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Three-dimensional eukaryotic genomic
organization is strongly correlated with
codon usage expression and function
Alon Diament1, Ron Y. Pinter2 & Tamir Tuller1,3

It has been shown that the distribution of genes in eukaryotic genomes is not random;

however, formerly reported relations between gene function and genomic organization were

relatively weak. Previous studies have demonstrated that codon usage bias is related to all

stages of gene expression and to protein function. Here we apply a novel tool for assessing

functional relatedness, codon usage frequency similarity (CUFS), which measures similarity

between genes in terms of codon and amino acid usage. By analyzing chromosome

conformation capture data, describing the three-dimensional (3D) conformation of the DNA,

we show that the functional similarity between genes captured by CUFS is directly and very

strongly correlated with their 3D distance in Saccharomyces cerevisiae, Schizosaccharomyces

pombe, Arabidopsis thaliana, mouse and human. This emphasizes the importance of three-

dimensional genomic localization in eukaryotes and indicates that codon usage is tightly

linked to genome architecture.
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U
nderstanding the importance of genome architecture, the
arrangement of genes within the genome and how this
organization evolved has been intensively studied in

recent years. It has become evident that the genomic architecture
and thus the three-dimensional organization of genes in the
genome are far from random1–4. It is well-established that
genomes tend to have specific conformations, typical organization
during different steps of the cell cycle and specific regions that are
more efficiently transcribed5–8. Thus, many previous studies have
suggested that constraints on gene expression and function have
shaped the organization of genes in the genome. Due to lack of
appropriate data related to the three-dimensional genomic
organization, earlier studies considered the one-dimensional
(linear) organization of genomes, and many of them
emphasized the higher levels of genomic organization in
prokaryotes compared with eukaryotes; for example, it is
known that prokaryotes (unlike most eukaryotes) tend to
contain operons of co-transcribed genes with related function9.

Recently, a new experimental approach for studying the
three-dimensional (3D) architecture of genomes, Chromosome
Conformation Capture (3C)10, has enabled far more accurate
characterization of genomic spatial organization. Indeed, 3C and
its derivative hi-throughput variants (such as Hi-C11) have
yielded a much improved picture of the 3D architecture of
genomes in recent years. The general protocol consists of the
following steps: cross-linking of interacting DNA segments;
digestion using a restriction enzyme such as HindIII;
circularization by ligation—so that a large portion of the
products include a ring with fragments from both ends of the
cross-linked interacting DNA pair; and finally, reversal of the cross
links. The next steps differ from method to method, and ultimately
conclude with the sequencing and mapping of DNA fragments to
their original positions on the chromosomes10–13. Specifically,
such whole-genome contact maps have recently been published,
including those of Homo sapiens (HS)11, Saccharomyces cerevisiae
(SC)12, Schizosaccharomyces pombe (SP)13, Caulobacter
crescentus14, Drosophila melanogaster15, Mus musculus (MM)16,
Arabidopsis thaliana (AT)17 and Plasmodium falciparum18.

In addition to an enhanced view of the global genome
architecture of the aforementioned organisms, these studies
revealed some associations with functional properties of genes
and other genomic features. For example, it was shown that
centromeres, telomeres, transfer RNAs (tRNAs), chromosomal
breakpoints and early replication origins in SC12 tend to be co-
localized. In SP, significant co-localization was shown for highly
expressed genes, G2 co-regulated genes and some genes that were
functionally related, according to gene ontology (GO) terms13. In
humans, clustering of contact maps revealed a transcriptionally
active, GC-rich cluster, alongside two GC-poor clusters with low
transcription activity6,11. Moreover, recently a correlation has
been suggested between transcription factor network models and
distances between average chromosome positions in human
cells19. A series of studies further reported the co-localization of
each of the following groups in SC: cohesin binding sites20,
co-expressed genes, some identified GO terms21 and gene targets
of the same transcription factor22. Recently, an analysis of the
genomic organization of the unique P. falciparum parasite
throughout its cell cycle confirmed a relation between
chromosome conformation and gene expression18.

Here we hypothesize that genes with shared function and
expression levels will tend to be close in 3D space, which will
facilitate their co-transcription by shared transcription factors
and optimize chromatin remodelling. We suggest that the reason
that the previously observed association between gene function
and 3D genomic organization was relatively weak is on account of
the measures used to assess gene functional similarity, that were

not sufficiently sensitive. Here we apply a novel unbiased measure
of gene function/expression similarity, based on the similarity in
codon distribution between genes, to reveal a strong link between
3D localization and function in eukaryotes. The results presented
here provide the first global analysis in single-gene resolution of
the spatial organization in multiple eukaryotes.

Results
The codon usage frequency similarity as functional distance.
Previous studies reported various significant, yet relatively weak
associations between the 3D genomic distance (3DGD) and
various specific functional aspects. These weak associations can
be attributed to five major reasons that are not mutually exclusive:
first, all the databases related to gene function are highly partial;
there are genes with profuse information regarding their function,
while others are yet to be explored, or include partial and
sometimes erroneous data. Second, all large scale experimental
biological data include various sources of noise and bias; third,
most of the information related to functional attributes is discrete
or binary (for example, the gene has/does not have a certain
function or attribute) and not continuous. Fourth, functions are
often subjectively defined, and are based on the specific experi-
ence and knowledge of the researcher(s) reporting them, and on
the nomenclature that they prefer to use. Finally, most approa-
ches used in the context of functional similarities are not metrics
in the strict sense, and can be hard to quantify and interpret.

Here we propose a novel measure of functional and expression
similarity between genes, the codon usage frequency similarity
(CUFS), which is based on the frequency of all codons within
genes, and thus also reflects similarities in amino acid usage.
We utilize this measure to study the relation between functional
and genomic 3D distance. The measure is based on the Endres–
Schindelin metric23, which in turn is based on the Kullback–
Leibler divergence for information gain—a measure widely used
in the information theory field for comparing probability
distributions (see Methods). Briefly, given a pair of open
reading frames (ORFs) the CUFS returns a distance estimation
that is related to the codon content and distribution in the two
genes: the more similar genes are in terms of the frequency of
their codons (and amino acids), the shorter the distance between
them. CUFS can thus be computed for any pair of genes (based
solely on their genomic sequences), is not based on subjective
definitions, is expected to be less biased/noisy than other large
scale genomic data (sequencing errors are relatively rare in
comparison to noise/bias in measurements of gene expression
and physical interactions), and is a continuous measure that may
be considered a metric.

Most importantly, CUFS clearly measures various aspects of
functional similarity and can serve as a proxy for such similarity:
First, it incorporates similarity in amino acid content between
gene pairs, which is a property strongly connected to function24.
Second, as can be seen in Supplementary Fig. 1, CUFS is strongly
related to various gene features, among them gene expression
level, protein–protein interaction (PPI) graph distance and GO
terminology distance, as can be expected from a measure of
functional similarity (technical details regarding how these
measures were computed appear in the Methods section).
Finally, it is clear that codon bias is related to various aspects
of gene expression regulation25–29, which should be related, at
least partially, to gene function in various ways30. For example,
recently it was shown that non-optimal codon bias, in terms of
adaptation to the tRNA pool, is a mechanism to achieve circadian
clock31,32. Furthermore, a recent study suggested that
transcription factors located within exons provide additional
evolutionary constraints that shape the codon usage bias (CUB)
of genes33.
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It is important to emphasize that despite the fact that CUFS is
known to be also related to post-transcriptional aspects of gene
expression, and that genomic organization of genes may be
related to transcription optimization, the strong relation between
CUFS and functionality gives rise to a strong correlation with
3DGD between genes, as reported in the following sections. For
example (see Fig. 1), one aspect of genomic organization and gene
function is expression levels; genes with similar transcriptional
levels are expected to be clustered in the 3D genomic
organization5–8,13; for instance, highly expressed genes are
expected to be clustered in regions that enable more efficient
transcription and/or better transport of the messenger RNA
(mRNA) out of the nucleus (Fig. 1a); we also expect that genes
with similar translation levels (that tend to have similar
transcription levels, see34) will have similar CUFS; for example,
highly expressed genes usually undergo stronger selection for
codons that are more adapted to the intracellular tRNA pool27

(Fig. 1b); cumulatively, these aspects contribute to the correlation
between CUFS and 3DGD (Fig. 1c). To summarize our objective:
CUFS is shown to be strongly connected to and a good proxy of
gene expression and function (Fig. 1d). We aim to show that the

function and expression of genes are strongly related to their
genomic organization; if this is indeed true, we expect a strong
relation, and that evolution will shape CUFS and 3DGD in a
coordinated way. Indeed we observe that there is a strong
correlation between function and expression of genes, as reflected
in CUFS, and their 3D genomic organization.

A strong correlation between 3DGD and CUFS. In this work,
we focus on the preeminently studied mammalian species—MM
and HS, known to have diverged 65 million years ago35, as well as
a fungal pair—SC and SP, two yeast species known to have
diverged 350–1,000 million years ago36, and a single plant—AT.
For this purpose, we analyzed recently published whole-genome
Hi-C contact maps11–13,16,17 at single-gene resolution (see also
Supplementary Table 1).

We utilized the contact maps from these studies to construct a
network/graph with protein-coding genes as nodes and edges
depicting contacts between segments in the vicinity of these genes
(generated by the Hi-C approach). To this end, each gene was
mapped to its closest Hi-C segment, measured from the centre of
the gene (see Methods). This graph representation can be used to
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Figure 1 | General research approach. (a) An illustration of examples of hypothetical evolutionary processes that contribute to the observed strong

correlation of CUFS and genomic distance. Genes with similar transcription levels are expected to be clustered in the 3D genomic organization

(for example, highly expressed genes are clustered in efficiently transcribed and/or transport regions as these may be a more accessible part of the DNA,

and/or in regions that tend to be closer to the nuclear pore), and thus are inclined to be closer in the 3D genomic organization. (b) We expect that genes

with similar translation levels (that tend to have similar transcription levels) will have similar CUB; for example, highly expressed genes usually undergo

stronger selection for codons that are more adapted to the intracellular tRNA pool to improve translation efficiency27, and thus have more similar CUB.

(c) Eventually, a correlation between CUFS and 3D genomic distance is observed, although CUFS is related to translation and not only to transcription.

(d) Plan of study: CUFS is known to be related and thus to evolve with gene expression and functionality (left arrow); we want to show that genes

functionality and expression are strongly related to their genomic organization (right arrow); thus, by showing that there is a strong relation and adaptation

between CUFS and 3D genomic distance (orange arrow), we actually show that there is strong correlation between the functionality and expression of

genes and their 3D genomic organization. (e) Representation of the data. The diagram displays a single measured interaction between two DNA fragments,

based on Hi-C data. Each arrow is a protein-coding gene, as well as a node on the graph. The interaction was mapped to be between the two nodes

(arrows) closest to the point of interaction. The orange arrow is a reference node for all distances in the diagram (denoted in orange numbers on

each node); see further details in Methods section.
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compute a measure of 3DGD between each pair of genes; for
example, genes corresponding to segments with Hi-C contacts are
at the lowest distance rank (1 unit); pairs of genes that are not
directly connected but are both connected to the same third gene
have a larger distance rank (2 units), and so forth (see Fig. 1e).

It is important to mention that this graph representation was
selected after a careful evaluation process that demonstrated that
it is more robust to noise/biases in the Hi-C data than alternative
representations. For example, we constructed a non-binary,
weighted graph/network based on the same data as the binary
graph, where edges’ values represent distances that are a function
of the Hi-C reads (see Supplementary Methods). We compared
the genomic distances on both graphs to two previously published
3D models of complete fungi genomes12,13 (see Supplementary
Methods). The two models were constructed by solving a polymer
folding problem, employing non-linear constrained optimization
obtained from the same Hi-C experiments our analyses are based
upon. It is evident that the binary graph is more consistent with
the 3D models than the weighted graph (SC: r¼ 0.56 versus
r¼ 0.21, respectively, Po10� 323, two-tailed t-test; SP: r¼ 0.22
versus r¼ 0.05, respectively, Po10� 323; Supplementary Fig. 2).
We also tested the robustness of the models to noise, by
generating pairs of models from partial sets of data and examined
their consistency with each other. The binary model was
considerably more consistent (r¼ 0.91, average on five
organisms) than either the weighted model (r¼ 0.55) or raw
Hi-C reads (r¼ 0.40; Supplementary Fig. 2). Intuitively, the
relative robustness of the method may be related to the fact that
all the edges (and thus all Hi-C 3D distances) are based only on
very reliable Hi-C relations, and that the binary discretization
filters noise/biases.

Next, we divided all gene pairs obtained in this manner into n
bins with similar CUFS values; the number of bins (n¼ 2� 103 in
fungi, n¼ 32� 103 in mammals and n¼ 64� 103 in AT) was
adjusted to account for the increase in genome size (see also
Supplementary Table 2). The following step was to compute the
mean genomic distance between gene pairs in each bin, and
obtain the Spearman correlation between the 3DGD and CUFS
(Fig. 2a). It should be noted that the large number of pair-
distance values (B17� 106, for example, in SC) enables us to use
a large n for binning, while reducing biological noise through
averaging.

The correlation observed between CUFS and 3DGD (Fig. 2a)
was very high for all five organisms: SP (r¼ 0.74; Po10� 323;
n¼ 2� 103, two-tailed t-test), SC (r¼ 0.85; Po10� 323;
n¼ 2� 103), AT (r¼ 0.75, Po10� 323; n¼ 64� 103), MM
(r¼ 0.96; Po10� 323; n¼ 32� 103) and HS (r¼ 0.87;
Po10� 323; n¼ 32� 103). The differences between the correla-
tions we obtained in the specific organisms could reflect not only
biological properties, but also aspects related to the different
experimental procedures employed when the data were acquired
(see Methods). As an example, correlations in mouse could be
higher due to the better quality of this data set (see
Supplementary Note 1). Despite the strong correlations, we
observed occasional non-monotonic regions at the extreme ends
of the plots, related to a small fraction of the genes and discussed
in Supplementary Note 2. While we could also obtain significant
correlations between 3DGD and other gene sequence features,
such as GC content (Supplementary Fig. 3), as well as functional
experimental measurements (Supplementary Fig. 4), CUFS
outperformed these regardless of the number of bins used when
averaging across the five organisms (Supplementary Fig. 5).
Moreover, the P values of the correlations for different bin
numbers and for raw data are identical.

To better understand the different components that compose
CUFS, we studied the correlations of synonymous codon usage

(synCUFS, Fig. 2b), amino acid frequencies (AAFS, Fig. 2c), and
GC content in the 3rd codon position (GC3, Supplementary
Fig. 3). It is evident that the relation between synCUFS and
3DGD is very similar to the one observed for CUFS, with the
former being more monotone in the higher eukaryotes (plant
and mammals). AAFS, on the other hand, displays a non-
monotonicity in the form of a tail of decreasing 3D distances in
the higher eukaryotes. The correlation observed for AAFS is also
more varied between organisms. CUFS is more strongly
correlated than synCUFS in SC and mouse, and more strongly
correlated than AAFS in SP, mouse and human. Plant and
mammals also show a decreasing 3DGD profile with the average
GC3 content of gene pairs, unlike the fungi. When studying the
similarity in GC3 content between pairs of genes (see Methods),
we observe positive correlations similar to CUFS, with the
exception of AT. This was expected, as GC3 content and codon
usage are known to be correlated. It should be noted, that both
synonymous and non-synonymous features of the ORF are
known to be related to protein function and expression31–33,37–41;
thus, our choice of CUFS attempts to capture and integrate as
many as possible of the underlying signals in the coding sequence,
for a better representation of the functional interactions between
genes.

Genomic organization extends beyond linear gene order. To
demonstrate that the correlations we obtained are not merely the
product of 1D gene organization along the chromosomes, but
that the chromosomal 3D location and the interaction between
chromosomes also play a role, we employed a novel statistical
test—P3D. This test includes a conservative empirical null
model—cyclic chromosome shift (see Fig. 3 and Methods). The
randomized model preserves two major properties in genomic
space: (a) The spatial conformation of the chromosomes (that is,
graph edges) is left intact, while the genes rotate around it
(Fig. 3a); (b) The linear adjacency between genes along the
chromosomes is preserved. Thus, if the correlation observed
between CUFS and 3DGD is significantly higher than that
expected by the cyclic chromosome shift random model, we can
reject the hypothesis that the observed correlation between
function and 3DGD is mainly due to linear (1D) distances along
chromosomes. Indeed, as can be seen in Fig. 3b,c P3Do10� 3

in SC and in HS (1,000 samples drawn). P3D values for other
correlations are similar and appear in Fig. 2.

We performed an additional control, testing for adjacent genes
that were associated with the same Hi-C bin when constructing
our model, and may contain significantly low CUFS (when
compared with samples from the cyclic shift model). Such co-
localized CUFS clusters may add bias to the reported correlation
with 3DGD (through adjacent genes being assigned with identical
Hi-C edges), but will not be controlled for by cyclic chromosome
shift. This scenario becomes more plausible as the resolution of
the Hi-C maps decreases and the number of Hi-C bins assigned
with multiple genes increases. However, only a small percentage
(1–5%) of Hi-C bins was found to have significant CUFS
(P3Do0.05, SP: 34 bins; SC: 49 bins; AT: 112 bins; MM: 281 bins;
HS: 105 bins). We confirmed that genes associated with these
Hi-C bins do not contribute more than expected to the
correlation with 3DGD, by excluding them when computing
the correlation (InsigCUFS, see Fig. 3d) and observing that the
correlation is retained (SP: r¼ 0.67; Po10� 323; P3D¼ 0.071;
n¼ 2� 103; SC: r¼ 0.81; Po10� 323; P3D¼ 0.004; n¼ 2� 103;
AT: r¼ 0.71; Po10� 323; P3D¼ 0.036; n¼ 64� 103; MM:
r¼ 0.96; Po10� 323; P3Do10� 3; n¼ 32� 103; HS: r¼ 0.85;
Po10� 323; P3Do10� 3; n¼ 32� 103).

It should be noted that the reported correlations with
3DGD are significantly higher than the ones obtained when
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considering only linear organization (SP: r¼ � 0.06; P¼ 0.007;
P3D¼ 0.985; n¼ 2� 103; SC: r¼ � 0.16; P¼ 1.7� 10� 12;
P3D¼ 0.982; n¼ 2� 103; AT: r¼ � 0.55; Po10� 323; P3Do103;
n¼ 64� 103; MM: r¼ 0.50; Po10� 323; P3D¼ 1.00; n¼ 32� 103;
HS: r¼ 0.56; Po10� 323; P3D¼ 1.00; n¼ 32� 103; Fig. 3e, see the
Supplementary Methods). There is a non-significant, positive
correlation in mammals, no correlation for yeast and a negative
correlation in AT. The correlations obtained when considering
only cis-Hi-C contacts are considerably higher (Fig. 3f), but still
fall short of the correlation for the complete model (incorporating
trans- as well as cis- contacts). Thus, we conclude that the
observed organization of genes based on their function is strongly
connected to the 3D conformation and organization of the
chromosomes.

CUFS correlates more strongly with 3DGD than CUB measures.
To better understand the role of codon usage as reflected in the
3D genomic organization, we performed a similar analysis to the
one presented in the previous sections while employing different
definitions of CUB: the codon adaptation index42 (CAI); the
tRNA adaptation index29 (tAI); the background corrected
effective number of codons43 (bcENC); the codon deviation
coefficient44 (CDC) and the relative codon bias45 (RCB) index
(Fig. 4 and Supplementary Fig. 6). The aforementioned indices
measure the CUB of a single gene relative to a reference (a set of
highly expressed genes42, the tRNA pool29 or mutation bias43–45).
Thus, their definitions need to be extended to describe gene-pair
interactions and to enable comparison with 3DGD and with
CUFS, which inherently describe the relation between pairs of
genes. One approach to do so could be to study the average bias

of pairs of genes (Fig. 4, details in Methods). We observed that
both the CAI and tAI show negative correlations with 3DGD,
implying that highly adapted/biased genes—that also tend to be
highly expressed—are closer spatially and vice versa. Interestingly,
although CUB indices are typically poor predictors of gene
expression in mammals, the correlation with 3DGD is stronger in
human and mouse than in the fungi or plant. Another approach
to extending the definition of these indices is to study the
normalized index distance between pairs of genes (Supplementary
Fig. 6, details in Methods). Since similarly biased genes tend to
have similar expression levels, and since we hypothesize that
genes with similar expression levels tend to be co-localized
spatially, we expect to see a positive correlation between CUB
similarities and 3DGD, which is indeed the case. It should be
noted that this distance definition may place genes that are biased
differently, but to a similar extent, in close proximity, as opposed
to CUFS (they are 1D distances, instead of 64D distance, and
consequently information is lost). We observed that this distance
definition was in general positively correlated with 3DGD.
Specifically, CDC similarity and RCB similarity resulted in
positive correlations in all organisms, albeit lower than those
seen for CUFS and spanned a narrower range of 3DGD values.

Function–location relationships are conserved in evolution.
To better understand the evolutionary properties of function–
location relationships, we focused on the subset of genes that had
orthologues both in SC and SP (3,367 orthologue families; see
Methods), as well as orthologues in human and mouse (15,832
orthologue families). Notably, the CUFS between gene pairs in
different organisms was highly conserved in both organism
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Figure 2 | Correlation between CUFS and 3D genomic distance. (a) Scatter plots of 3D genomic distance (3DGD) versus CUFS for the five

organisms, (2� 103 points for fungi, 64� 103 for A. thaliana and 32� 103 for mammals on account of their genome size). Spearman’s rank correlation,

P3D P values and number of points are reported in parentheses above each plot in this order. Vertical markers denote the top/bottom 5% of values,

so that 90% are contained within them. Bars denote Spearman’s rank correlation coefficient, P values were computed using the cyclic chromosome

shift model (P3D, 1,000 samples drawn); stars mark significant correlations (P3Do0.05). (b) Scatter plots of 3DGD versus synonymous codon usage

frequency similarity (synCUFS). (c) Scatter plots of 3DGD versus amino acid frequency similarity (AAFS).
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groups (HS-versus-MM: r¼ 1.0; Po10� 323; n¼ 32� 103;
SC-versus-SP: r¼ 1.0; Po10� 323; n¼ 2� 103, two-tailed t-test).
In addition, the 3DGD between gene pairs in different organisms
also showed significant correlation (HS-versus-MM: r¼ 0.57;
Po10� 323; n¼ 32� 103; SC-versus-SP: r¼ 0.13; P¼ 5.7� 10� 9;
n¼ 2� 103, two-tailed t-test; Fig. 5); gene pairs in one organism
tend to have similar 3DGD and CUFS to the orthologues in the
second organism. The two mammals, which diverged more
recently than the fungi, show a greater similarity in their genomic
3D architecture. It should be noted that orthologous genes tend to
be more conserved, in terms of sequence and potentially function
than other genes in the genome46.

Importantly, similarity was conserved even when the distribu-
tion of codons in the respective orthologues had diverged (for
example, r¼ 0.53 between the CAI of genes in SC versus their
CAI in SP based on the set of highly expressed SC genes). These
results support the conjecture that both the relative 3D locations
of genes and their CUFS are functionally important: While
relatively large changes in codon bias in the two organisms have

occurred, most functions of the genes that appear in both SC and
SP are similar, and thus the within-organism CUFS and 3DGD in
such genes is conserved in these two species.

Adaptation of the spatial organization to genes’ function. In
evolution, organisms diverge and adapt to their environment, and
thus gene function and genomic organization should evolve
with them. If indeed function and 3D localization are strongly
interconnected, we expect to be able to observe an evolutionary
process between them, as the one property will constrain the
diversification of the other. To test for such evolution for gene
pairs, we compared the correlations obtained above to that of
simulated ‘hybrids’ (for example, CUFS of SC versus 3DGD of SP
and vice versa), while focusing on genes that appear in both
organisms (details in Methods). As can be seen in Fig. 5, the
correlations in the hybrid sets are lower than those observed for
the original genomes. This result supports the conjecture that,
even though the function of the analyzed orthologue families
tends to be maintained, there is still an observed signal of
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adaptation of genes’ organization to their function, and that
evolution tends to shape eukaryotic genomes in a way that
maintains spatial clusters of genes with related functions.

CUFS-3DGD correlation only partially explained by other
nucleotide properties. To further show that indeed codon dis-
tribution is the major explanation for the correlation between
CUFS and 3DGD (rather than alternative properties related to the
nucleotide distribution of genes or the genomic regions further
away from them), we conducted a series of tests. First, we

computed synCUFS on the first 200 codons after the start of each
ORF (synCUFS-f0) to define a measure that is independent of
gene length, unlike the complete-gene synCUFS that may be
affected by gene length. We utilized this measure to perform a
number of tests (Fig. 6, see also the Supplementary Methods). In
the first test, we show that the significant correlation for synCUFS
is preserved in synCUFS-f0 for all organisms and P3D is sig-
nificant for almost all organisms, despite the decrease in the
information it contains (SP: r¼ 0.86, Po10� 323, P3D¼ 0.022;
n¼ 2� 103; SC: r¼ 0.32, Po10� 323, P3D¼ 0.226, n¼ 2� 103;

CAI

3D
G

D

0.2 0.8
4.6

5.6

CAI

3D
G

D

0.1 0.9
2.9

3.2

CAI

3D
G

D

0.5 0.9
4.5

5.7

CAI

3D
G

D

0.4 0.9
1.8

2.9

CAI

3D
G

D

0.5 0.9
1.6

2.0

–1

0

1

C
or

re
la

tio
n

CAI

*
* *

tAI

3D
G

D

0.3 0.6
4.6

5.6

tAI

3D
G

D

0.2 0.7
2.9

3.2

tAI

3D
G

D

(–0.85; 0.006; 64x103)

0.1 0.3
4.5

5.7

tAI

3D
G

D

(–0.98; <10–3; 32x103)

0.1 0.3
1.8

2.9

tAI

3D
G

D

0.3 0.5
1.6

2.0

–1

0

1

C
or

re
la

tio
n

tAI

* * * *

S.pombe S.cerevisiae A.thaliana M.musculus H.sapiens

(–0.53; 0.16; 2x103) (–0.63; 0.033; 2x103) (–0.50; 0.12; 64x103) (–0.99; <10–3; 32x103) (–0.99; 0.001; 32x103)

(–0.96; 0.016; 32x103)(–0.69; 0.049; 2x103)(–0.41; 0.29; 2x103)

Figure 4 | Comparison of CUB measures. (a) Scatter plots of 3D genomic distance (3DGD) versus CAI (average of gene pairs) for the five

organisms. Spearman’s rank correlation, P3D P values and number of points are reported in parentheses above each plot in this order. Vertical

markers denote the top/bottom 5% of values, so that 90% are contained within them. Bars denote Spearman’s rank correlation coefficient, P values

were computed using the cyclic chromosome shift model (P3D, 1,000 samples drawn); stars mark significant correlations (P3Do0.05). (b) Scatter

plots of 3DGD versus tAI (average of gene pairs).

SP CUFS

S
C

 C
U

F
S

0.1 1.0
0.1

1.0

SP 3DGD

S
C

 3
D

G
D

1 18
2.8

3.1

 CUFS

S
P

 3
D

G
D

0.1 1.0
4.5

5.0

 CUFS

S
C

 3
D

G
D

0.1 1.0
2.9

3.1

HS CUFS

M
M

 C
U

F
S

0.1 1.0
0.2

1.0

HS 3DGD

M
M

 3
D

G
D

1.0 3.0
1.9

2.0

 CUFS
0.1 1.0

 CUFS
0.1 1.0

H
S

 3
D

G
D

1.8

2.0

M
M

 3
D

G
D

1.9

2.1

Pure set Hybrid set

Pure: (0.79; 0.005; 2x103)

Hybrid: (0.76; 0.007; 2x103)

Pure: (0.75; 0.033; 32x103)
Hybrid: (0.74; 0.024; 32x103)Hybrid: (0.73; <10–3; 32x103)

Pure: (0.84; <10–3; 32x103)
Hybrid: (0.57; <10–323; 32x103)Hybrid: (1.00; <10–323; 32x103)

Hybrid: (1.00; <10–323; 2x103) Hybrid: (0.13; 5.7x10–9; 2x103) Pure: (0.56; 0.13; 2x103)

Hybrid: (0.48; 0.12; 2x103)

Figure 5 | Evolution of 3D genomic organization and function. The scatter plots in the figure comprise of a ‘pure’ set, containing data on both axes

from the same organism; and a ‘hybrid’ set mixing data from two organisms (for example, S. cerevisiae CUFS with S. pombe 3DGD). The common

organism for the two sets is denoted on the y-axis (for example, SP 3DGD). Colours denote the source of the x-axis data (hybrid/pure). The first two

plots in each panel show only the hybrid set, while the rest present both. Spearman’s rank correlation, P values (two-tailed t-test for the first two plots,

P3D for the other two) and the number of points is reported in parentheses above each plot in this order. All pure results show higher correlation than the

hybrid ones. It is evident that there is a very strong conservation of CUFS, and a significant conservation of genomic organization. (a) Fungi evolution.

(b) Mammalian evolution.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6876 ARTICLE

NATURE COMMUNICATIONS | 5:5876 | DOI: 10.1038/ncomms6876 | www.nature.com/naturecommunications 7

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


AT: r¼ 0.78; Po10� 323; P3D¼ 0.016; MM: r¼ 0.93, Po10� 323,
P3D¼ 0.002, n¼ 32� 103; HS: r¼ 0.87, Po10� 323, P3Do10� 3,
n¼ 32� 103). In the second test, we compared the correlations
obtained for the two shifted reading frames (synCUFS-f1 and
synCUFS-f2; Supplementary Fig. 7) and showed that they were
lower on average (and specifically lower in three out of five
organisms in frame 1, four out of five in frame 2) than the actual
reading frame (synCUFS-f0; frame 1 average r¼ 0.45 versus
frame 2 r¼ 0.43 versus real r¼ 0.75). Since the shifted sequences
are nearly identical to the ORF (only the reading frame is dif-
ferent), we expect some of the low-dimension signals (such as GC
content and the distribution of pairs of nucleotides), as well as
higher-dimension signals, to be partially retained. Thus, the fact
that we still obtain a relatively high correlation is not surprising.
The result teaches us that it is possible to partially infer the
functional similarity of genes based on shifted ORFs, but that a
larger amount of relevant information appears in the correct
frame. In the third test, we computed synCUFS on random-genes
(of length 200) constructed from sequences that lie adjacent to a
gene’s ORF upstream or downstream of it without overlapping it
(random-synCUFS), to show that the correlation decreases con-
siderably and is deemed insignificant by P3D when considering
the random sequences (random 500 nt downstream average
r¼ � 0.16 versus random 500 nt upstream r¼ � 0.11 versus real
r¼ 0.75; see Supplementary Note 3 on extreme values in the
random scatter plots). In the fourth test, we compared again
CUFS to two other components that are contained within CUFS:
synCUFS, which measures the difference in the distribution of
synonymous codons, and AAFS, which measures the only the
difference in the distribution of amino acids. Again, we see varied
results: CUFS is more strongly correlated than synCUFS in SC,
mouse and human (SP: r¼ 0.83; SC: r¼ 0.33; AT: r¼ 0.73; MM:
r¼ 0.95; HS: r¼ 0.88; Supplementary Fig. 8), and is
more strongly correlated than AAFS in all organisms but SC

(SP: r¼ 0.26; SC: r¼ 0.72; AT: r¼ 0.58; MM: r¼ 0.80; HS:
r¼ � 0.09). This demonstrates that both synCUFS bias and
amino acid bias contribute to the correlation between CUFS and
3DGD. Similar tests were performed for other measures of codon
usage (Supplementary Figs 9 and 10).

CUFS correlates better with 3DGD than the genes’ GC content.
In SC, GC content was reported to be correlated with recombi-
nation frequency47, while crossover recombination sites were
reported to be enriched in Hi-C contacts20. In addition,
centromeres have been reported to be strongly co-localized12,
and have also been characterized as having low GC content48. In
mammals, GC content was shown to be related to co-localized
active transcription domains in the chromosomes6,11,16. These
reports may suggest that GC content similarity (GC Sim) between
genes, which is a CUFS-related feature, should also have relatively
high correlation with 3D gene genomic distance.

Indeed, a high correlation between GC similarity and 3DGD
has been observed. Specifically, GC similarity significantly
correlated with 3D gene genomic distances in SC (r¼ 0.64;
Po10� 323; P3D¼ 0.028; n¼ 2� 103), SP (r¼ 0.62; Po10� 323;
P3D¼ 0.078; n¼ 2� 103) and to a higher degree in MM
(r¼ 0.89; Po10� 323; P3Do10� 3; n¼ 32� 103) and HS
(r¼ 0.98; Po10� 323; P3Do10� 3; n¼ 32� 103). It is worth
noting, that in AT, where GC similarity was found to be weakly
correlated with CUFS (r¼ 0.11; Po10� 323; n¼ 64� 103), it was
also found to be weakly correlated with 3DGD (r¼ � 0.35;
Po10� 323; P3D¼ 0.044; n¼ 64� 103). It is important to note
that GC content, as defined in this work (computed over the
ORF) is an aspect of CUFS and thus the two are expected to show
the same trend. In addition, we show that the correlation with it
cannot be explained by various experimental biases6,20,49 (see
below, and also the Supplementary Methods). For instance, it is
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Figure 6 | Locality tests. (a) Scatter plots of 3D genomic distance (3DGD) versus synCUFS, computed over the first 200 codons of the reading

frame (synCUFS-f0) for the five organisms. Spearman’s rank correlation, P3D P values and number of points are reported in parentheses above each plot in

this order. Vertical markers denote the top/bottom 5% of values, so that 90% are contained within them. Bars denote Spearman’s rank correlation

coefficient, P values were computed using the cyclic chromosome shift model (P3D, 1,000 samples drawn); stars mark significant correlations (P3Do0.05).

(b) Scatter plots of 3D genomic distance (3DGD) versus synCUFS, computed over random intergenic sequences 500 nt upstream of the ORF

(rand-synCUFS up). (c) Scatter plots of 3D genomic distance (3DGD) versus synCUFS, computed over random intergenic sequences 500 nt

downstream of the ORF (rand-synCUFS down).
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evident in Supplementary Fig. 11 that segment GC Sim (referring
to HindIII restriction fragments in the Hi-C experiment) is less
correlated with 3D distances than the GC content. In addition,
the very high correlation reported here cannot be explained by
the phenomena reported in the papers mentioned above12,47,48,
and is probably related to additional explanations such as various
aspects of gene expression regulation that are related to mRNA
folding and GC content28,50,51.

To establish that CUFS is correlated with 3D genomic distances
independently of other dominant gene features (Supplementary
Fig. 12), particularly GC similarity, we show that the correlation is
retained also when using only gene pairs with identical gene GC
content (SP: r¼ 0.66; P¼ 9.2� 10� 14; P3D¼ 0.105; n¼ 100; SC:
r¼ 0.78; P¼ 1.1� 10� 21; P3D¼ 0.016; n¼ 100; AT: r¼ 0.76;
Po10� 323; P3D¼ 0.025; n¼ 3,200; MM: r¼ 0.88; Po10� 323;
P3D¼ 0.034; n¼ 1,600; HS: r¼ � 0.38; Po10� 323; P3D¼ 0.53;
n¼ 1,600), or identical segment GC content (see Methods; SP:
r¼ 0.49; Po2.5� 10� 7; P3D¼ 0.169; n¼ 100; SC: r¼ 0.65; P¼
1.6� 10� 13; P3D¼ 0.032; n¼ 100; AT: r¼ 0.78; Po10� 323;
P3D¼ 0.017; n¼ 3,200; MM: r¼ 0.95; Po10� 323; P3Do10� 3;
n¼ 1,600; HS: r¼ 0.56; Po10� 323; P3Do10� 3; n¼ 1,600).

Furthermore, we computed the partial correlations of each of
the main gene features identified to be correlated with genomic
distance, given all other features (Supplementary Fig. 13), as well
as Hi-C experimental biases. It is evident that CUFS attained the
highest and most consistent partial correlation (highest mean,
with a low cross organism variance; SP: r¼ 0.76, P3Do0.01; SC:
r¼ 0.56, P3Do0.01; AT: r¼ 0.56, P3D¼ 0.02; MM: r¼ 0.95,
P3Do0.01; HS: r¼ 0.80, P3D¼ 0.01), which is considerably higher
than any GC-related feature. While the average partial correlation
for CUFS is 0.73, all other average partial correlations are o0.38.
Thus, the results support the conjecture that the correlation
between CUFS and 3DGD is not only due to GC Sim or any other
gene feature.

Discussion
In summary, two major fundamental conclusions can be derived
from the results. First, we show that CUFS can serve as a proxy
for gene function and expression patterns, and strongly correlates
with 3DGD. CUB is known to be related to gene expression
optimization29, mRNA folding stability, amino acid content and
gene function25–28,30 and may also be related to yet unknown
molecular mechanisms in the eukaryotic cell. Thus, our analyses
demonstrate that CUFS is a robust measure, insensitive to a
particular experimental protocol, which can be used for
computing functional similarity among genes in future systems
biology and genomic studies. We would like to reiterate that our
definition of CUFS is not related only to translation elongation,
but to all aspects of gene expression and function that are
encoded in the ORF. Thus, it is possible that extended functions
of higher complexity based on codon and nucleotide distribution
(for example, codon pairs and k-mers) may provide an even more
comprehensive description of functional similarity, and a better
explanation of 3D genomic organization of genes. Answers to this
topic are deferred to future studies.

Second, the results reported in this study also support the
conjecture that there is a very high level of global genomic
organization in several eukaryotes such as SC, SP, AT, MM and HS,
which is 3D in nature. Thus, the location of genes across the
eukaryotic genome, and the way that they are packaged in 3D space
is far from being random and can be explained by their function
and expression pattern. These conclusions encourage further
experimental and computational studies to infer and understand
the spatial organization of chromatin at a high resolution.

To conclude, we briefly demonstrate that the associations
reported in this study can be obtained via other representations

of 3D genomic organization. We were able to reproduce the
significant positive correlation of CUFS with 3D model distance
in two previously published whole-genome models (SC: r¼ 0.60;
Po10� 323; n¼ 2� 103; SP: r¼ 0.36; Po10� 323; n¼ 2� 103;
Supplementary Fig. 14). The two models were generated by
solving a beads-on-a-string problem under constraints obtained
from Hi-C experiments12,13. Furthermore, a comparison of the
median CUFS between sets of pairs of genes with the top/bottom
2% of Hi-C scores showed a significant decrease in CUFS for
pairs with high Hi-C reads (that is, having high physical
proximity; Wilcoxon rank-sum test: SP: P¼ 5� 10� 11; SC:
Po10� 323; AT: Po10� 323; MM: Po10� 323; HS: Po10� 323;
Supplementary Fig. 14, details in the Supplementary Methods).
Thus, the last result is based on minimal modelling assumptions
and confirms our previous results.

Both aforementioned conclusions regarding functional simi-
larity and genomic organization can be employed for improving
the approaches for inferring the 3D organization of genomes,
for developing accurate models of genomic evolution and
organization and for studying/understanding gene function,
expression and evolution.

Methods
Hi-C data. The available contact maps for the five organisms are the output of
various closely related high-throughput experimental protocols. All protocols were
derived and adapted from 3C ref. 10, and are regarded in this work—for the sake of
simplicity—as Hi-C methods. Supplementary Table 1 summarizes the data set
chosen for each organism.

It can be seen that some parameters vary between data sets. Most importantly,
the given resolution for each data set is different with a variability of up to 2 orders
of magnitude (compare SP and HS). While all the experiments were done using
HindIII restriction enzymes to produce DNA segments that make up the basic unit
of raw contact maps, four out of five data sets employed constant size bins to collect
the measurements to improve the signal to noise ratio11,13,16,17. The size of bins
determines the resolution of the data set in these cases. In addition, three out of the
five data sets were corrected to minimize experimental biases13,16,17. The data set
for SC was further filtered to include a selected portion of the contact map that
passed 1%-FDR (ref. 12).

All data sets went through additional post processing, as noted in
Supplementary Table 1. We completed the processing of the provided data by
choosing a post process that minimizes biases in the data and maximizes its
significance. We employed an iterative correction process based on ref. 52, similar
to the one used for the mouse data set (for details, see the Supplementary
Methods). Cis maps were then normalized using the expected Hi-C read by
genomic distance. Furthermore, we kept only the top percentage of significant
Hi-C measurements after the correction (see Supplementary Table 1). Cis maps
(intrachromosomal) and trans maps (interchromosomal) were filtered separately to
insure that both types of interactions are represented properly. The filter threshold
was chosen according to genome size and Hi-C map density. The above treatment
aims at reducing the differences between data sets, before proceeding to a general,
non-specific protocol of analysis.

While all results in this work are in general agreement between organisms, some
of the diversity between organisms (for example, different levels of correlation)
may be attributed to the differences in the protocols, their execution and inherent
biases, as well as the preparation of the data. For instance, the HS map was
measured on cycling cells, while the data set for MM was measured on cells in the
same phase of the cell cycle (G1-arrested cells)16.

Genome sequence. Fungal and plant genome sequences were obtained from
NCBI (SC S288c strand and SP 972h strand, AT TAIR10), which include 5,123
protein-coding SP genes (http://www.pombase.org/status/statistics, mRNA-pro-
tein_coding), 5,888 SC genes (http://www.ncbi.nlm.nih.gov/bioproject/PRJNA128,
Protein Sequences) and 27,191 AT genes (ftp://ftp.arabidopsis.org/home/tair/
Genes/TAIR10_genome_release/README_TAIR10.txt, see also Supplementary
Table 2). We located all the HindIII restriction sites in SC and updated the
coordinates of the SC Hi-C map. We used the NCBI protein tables for the ORF
sequences. Since the Hi-C contact maps for mammals were based on the mm9/
hg18 versions of the genomes, we used the UCSC table browser tool53 to generate
gene tables for HS hg18/hg19 genomes and MM mm9/mm10 genomes. In our
analyses, for example, in HS, we used the set of genes that is shared by the two
tables—hg18 and hg19. This enabled us to use updated gene sequences for most of
the known protein-coding genes (see Supplementary Table 2). Genome sequences
for hg19/mm10 were obtained from NCBI.
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3D genomic distance. We utilized the Hi-C contact maps to construct graph/
network representations of the spatial organization of the genome. The high
resolution of the chosen contact maps allowed us to investigate the 3D structure in
single protein-coding gene resolution by representing each gene as a node. In the
case of mammals, each node represents all the possible products by alternative
splicing of this gene. Binned chromosome interactions from the contact maps were
transformed into gene-gene interactions. We mapped every gene to its closest Hi-C
bin according to the distance between their centre coordinates. Each bin’s contacts
with all others were assigned to its mapped genes.

We tried several criterions for mapping the data from Hi-C bins to genes to
choose the least biased one, including: all overlapping bins per gene; maximum-
overlap of bin per gene (as in ref. 20); maximum-overlap of gene per bin and
weighted mapping that is proportional to the overlap between bin and gene. We
were able to reproduce our main results with all the aforementioned methods.

Since Hi-C maps were already filtered to include only the most significant
interactions (see previous sections), we used binary graph edges (1/0) to depict
interactions between genes. Chromosomes backbone edges between adjacent genes
on the same chromosome were added to this graph, so that all neighbouring genes
are at distance 1 from each other. Graph distances between all pairs of genes were
computed according to the shortest path between them and were measured in
hops. This setting allowed us to work in single-gene resolution, compute the
distance between any given pair of genes and incorporate both interchromosomal
and intrachromosomal measurements (some of the previous studies used only one
of the two kinds).

Codon usage frequency similarity. Codon usage frequency vectors were com-
puted by counting all appearances ni of a codon i in the ORF, and dividing by the
total codon count.

ci ¼
niP64
j¼1 nj

ð1Þ

X64

i¼1

ci ¼ 1 ð2Þ

It can be seen that this vector combines both the CUB and amino acid usage bias,
because the frequency of each codon is normalized with respect to all other codons,
not only synonymous codons for the same amino acid. We used the average
frequency vector for genes with a number of alternatively spliced transcripts.

synCUFS frequency vectors were computed as follows:

ci ¼
niP

j2AA
nj

ð3Þ

X64

i¼1

¼ 21 ð4Þ

Where the number of observed codons ni is normalized by the sum of all
synonymous codons coding for the same amino acid or stop codon rather than
all other codons.

AAF vectors were computed as follows:

ai ¼
niP20
j¼1 nj

ð5Þ

X20

i¼1

ai ¼ 1 ð6Þ

Where ni is the number of counted occurrences of amino acid i in the ORF.
The CUFS between genes was computed using the Endres–Schindelin metric23

for probability distributions. Given the frequency vectors of a pair of genes p and q,
the CUF distance/similarity between them is given by:

dKLðp; qÞ ¼
X64

i¼1

log
pi

qi
pi ð7Þ

m � 1
2
ðpþ qÞ ð8Þ

dESðp; qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dKLðp;mÞþ dKLðq; mÞ

p
ð9Þ

Where dKL is the Kullback–Leibler divergence—a popular information gain
measure, that is non-symmetric and does not satisfy metric properties54. Its use in
this context, however, satisfies all required properties for a metric. It also bears a
similarity to the Jensen–Shannon divergence. AAFS and synCUFS were computed
using the same metric.

CUB indices. We computed the CAI42, tAI29, bcENC43—which is an improved
variant of the effective number of codons55, CDC44 and the RCB45 index according
to the cited papers. The reference set for CAI was selected according to the

available protein abundance data56 (see also the Supplementary Methods), by
taking the top 100 expressed genes. The background nucleotide composition for
CDC was estimated from the entire coding sequence of the genome, while for
bcENC and RCB it was estimated from the ORF of each gene separately.

PPI graph. We used a number of PPI databases57–62 to construct an undirected
PPI network for the five organisms, and used the shortest path on the graph to
define the PPI graph distance between each pair of genes. Disconnected pairs were
assigned with a finite scalar (255) to include them in the average graph distance
calculation, so that the PPI distance value for a set of gene pairs ranges from 1
(adjacent neighbours set) to 255 (completely disconnected set). (See also the
Supplementary Methods).

GO term distance. We used the full GO63 annotations provided for the five
organisms64–68, and mapped them onto the generic slim ontology definitions
provided by GOC, except in the case of AT where the plant slim ontology
definitions were used. The distance between a pair of GO terms was defined to be
the sum of the distances of the two terms on the GO graph from their least
common ancestor. The distance for a pair of genes was computed by averaging the
GO term distance between all their terms in the biological process ontology.

Other similarities. Distance for other measures, such as GC content and gene
length, which are given as scalars for each gene, were computed as normalized
distance:

dNðp; qÞ ¼ 2 p� qj j
pþ q

ð10Þ

Scalars given for different splice alternatives (such as GC and length) were
averaged per gene before computing the distance.

Correlation. Correlation was computed using a defined number of bins n
according to the test of interest. Binning was conducted as follows. The measure in
question, for example, CUFS, was computed for all gene pairs, then n bins of equal
size of CUFS values were set, dividing all pairs. The mean CUFS and mean 3D
distance were computed for each bin; finally, Spearman’s rho was computed
between all CUFS/3D distance bins. Supplementary Figure 5 presents the resultant
correlation with CUFS/3D distance of different features for various bin sizes.
The chosen number of bins for AT (n¼ 64� 103) and mammals (n¼ 32� 103)
was larger than that for fungi (n¼ 2� 103) to account for their larger genome
(measured in number of protein-coding genes, or nodes on the genomic graph).

We preferred binning the pair of variables being tested for correlation according
to the variable with the widest range of values (closest to being continuous) to
improve statistical accuracy. When binning integer values, specifically the 3DGD,
we found that the distribution of 3D distances led to numerous bins holding the
same distance value. For this reason, the variable tested against 3D distance was the
one defining the bins in all cases; when testing a variable against CUFS, bins were
defined by CUFS, which is a continuous distance measure. In two cases, however,
we binned the variables according to 3D distance (see the Supplementary
Methods).

P value computation. Statistical significance of the results was verified against an
empirical null model—cyclic chromosome shift (Fig. 3a). We draw from this model
by randomly shifting the location of all genes on their respected chromosomes. The
underlying null hypothesis is that the co-localization of specific gene sets of interest
is not driven by the chromosome spatial conformation. In practice, drawing from
the model is done by shifting the labels of all nodes while leaving the edges
unmodified. P values were calculated by drawing 1,000 samples (random genome
configurations) from the model and estimating the distribution of correlation
coefficients (Fig. 3b,c), according to:

P3D ¼
1

1;000

P1;000
i¼1 1fri � rexpg; rexp � 0

1
1;000

P1;000
i¼1 1fri � rexpg; rexpo0

(
ð11Þ

Where 1{} is the indicator function, ri is the random correlation coefficient
obtained and rexp the observed correlation coefficient in the experiment. The cyclic
chromosome shift model we used, beside its inherent logic, is the most conservative
of the ones we tested, including: two-tailed t-test for Spearman’s correlation;
degree-preserving rewiring of the graphs; random sampling of gene sets/gene pairs
and cyclic genome shift, which is a whole-genome cyclic shift, allowing genes to
rotate and move between chromosomes freely.

Evolution and conservation. For the fungal evolution results, we used the
manually curated orthologues database at PomBase69, containing 3,367 orthologue
families. For mammalian evolution, we used the MGI report of Human and Mouse
Homology Classes sorted by HomoloGene ID67 (file: HOM_MouseHuman
Sequence.rpt) containing 15,832 orthologue families. We utilized the orthologue
families to transform the CUFS/3D distance matrices, so that the transformed
Co-CUFS for a pair of genes is the average CUFS between their corresponding
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orthologues in the co-organism. So that, given a distance matrix DB in organism B,
the orthologous-transformed matrix in organism A is given by:

DB!A
ij ¼ 1

Oij j Oj

�� ��X
k2Oi

X
l2Oj

DB
kl ð12Þ

where Oj is the set of orthologous genes in organism B corresponding to gene j in
organism A.

We then followed the correlation procedure, but considered only genes with
identified orthologues in both species. The regular test consisted of computing the
correlation of, for example, CUFS for orthologue sets of genes in organism X with
the 3DGD in X. The obtained correlation was different than that computed for all
possible genes following the use of only a subset of these. The hybrid test consisted
of computing the correlation of, for example, the transformed Co-CUFS matrix for
organism Y with the 3DGD in organism X. The conservation of hybrid sets of
CUFS versus CUFS and 3DGD versus 3DGD was computed in the same manner.

HindIII segment properties. For control purposes, we located all the possible
HindIII segments (cut site AAGCTT) in the genomes and computed their length as
well as segment GC content (in a window of 200 nt upstream of the cut site, as in
ref. 6). We discarded HindIII segments larger than 100,000 nt. The average
segment GC content/length was computed for each Hi-C bin. Nodes (genes) on the
graph were then assigned with segment length/GC content according to the Hi-C
bin they were assigned when constructing the 3D genomic graph. When testing for
identical node pairs, we included the 5% of pairs with the closest property value
(for example, segment GC content), and binned them according to CUFS using 5%
of the number of bins to account for the reduction in the amount of data.

Partial correlations. We demonstrated that CUFS is strongly correlated with
many other variables (Supplementary Fig. 1). In the partial correlations test,
we computed the partial correlation for nine features of the graph nodes, each
correlation given the other eight. To this end, all variables were binned according
to the 3D distances so that they can be compared (using min-variance binning,
see Supplementary Methods). We used Spearman’s correlation.
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