences to be in the same cluster if the edit distance [44] between them is less
then some threshold. For our purposes, we found that a threshold of 20 produces good clustering
results. We then merge each cluster into a single representative sequence that is similar to all of the
sequences in the cluster. For that, we use Clustal Omega [64], a solver for the multiple sequence
alignment problem [42], originally designed for aligning biological sequences such as protein chains
or DNA.

Finally, we adjust the resulting representative annotated multiplication sequences, so that they
are consistent with the expected execution of Algorithm 2. Observing Algorithm 2 we note that
it consists of two phases. In the first phase, which consists of 16 multiplications, the algorithm
constructs the lookup table of the precomputesd multipliers. In the second phase, during the actual
exponentiation, the algorithm performs sequences of four multiplications of s by itself (Line 8),
followed by a multiplication with one of the precomputed multipliers, that is, every fifth multipli-
cation accesses a precomputed multiplier. We therefore pad or truncate the gaps between marked
multiplications in the represenatative annotated multiplication sequences to ensure that marked
multiplications are at positions that are congruent modulo 5.

At this stage we have 15 annotated multiplication sequences that are expected to be similar
to the sequence of multiplication that access each of the multipliers. However, the information is
still incomplete. In particular, we do not know the index value u that corresponds to each of the
sequences. Had we known how Algorithm 2 accesses the multiplier in the first 16 multiplications,
we could have recovered the multiplier. However, because we can only identify the first marked
multiplication, we do not know how many unmarked multiplications precede it. We do know that
we do not have the sequence of the 0th multiplier because our algorithm assumes that multiplications
take 13 samples, whereas multiplication by the 0th multiplier (i,e, u = 0), which is always 1, are
much faster. Finally, the sequences we have still contain some errors, and while the number of errors
is small (less than one error per sequence, on average), these need to be resolved.

6.4.3 Key Extraction
The last step in the offline phase is to find value of the table index u that corresponds to each of the
annotated multiplication sequences and correct the remaining errors. We suggest two methods for
assigning multipliers to sequences. The straightforward approach is to brute-force the assignment
by trying all combinations. A more efficient, albeit less general is to exploit an implementation issue
in End-to-End’s ElGamal. We now describe these two approaches.
Brute Force. For the brute-force approach, we try every possible assignment of the values of
the table index u to annotated multiplication sequences. Observing Algorithm 2, we see that
during the generation of the lookup table, the uth multiplier is only accessed in the uth and the
(u+ 1)st multiplications. Hence assigning the table index to an annotated multiplication sequence
determines the number of preceding unmarked multiplication for the sequence. Knowing the number
of preceding multiplications allows us to align all of the sequences and, from the aligned sequences,
determine the table index used in each multiplication. We note that in Algorithm 2 only one table
index is used in each multiplication. Consequently, a large number of collisions, where two or
more sequences have a marked multiplication at the same position, indicates that the assignment
is unlikely to be correct and thus can be ignored. For assignments that result in a small number
of collisions, we try multiple combinations of slight variations in the positions of the colliding
multiplications and test if they yield the correct key. Using this approach, we brute forced a key on
an Amazon m4.16xlarge instance within about 76 minutes at a cost of $4.10.
Exploiting End-to-End’s ElGamal Implementation. As presented in Section 6.1, End-to-
End performs ElGamal decryption by computing cp−x−11 mod p. Next, we observe that ElGamal
private keys generated using Wiener’s table are significantly shorter than the public prime p. More

21

specifically, for 3072-bit moduli, Wiener’s table recommends using a private key whose length is
less than 450 bits. Thus, with high probability, the 2500 most significant bits (MSBs) of p− x− 1
and of p are the same. Since the modulus p is part of the ElGamal public key, the attacker knows
the 2500 MSBs of the secret exponent p− x− 1. We can, therefore, use the 2500 MSBs of p to
compute ground truth for the first 85% of each annotated multiplication sequence. We then match
the annotated multiplication sequences obtained in Section 6.4.2 with the ground truth calculated
from the MSBs of p. This allows us to recover the assignment of multipliers to sequences and to
find the key within a few seconds.

We note that neither computing cp−x−11 mod p directly (as opposed to (cx1)
−1 mod p) nor using

Wiener’s table to generate short ElGamal private keys pose major side channel weaknesses. However,
the combinations of these two optimizations improves the performance of our attack.

6.5 Overall Attack Performance

The attack described above consists of an online phase, which monitors the target’s cache for 74
minutes. Offline processing of the data, including denoising, clustering, merging and key recovery,
takes at most 90 minutes on an Amazon EC2 m4.16xlarge instance and costs less than $6. We tried
our attack on several randomly generated ElGamal keys with 3072-bit public primes, successfully
extracting the entire secret exponent in every trial.

6.6 Attacking RSA

RSA [61] is a commonly used public-key cryptosystem based on the hardness of factoring. Key
generation is done by selecting two large prime numbers p, q, a (fixed) public exponent e and a
secret exponent d such that ed ≡ 1 (mod (p − 1)(q − 1)). The public key is (n, e) where n = pq
and the private key is (d, p, q). Encryption of a message m is done by computing c = me mod n
while decryption of a ciphertext c is done by computing m = cd mod n. In order to increase
side channel resistance against chosen ciphertext attacks [9, 24], End-to-End also implements RSA
blinding where m is computed by m = (re · c)d mod n where r is generated at random. This has the
effect of stopping adversarialy controlled ciphertexts from being used as input to the exponentiation
routine.
Attacking End-to-End’s RSA Implementation. Our attack utilizes exponent-dependent
memory accesses during End-to-End’s modular exponentiation routine in order to extract the expo-
nent, which is part of the secret key both for ElGamal and for RSA. Thus, since modular exponen-
tiation is used during decryption of both ElGamal and RSA ciphertext, our attack is applicable for
extracting RSA keys in addition to extracting ElGamal keys. We note that since our attack only
utilizes exponent-dependent memory access during End-to-End’s modular exponentiation routine
in order to achieve key extraction, it naturally bypasses End-to-End’s ciphertext blinding counter-
measure.

6.7 Attacking Other Devices

Our attack can be executed on any Intel machine capable of running PNaCl code in a Chrome
browser, and thus is applicable to not only Chromebooks but also to full-fledged laptop and desktop
computers. In particular, we performed the attack on an HP EliteBook 8760w laptop running
Chrome version 57.0.2987.110, Kubuntu 14.04 and equipped with an Intel i7-2820QM processor
(see full description in Section 1.2). Due to the different processor used, and in particular the
higher speed and the larger cache, we need to collect 9600 traces, resulting in an online phase that

22

lasts 90 minutes. Offline analysis of the traces achieves key extraction within 90 minutes on an
Amazon EC2 m4.16xlarge instance, at a cost of $6.

7 Attacking OpenPGP.js

The side channel vulnerabilities present in Google’s End-to-End exponentiation code are also present
in other JavaScript cryptographic libraries. This makes our attack techniques applicable to these
libraries, potentially resulting in key extraction attacks. In fact, some libraries use the sliding
window exponentiation method which achieves better performance compared to the fixed window
method. While this method also produces similar leakage as the fixed window method, it also
leaks additional information about consecutive runs of zeros in the secret exponent. In this section
we demonstrate this by attacking OpenPGP.js, which is another popular JavaScript cryptographic
library.
OpenPGP.js’s ElGamal Implementation. OpenPGP.js implements ElGamal decryption using
a different modular exponentiation algorithm. More specifically, OpenPGP.js uses a more perfor-
mant variant of the fixed window exponentiation algorithm, called sliding-window exponentiation.
(See [51, Algorithm 14.85].) Unlike the fixed window version (Algorithm 2) which uses windows
of fixed length, the sliding window algorithm divides the exponent x into variable-length windows.
Each window is either an arbitrary-length sequence of 0-bits or a sequence of at mostm bits starting
and ending with a bit of 1. Similarly to fixed window, the sliding window algorithm also use indexes
a table of precomputed multipliers, on every multiplication operation. Concretely, the windows are
processed from the most-significant-bit to the lease-significant-bit. Window values that start and
end with 1 are processed like in the fixed window algorithm, by performing squaring operations
according to the length of the window and multiplying by the precomputed value from the table,
using the window-value as the table index. However, window values which are sequence of 0-bits
are processed differently, by simply performing sufficiently many squaring operations. See Algo-
rithm 3 for pseudo-code. Thus, the sliding-window algorithm leaks the location and length of zero
sequences, and has been proven less resistant to side-channel attacks [47].
Leakage Source. Similarly to Section 6, in order to extract the secret exponent used in the
sliding window exponentiation performed during OpenPGP.js’s ElGamal decryptionoperation, we
need to identify the value u used as the table index in each multiplication operation performed by
OpenPGP.js’s variant to Algorithm 2.
Monitoring OpenPGP.js’s Side Channel Leakage. To measure the leakage describe above
we used an analogous setup to the one used in Section 6. Using the Chromebook, we opened two
browser tabs with one tab running our PNaCl attack code while the other tab was performing
ElGamal decryption operations using the OpenPGP.js, each lasting 0.25s. Using the methodology
of Section 6, we monitored 64 random cache sets, performing a Prime+Probe cycle on each of the
cache sets once every 20µs for a period of 0.62s. After acquiring 640 traces we filtered them using
the techniques described in Section 6.
Leakage Analysis. Figure 6 shows the side channel leakage from one OpenPGP.js ElGamal de-
cryption operation. Notice the leakage present in traces 11 and 19, where the cache access patterns
observed by the attacker reveal when a specific table index u is used during some multiplication
operations performed by OpenPGP.js’s variant of Algorithm 2. As demonstrated in Section 6, mon-
itoring this leakage for all possible values of u completely reveal the secret exponent. Finally, while
the fixed-window exponentiation algorithm performs a constant pattern of squaring and multiplying
operations regardless of the value of the secret exponent, the squaring operations performed by the
sliding-window algorithm used by OpenPGP.js reveal long sequences of zero exponent bits. We

23

Algorithm 3 Modular exponentiation in OpenPGP.js (simplified) with window of size W.

Input: Three integers c, x and p where the x =
∑n−1

i=0 xi2
i.

Output: s = cx mod p.
1: procedure modular_exponentiation(c, x, p)
2: t[1]← c
3: for u← 1 to 2W−1 − 1 do
4: t[2 · u+ 1]← c · (t[2 · u− 1])2 mod p

5: s← 0, e← n− 1
6: while e ≥ 0 do
7: n←W
8: u← xe · · ·xe−W
9: while u1 6= 0 do

10: n← n− 1, u← right_shift(u,1)

11: for i← 1 to n do
12: s← s · s mod p

13: s← t[u] · s mod p
14: e← e− n
15: while e ≥ 0 and xe = 0 do
16: s← s · s mod p, e← e− 1

17: return s

demonstrate this additional source leakage in Trace 2 of Figure 6 by monitoring the executions of
the modular multiplication code executed by OpenPGP.js during an ElGamal decryption operation.

8 Conclusion

In this paper we present a method for implementing an LLC-based Prime+Probe attack on an
multiple cryptographic libraries ranging from ElGamal to state-of-the-art Curve25519-based ECDH
using portable code executing inside a sandboxed web browser. We successfully deployed the attack
using a commercial advertisement service that triggers the attack code from third-party web sites.
When users navigate to these web sites, the attack code is executed in the users’ browsers and
starts monitoring the memory access patterns. To our knowledge, this is the first demonstration of
a drive-by cache attack, and the first portable cryptographic side channel attack.

Unlike prior works, our attack target is implemented using a portable, non-native code. Yet,
even without the knowledge of the target’s memory layout, the attack successfully extracts the
target’s ElGamal and ECDH keys. Finally, we show that in spite of their secure design and the
limited control users have, Chromebooks are vulnerable to cache based attacks.
Countermeasures. To write a side-channel resistant code, one has to use a constant-time imple-
mentation that does not perform any secret dependent branches and memory accesses. Techniques
for developing constant-time implementations have been explored, e.g. in Bernstein et al. [8]. These
approaches can be tricky to get right [74], and even when correctly implemented, the implemen-
tation is fragile and can fail to achieve protection when used on different hardware [13] or with
different compilers [39]. Using constant-time techniques in JIT-compiled environments is an unex-
plored area that we leave for future work. Until then, the only secure way to perform cryptographic
operations in JavaScript is to delegate them to the browser so that they can be executed using a

24

0

5

10

15

20

0 20 40 60 80 100 120

Tr
ac
e
nu

m
be

r

Time (ms)

Figure 6: Cache accesses as detected by the attacker during ElGamal decryption by OpenPGP.js.
The intensity of the green color represents the number of cache misses. Traces 11 and 19 contains
cache misses observed by the attacker during the multiplication operations of the modular expo-
nentiation. Trace 2 is the result of monitoring (via code-cache misses) the execution of the modular
multiplication code during an ElGamal decryption operation. Notice the different intervals between
the multiplications leak the location of sequences of zero bits.

native code implementation. Indeed, modern Browsers are equipped with WebCrypto API [70] that
allows JavaScript to execute some cryptographic operations (though not, yet, elliptic-curve cryp-
tography) using native, carefully designed and deterministically compiled implementations, such as
BoringSSL [27] used by Google Chrome.
Limitations. The process of constructing eviction sets as described in Section 3 depends on
the cache structure and eviction policy: in particular, an inclusive LLC, and an LRU (or similar)
eviction policy. While both assumptions hold for modern Intel CPUs, other vendors may differ.
Some of our attacks (Section 5) requires only a few minutes of sampling time (corresponding to
about a thousand decryption operations), and suggest a realistic threat to affected systems that
conduct frequent decryption operations. Others (Section 6) requires over an hour of sampling time,
but should none the less indicate that observable leakage is prevalent across diverse cryptographic
algorithms and implementations, and is expoitable by portable code via drive-by attacks.

Thus, the threat of cache timing side-channel attacks from sandboxed portable code must be con-
sidered, and mitigated, in the design of modern systems where such code is trivially controlled by
attackers. We leave addressing these challenges as future work.

Acknowledgments

This research was partially inspired by unpublished work on portable cache attacks done jointly
with Ethan Heilman, Perry Hung, Taesoo Kim and Andrew Meyer.

Daniel Genkin, Lev Pachmanov and Eran Tromer are members of the Check Point Institute
for Information Security. Yuval Yarom performed part of this work as a visiting scholar at the
University of Pennsylvania.

This work was supported by the Australian Department of Education and Training through an
Endeavour Research Fellowship; by the Blavatnik Interdisciplinary Cyber Research Center (ICRC);
by the Check Point Institute for Information Security; by the Defense Advanced Research Project
Agency (DARPA) and Army Research Office (ARO) under Contract #W911NF-15-C-0236; by the
Israeli Ministry of Science and Technology; by the Israeli Centers of Research Excellence I-CORE

25

program (center 4/11); by the Leona M. & Harry B. Helmsley Charitable Trust; by NSF awards
#CNS-1445424 and #CCF-1423306; by the 2017-2018 Rothschild Postdoctoral Fellowship; by the
Warren Center for Network and Data Sciences; by the financial assistance award 70NANB15H328
from the U.S. Department of Commerce, National Institute of Standards and Technology; and by
the Defense Advanced Research Project Agency (DARPA) under Contract #FA8650-16-C-7622.

Any opinions, findings, and conclusions or recommendations expressed are those of the authors
and do not necessarily reflect the views of ARO, DARPA, NSF, the U.S. Government or other
sponsors.

References

[1] Onur Acıiçmez, Billy Bob Brumley, and Philipp Grabher. 2010. New Results on Instruction
Cache Attacks. In CHES. 110–124.

[2] Onur Acıiçmez, Shay Gueron, and Jean-Pierre Seifert. 2007. New Branch Prediction Vulnera-
bilities in OpenSSL and Necessary Software Countermeasures. In IMA Int. Conf. 185–203.

[3] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. 2007. Predicting Secret Keys Via
Branch Prediction. In CT-RSA. 225–242.

[4] Onur Acıiçmez and Werner Schindler. 2008. A Vulnerability in RSA Implementations Due to
Instruction Cache Analysis and Its Demonstration on OpenSSL. In CT-RSA. 256–273.

[5] Cedric Alfonsi, Remy Bertot, Kevin Muller, and Diego Lendoiro. 2016. passbolt: open source,
self-hosted, OpenPGP based password manager. https://www.passbolt.com/. (2016).

[6] Daniel J. Bernstein. 2005. Cache-timing attacks on AES. (2005). http://cr.yp.to/papers.
html#cachetiming.

[7] Daniel J. Bernstein. 2006. Curve25519: New Diffie-Hellman Speed Records. In PKC. 207–228.

[8] Daniel J. Bernstein, Tanja Lange, and Peter Schwabe. 2012. The Security Impact of a New
Cryptographic Library. In LATINCRYPT. 159–176.

[9] David Brumley and Dan Boneh. 2005. Remote timing attacks are practical. Computer Networks
48, 5 (2005), 701–716.

[10] Yuriy Bulygin. 2008. CPU Side-Channels vs. Virtualization Malware: the Good, the Bad or
the Ugly. In ToorCon.

[11] Bart Butler. 2017. OpenPGP.js: OpenPGP JavaScript Implementation. https://openpgpjs.
org/. (2017).

[12] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer. 2007. OpenPGP Message
Format. RFC 4880. (Nov. 2007).

[13] David Cock, Qian Ge, Toby C. Murray, and Gernot Heiser. 2014. The Last Mile: An Empirical
Study of Timing Channels on seL4. In ACM SIGSAC. 570–581.

[14] Jonathan Corbet. 2015. Pagemap: security fixes vs. ABI compatibility. https://lwn.net/
Articles/642069/. (April 2015).

26

https://www.passbolt.com/
http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
https://openpgpjs.org/
https://openpgpjs.org/
https://lwn.net/Articles/642069/
https://lwn.net/Articles/642069/

[15] Whitfield Diffie and Martin E. Hellman. 1976. New directions in cryptography. IEEE Trans.
Information Theory 22, 6 (1976), 644–654.

[16] Drulac. 2017. wrapper to encrypt and sign socket.io messages. https://github.com/Drulac/
socket.io-with-PGP. (2017).

[17] E2EMail Organization. 2016. E2EMail: A Gmail client that exchanges OpenPGP mail. https:
//github.com/e2email-org/e2email. (2016).

[18] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 4 (1985), 469–472.

[19] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael B. Abu-Ghazaleh. 2016. Understanding and
Mitigating Covert Channels Through Branch Predictors. TACO 13, 1 (2016), 10:1–10:23.

[20] FlowCrypt Lim. 2017. CryptUp PGP browser extension. https://cryptup.org/. (2017).

[21] Sean Gallagher. 2013. Why the NSA loves Google’s Chromebook. https://arstechnica.
com/information-technology/2013/09/why-the-nsa-loves-googles-chromebook/. (Sept.
2013).

[22] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. 2016. A Survey of Microarchitectural
Timing Attacks and Countermeasures on Contemporary Hardware. Journal of Cryptographic
Engineering - (Dec. 2016), 1–27.

[23] Daniel Genkin, Lev Pachmanov, Itamar Pipman, and Eran Tromer. 2015. Stealing Keys from
PCs using a Radio: Cheap Electromagnetic Attacks on Windowed Exponentiation. In CHES.
207–228.

[24] Daniel Genkin, Adi Shamir, and Eran Tromer. 2014. RSA Key Extraction via Low-Bandwidth
Acoustic Cryptanalysis. In CRYPTO. 444–461.

[25] Google Inc. 2009. Security Built-In. http://static.googleusercontent.com/media/
www.google.com/en/us/intl/en/chrome/assets/business/chromebook/downloads/
chromebook-security-built-in.pdf. (2009).

[26] Google Inc. 2013. Portable Native Client. https://developer.chrome.com/native-client.
(2013).

[27] Google Inc. 2014. BoringSSL - The SSL library in Chrome/Chromium and Android. https:
//opensource.google.com/projects/boringssl. (2014).

[28] Google Inc. 2014. End-To-End: A a crypto library to encrypt, decrypt, digital sign, and verify
signed messages. https://github.com/google/end-to-end. (2014).

[29] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Christiano Giuffrida. 2017. ASLR
on the line: Practical cache attacks on the MMU. NDSS (2017).

[30] Daniel Gruss, Clémentine Maurice, and Stefan Mangard. 2016. Rowhammer.js: A Remote
Software-Induced Fault Attack in JavaScript. In DIMVA. 300–321.

[31] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. 2015. Cache Template Attacks: Au-
tomating Attacks on Inclusive Last-Level Caches. In USENIX. 897–912.

27

https://github.com/Drulac/socket.io-with-PGP
https://github.com/Drulac/socket.io-with-PGP
https://github.com/e2email-org/e2email
https://github.com/e2email-org/e2email
https://cryptup.org/
https://arstechnica.com/information-technology/2013/09/why-the-nsa-loves-googles-chromebook/
https://arstechnica.com/information-technology/2013/09/why-the-nsa-loves-googles-chromebook/
http://static.googleusercontent.com/media/www.google.com/en/us/intl/en/chrome/assets/business/chromebook/downloads/chromebook-security-built-in.pdf
http://static.googleusercontent.com/media/www.google.com/en/us/intl/en/chrome/assets/business/chromebook/downloads/chromebook-security-built-in.pdf
http://static.googleusercontent.com/media/www.google.com/en/us/intl/en/chrome/assets/business/chromebook/downloads/chromebook-security-built-in.pdf
https://developer.chrome.com/native-client
https://opensource.google.com/projects/boringssl
https://opensource.google.com/projects/boringssl
https://github.com/google/end-to-end

[32] Ralf Hund, Carsten Willems, and Thorsten Holz. 2013. Practical Timing Side Channel Attacks
Against Kernel Space ASLR. In NDSS.

[33] Mehmet Sinan İnci, Berk Gülmezoglu, Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar.
2016. Cache Attacks Enable Bulk Key Recovery on the Cloud. In CHES. 368–388.

[34] Mehmet Sinan Inci, Berk Gülmezoglu, Gorka Irazoqui Apecechea, Thomas Eisenbarth, and
Berk Sunar. 2015. Seriously, get off my cloud! Cross-VM RSA Key Recovery in a Public
Cloud. IACR Cryptology ePrint Archive (2015), 898.

[35] Fedor Indutny. 2017. Fast Elliptic Curve Cryptography in plain JavaScript. https://github.
com/indutny/elliptic. (2017).

[36] Fedor Indutny and Christopher Jeffrey. 2017. Bcoin - JavaScript Bitcoin library for node.js and
browsers. http://bcoin.io/. (2017).

[37] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. 2015. Systematic Reverse Engineering
of Cache Slice Selection in Intel Processors. In DSD. 629–636.

[38] Marc Joye and Sung-Ming Yen. 2002. The Montgomery Powering Ladder. In CHES. 291–302.

[39] Thierry Kaufmann, Hervé Pelletier, Serge Vaudenay, and Karine Villegas. 2016. When
Constant-Time Source Yields Variable-Time Binary: Exploiting Curve25519-donna Built with
MSVC 2015. In CANS. 573–582.

[40] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee, Chris Wilker-
son, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors. In ISCA. 361–372.

[41] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Ste-
fan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2018. Spectre Attacks:
Exploiting Speculative Execution. ArXiv e-prints (2018). arXiv:1801.01203

[42] Eric S. Lander, Robert Langridge, and Damian M. Saccocio. 1991. Mapping and Interpreting
Biological Information. Commun. ACM 34, 11 (Nov. 1991), 32–39.

[43] A. Langley, M. Hamburg, and S. Turner. 2016. Elliptic Curves for Security. RFC 7748. (2016).
http://www.ietf.org/rfc/rfc7748.txt

[44] Vladimir Iosifovich Levenshtein. 1966. Binary Codes Capable of Correcting Deletions, Inser-
tions and Reversals. Soviet Physics Doklady 10 (1966), 707.

[45] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan Mangard. 2016.
ARMageddon: Cache Attacks on Mobile Devices. In USENIX. 549–564.

[46] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard,
Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown. ArXiv e-
prints (2018). arXiv:1801.01207

[47] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-level cache
side-channel attacks are practical. In IEEE Symposium on Security and Privacy. 605–622.

[48] Christian Lundkvist. 2015. Lightweight JS Wallet for Node and the browser. https://github.
com/ConsenSys/eth-lightwallet. (2015).

28

https://github.com/indutny/elliptic
https://github.com/indutny/elliptic
http://bcoin.io/
http://www.ietf.org/rfc/rfc7748.txt
https://github.com/ConsenSys/eth-lightwallet
https://github.com/ConsenSys/eth-lightwallet

[49] Clémentine Maurice, Nicolas Le Scouarnec, Christoph Neumann, Olivier Heen, and Aurélien
Francillon. 2015. Reverse Engineering Intel Last-Level Cache Complex Addressing Using Per-
formance Counters. In RAID. 48–65.

[50] Clémentine Maurice, Manuel Weber, Michael Schwartz, Lukas Giner, Daniel Gruss, Carlo Al-
berto Boano, Kay Römer, and Stefan Mangard. 2017. Hello from the Other Side: SSH over
Robust Cache Covert Channels in the Cloud. In NDSS.

[51] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. 1996. Handbook of Applied
Cryptography (1st ed.). CRC Press.

[52] Peter L. Montgomery. 1987. Speeding the Pollard and elliptic curve methods of factorization.
Math. Comp. 48, 177 (1987), 243–243.

[53] Richard Moore. 2014. Complete Ethereum wallet implementation and library in JavaScript.
https://github.com/ethers-io/ethers.js. (2014).

[54] npm Inc. 2017. Package manager for Node.js. https://www.npmjs.com. (2017).

[55] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai. 2000. Elliptic Curves with the
Montgomery-Form and Their Cryptographic Applications. In PKC. 238–257.

[56] Paul C. van Oorschot and Michael J. Wiener. 1996. On Diffie-Hellman Key Agreement with
Short Exponents. In EUROCRYPT. 332–343.

[57] Yossef Oren, Vasileios P. Kemerlis, Simha Sethumadhavan, and Angelos D. Keromytis. 2015.
The Spy in the Sandbox: Practical Cache Attacks in JavaScript and their Implications. In
ACM SIGSAC. 1406–1418.

[58] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Countermeasures:
The Case of AES. In CT-RSA. 1–20.

[59] Colin Percival. 2005. Cache missing for fun and profit. (2005). Presented at BSDCan. http:
//www.daemonology.net/hyperthreading-considered-harmful.

[60] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009. Hey, You, Get
Off of My Cloud! Exploring Information Leakage in Third-Party Compute Clouds. In CCS.
199–212.

[61] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. 1978. A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems. Commun. ACM 21, 2 (1978), 120–126.

[62] Michael Schwarz, Clémentine Maurice, Daniel Gruss, and Stefan Mangard. 2017. Fantastic
Timers and Where to Find Them: High-Resolution Microarchitectural Attacks in JavaScript.
In Financial Cryptography and Data Security - 21st International Conference, FC 2017, Sliema,
Malta, April 3-7, 2017, Revised Selected Papers. 247–267.

[63] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks. In DIMVA. 3–24.

[64] Fabian Sievers, Andreas Wilm, David Dineen, Toby J Gibson, Kevin Karplus, Weizhong Li,
Rodrigo Lopez, Hamish McWilliam, Michael Remmert, Johannes Söding, and others. 2011.
Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal
Omega. Molecular systems biology 7, 1 (2011), 539.

29

https://github.com/ethers-io/ethers.js
https://www.npmjs.com
http://www.daemonology.net/hyperthreading-considered-harmful
http://www.daemonology.net/hyperthreading-considered-harmful

[65] Natasha Singer. 2017. How Google Took Over the Classroom. https://www.nytimes.com/
2017/05/13/technology/google-education-chromebooks-schools.html. (May 2017).

[66] The GnuPG e.V. 2015. GNU Privacy Guard. https://gnupg.org. (2015).

[67] Eran Tromer, Dag Arne Osvik, and Adi Shamir. 2010. Efficient Cache Attacks on AES, and
Countermeasures. J. Cryptology 23, 1 (2010), 37–71.

[68] Yukiyasu Tsunoo, Teruo Saito, Tomoyasu Suzaki, Maki Shigeri, and Hiroshi Miyauchi. 2003.
Cryptanalysis of DES Implemented on Computers with Cache. In CHES. 62–76.

[69] W3C Community Group. 2015. WebAssembly. http://webassembly.org. (2015).

[70] World Wide Web Consortium (W3C). 2012. Web Cryptography API. https://www.w3.org/
TR/WebCryptoAPI/. (2012).

[71] Yahoo! Inc. 2016. Yahoo End-To-End. https://github.com/yahoo/end-to-end. (2016).

[72] Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In USENIX. 719–732.

[73] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Gernot Heiser. 2015. Mapping the Intel
Last-Level Cache. IACR Cryptology ePrint Archive 2015/905. (2015).

[74] Yuval Yarom, Daniel Genkin, and Nadia Heninger. 2017. CacheBleed: a timing attack on
OpenSSL constant-time RSA. J. Cryptographic Engineering 7, 2 (2017), 99–112.

[75] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native Client: A Sandbox for
Portable, Untrusted x86 Native Code. In IEEE Symposium on Security and Privacy. 79–93.

[76] Andy Yen and Bart Butler. 2017. ProtonMail: An easy to use secure email service with built-in
end-to-end encryption. https://protonmail.com/. (2017).

[77] Yours Inc. 2016. JavaScript implementation of Bitcoin. https://github.com/yoursnetwork/
yours-bitcoin. (2016).

[78] Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. 2012. Cross-VM side
channels and their use to extract private keys. In CCS. 305–316.

30

https://www.nytimes.com/2017/05/13/technology/google-education-chromebooks-schools.html
https://www.nytimes.com/2017/05/13/technology/google-education-chromebooks-schools.html
https://gnupg.org
http://webassembly.org
https://www.w3.org/TR/WebCryptoAPI/
https://www.w3.org/TR/WebCryptoAPI/
https://github.com/yahoo/end-to-end
https://protonmail.com/
https://github.com/yoursnetwork/yours-bitcoin
https://github.com/yoursnetwork/yours-bitcoin

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Targeted Hardware and Software
	1.3 Related Work

	2 Preliminaries
	2.1 Portable Code Execution
	2.2 Memory Hierarchy of Intel CPUs

	3 Constructing Eviction Sets
	3.1 Methodology
	3.2 Implementation

	4 Covert Channel
	5 Attacking Elliptic
	5.1 Deployment
	5.2 Key extraction

	6 Attacking End-to-End
	6.1 ElGamal Implementation
	6.2 Key extraction
	6.3 The Online Phase
	6.4 The Offline Phase
	6.4.1 Identifying Traces of Multipliers
	6.4.2 Generating Annotated Multiplication Sequences
	6.4.3 Key Extraction

	6.5 Overall Attack Performance
	6.6 Attacking RSA
	6.7 Attacking Other Devices

	7 Attacking OpenPGP.js
	8 Conclusion
	Acknowledgments
	References
	Appendices

