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Deducing generic causal relations between RNA transcript features and protein expression profiles from
endogenous gene expression data remains a major unsolved problem in biology. The analysis of gene expression from
heterologous genes contributes significantly to solving this problem, but has been heavily biased toward the study of
the effect of 50 transcript regions and to prokaryotes. Here, we employ a synthetic biology driven approach that
systematically differentiates the effect of different regions of the transcript on gene expression up to 240 nucleotides
into the ORF. This enabled us to discover new causal effects between features in previously unexplored regions of
transcripts, and gene expression in natural regimes. We rationally designed, constructed, and analyzed 383 gene
variants of the viral HRSVgp04 gene ORF, with multiple synonymous mutations at key positions along the transcript in
the eukaryote S. cerevisiae. Our results show that a few silent mutations at the 50UTR can have a dramatic effect of up to
15 fold change on protein levels, and that even synonymous mutations in positions more than 120 nucleotides
downstream from the ORF 50end can modulate protein levels up to 160%–300%. We demonstrate that the correlation
between protein levels and folding energy increases with the significance of the level of selection of the latter in
endogenous genes, reinforcing the notion that selection for folding strength in different parts of the ORF is related to
translation regulation. Our measured protein abundance correlates notably(correlation up to r D 0.62 (pD0.0013)) with
mean relative codon decoding times, based on ribosomal densities (Ribo-Seq) in endogenous genes, supporting the
conjecture that translation elongation and adaptation to the tRNA pool can modify protein levels in a causal/direct
manner. This report provides an improved understanding of transcript evolution, design principles of gene expression
regulation, and suggests simple rules for engineering synthetic gene expression in eukaryotes.

Introduction

Arguably, the major challenge of functional genomics is to
decipher how information encoded in an RNA transcript (e.g.
the 50UTR, ORF and 30UTR) affects various aspects of its expres-
sion. Most previous studies aimed at understanding such signals
are based on the analysis of endogenous gene expression.1-10

However, endogenous transcripts are subject to different
forms of evolutionary selection, not necessary acting on their
expression level. Thus, for example, if a highly expressed gene has
a certain feature it can be difficult to discern if it is related to its
function or rather to the corresponding protein abundance. In
addition, endogenous transcripts vary widely in their features (for
example, they have different length, promoters, UTRs, amino
acid content, etc.); therefore, the effect of any particular feature
on expression levels is significantly masked. For example, if a
gene x with certain codons has higher protein levels than gene y

with different codons we cannot be sure if these differences in
protein levels are not due to the fact that they have different pro-
moters or different UTRs, etc. Eventually, it is extremely difficult
to determine causality based on the correlation between endoge-
nous features and their expression levels measurements.

Previous large scale studies with heterologous genes shed con-
siderable light on the subject, but were all performed on E. coli
and either focused on the very start of the ORF or included syn-
thetic libraries that did not resemble the sequence properties of
endogenous transcripts.11-17 As a result, many questions regard-
ing the causal relations between transcript features and protein
levels in endogenous genes and specifically in eukaryotes remain
poorly understood.

For example, it was suggested that in E. coli the folding
strength of the mRNA near the START codon affects the transla-
tion initiation rate (and thus the protein levels), as it is related to
the efficiency with which the pre-initiation complex recognizes
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the start codon11,13; however, most of the open questions in the
field remain unanswered due to the fact that almost all previous
studies focused on the analysis of endogenous genes and on indi-
rect measures of translation; and due to the fact that the answers
to these questions may be condition- and organism-dependent.16

The ribosome elongation speed and its association with expres-
sion regulation is also not fully understood: some studies sug-
gested that it is constant,18,19 while others suggested that
different codons have different decoding times, for example due
to different tRNA levels.11,17,20-22 Other important questions
relate to the effect of codon and nucleotide composition in differ-
ent parts of the transcript on protein levels: while some studies
proposed that the codon distribution in all parts of the ORF, and
specifically in those related to translation elongation, can affect
the protein abundance,1,17,23 others claimed that only the nucle-
otide composition near the beginning of the ORF impacts pro-
tein levels.11 In addition the exact cause and effect of codon
usage bias on organismal fitness has not been identified yet: does
it evolve due to neutral (or near neutral) evolution, or does it sig-
nificantly affect fitness? Do highly expressed genes have stronger
codon bias to improve their protein levels, or rather due to other
reasons (e.g., ribosome allocation)?24-29

The aim of this study is to tackle these problems in a quantita-
tive manner using a combined computational-synthetic biology
approach in S. cerevisiae. Specifically, we aimed at deciphering
how protein abundance is encoded in several regions of the tran-
script, some of them previously unexplored, by addressing the
following questions: 1) What is the magnitude of the effect of
synonymous changes in different parts of the transcript on pro-
tein abundance? 2) How does folding in different parts of the
transcript affect protein abundance? 3) How do ribosome codon
decoding rates affect protein abundance? 4) Do transcript fea-
tures that are selected for in S. cerevisiae endogenous genes deter-
mine protein abundance?

Results

Generating YFP libraries to study the effect of silent nt
composition of the 50UTR and synonymous nt composition
in the coding region on protein levels

We analyzed the gene HRSVgp04 and generated 3 libraries to
understand the distinct effect of the nucleotide composition in dif-
ferent regions of the transcript on protein levels. The structure of
all 3 libraries was identical: all had the same promoter followed by
the 50UTR (14nt) of the TEF gene, and the HRSVgp04 gene fused
with a YFP reporter (Fig. 1A). The aim of the first library was to
study the effect of the nucleotide composition of the 50UTR (i.e.
silent mutations in the 50UTR) on protein levels; to this end, we
randomized the 14 nt composing the 50UTR, maintaining the
nucleotide composition of the rest of the transcript (Fig. 1A, B).
The aim of the second library was to study how the protein levels
are affected by synonymous nucleotide substitutions in the first 40
codons of the ORF. To this end, we modified only the third nt of
codons 2–41 of the HRSVgp04 ORF, maintaining the encoded
protein and the nucleotide composition outside this region

(Fig. 1A, C). Finally, the third library aimed at studying the effect
of synonymous nucleotide substitutions in codons 42–81 of the
ORF. To this end, we modified only the third nt of each of the
codons 42–81 of the HRSVgp04 coding sequence, again maintain-
ing the encoded protein and the nucleotide composition outside
this region (Fig. 1A, C). As explained in the Methods section, we
designed the library variants such that their features (adaptation to
the tRNA pool and mRNA folding) resemble endogenous genes.
Thus, the relations reported here are expected to represent the
effect of mutations on S. cerevisiae endogenous genes (see, for
example, 16). The three libraries include a total of 207/151/25 var-
iants respectively, and were named L5UTR, L2-41C, L42-81C
(more details in the Methods section).

Even a small number of synonymous modifications
in the transcript can significantly affect protein abundance

We measured the YFP and Optical Density (OD) of each var-
iant over time and calculated their estimated protein levels (See
Fig. 2A-F and Methods section). Interestingly, though the num-
ber of randomized nucleotides is relatively very low (only a few
dozen), and all the changes are strictly synonymous or silent, the
changes in protein levels are between dozens to hundreds of per-
centages in all 3 cases. Specifically, the ratio (maximal estimated
protein level)/( minimal estimated protein level) in the L5UTR,
L2-41C and L42-81C libraries was 15.3, 3, and 1.6, respectively
(after correcting for the different number of points in the 3
libraries it was 9.1, 2, and 1.6; see details in Fig. 2 and its cap-
tion), while the (STD/mean) (i.e., the Coefficient of Variance)
was 0.42, 0.12 and 0.12, respectively (see Fig. 2G, H). These
results suggest that while synonymous or silent mutations in all
parts of the ORF/UTR can significantly affect protein levels,
mutations at the 50UTR end tend to have a higher effect com-
pared to adjacent synonymous mutations at the beginning of the
ORF. In contrast, synonymous mutations in different parts of
the ORF have a relatively comparable effect with an a bit higher
effect at the region closer to the 50end of the ORF. Our findings
also show (Fig. 2D-F) that the protein level values related to the
variant that achieves the highest protein level in each of the 3
libraries are relatively similar (the differences between the maxi-
mal protein levels values in the 3 libraries are less than »8.6%).

However, the lower protein level values among the libraries
have more significant differences: the lowest protein level value
in L2-41C was found to be 5.54 times higher than the lowest
protein level in L5UTR; the lowest protein level value in L2-41C
was 10.5 times higher than the lowest protein level in L5UTR.
This result supports the conjecture that silent mutations (in terms
of the encoded protein) near the beginning of the ORF may have
strong negative effect on protein levels, probably due to their
effect on translation initiation efficiency.11,23,30-32 Here we pro-
vide a novel quantification of this effect in eukaryotes.

Silent mutations at the 50UTR affect protein levels via their
effect on translation initiation

To study the effect of various characteristics of the 50UTR on
protein levels, we generated 96 different features (see Table S1,
and the Methods section) related to this region. Among others, the
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features include: the folding energy
in different parts of the UTR (with
respect to the beginning of the
ORF); distance from the Kozak
sequence (‘ACCATGG’), suggested
to be the optimal sequence for
START codon recognition by the
pre-initiation complex33; START
codon context score,34 which is a
score aiming at estimating the opti-
mality of the affinity of the nucleo-
tide content surrounding the
START codon to the pre-initiation
complex; and similarity to binding
sites of different RNA binding pro-
teins.35 Additional features are the
frequency of each nucleotide in dif-
ferent positions of the 50UTR; spe-
cifically, according to the Kozak
rule30,31,34 and analysis of endoge-
nous genes the nucleotide A at dis-
tance 3nt before the beginning of
the ORF is the most favorable and
nucleotide T is the least favorable
nucleotide. It was suggested that
this nucleotide interacts with the
pre-initiation complex and the exis-
tence of ‘A’ in this position
improves the recognition of the
START codon by the pre-initiation
complex and thus the initiation
efficiency.

All the correlations throughout
this study were based on
Spearman’s rank correlation coeffi-
cient. We found that the features
with the top correlation with esti-
mated protein abundance (PA)
were (see Table S1 which includes
the correlation and also correction
for FDR): the START codon con-
text score (r D ¡0.46; p D
2.3¢10¡12), the frequency of the
nucleotide A at distance 3nt before
the beginning of the ORF (r D
¡0.45; p D 6.6¢10¡12), average
folding energy (FE) over all the
UTR windows (r D 0.36, p D
10¡7), the frequency of the nucleo-
tide T at distance 3nt before the
beginning of the ORF (r D ¡0.34;
p D 3.3¢10¡7), and the FE of the
window starting 7 nt before the beginning of the ORF (r D 0.34,
pD 3.3¢10¡7). We also checked other features such as the affinity
to 22 different RNA binding proteins (RBP); however, all the cor-
relations were found to be either not significant, or (in one case)

borderline significant with a very low correlation (r D 0.14,
p D 0.044 which didn’t not pass FDR filtering). Since the single
nucleotide features mentioned above are related to the Kozak and
context scores,30,31,33,34 we conclude that the PA variability of the

Figure 1. (A and B) Generating YFP libraries to study the effect of different parts of the transcript on transla-
tion efficiency and protein levels. Three libraries were generated and analyzed: in the first, L5UTR, we ran-
domized the last 14 nt of the 50UTR, but did not change the codons of the analyzed gene and YFP; in the
second library, L2-41C, we modified only the first 40 codons of the ORF while maintaining the encoded pro-
tein; in the third, L42-81C, we modified only codons 42–80 of the ORF but maintained the encoded protein.
(C) Upper part: The distribution of nucleotides in the modified positions in each of the 3 libraries. Lower
part: The distribution of nucleotides in the 3rd position of each codon corresponding to the L2-41C and L42-
81C libraries.
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L5UTR can be significantly explained by features related to the
translation initiation efficiency, the affinity to the pre-initiation

complex and/or the folding
of the mRNA in the region
surrounding the start codon.

Correlation of protein
levels with mean codon
decoding times inferred
based on Ribo-Seq

Ribosome profiling (Ribo-
Seq) is a new approach that
enables measuring ribosomal
densities over the entire
transcriptome at a single
nucleotide resolution36,37

(see Fig. 3A). The method
includes the following steps:

cells are treated with cyclohexamide to arrest translation, ribosomes
are fixed and ribosome-protected RNA fragments are

Figure 2. Total fluorescence
levels (YFP) (A) and number of
yeast cells (OD) (B) over
17 hours of a library generated
by fusing the gene human
respiratory syncytial virus
HRSVgp04, after introducing
modifications to the last 14
nucleotides of the 50UTR (main-
taining the encoded protein), to
a YFP in S. cerevisiae. Each row
corresponds to the measure-
ments of one variant of the
library over 17 hours; red
denotes higher levels, and
green denotes lower levels.
(C) The resultant estimated pro-
tein levels, which are the mean
YFP/OD over the period (Meth-
ods). (D–F) Include the mean
estimated protein levels for the
3 libraries: UTR randomization
(L5UTR) (D.), first 40 codons ran-
domization (L2-41C) (E), second
40 codons randomization (L42-
81C) (F); as can be seen, in all
cases, the differences between
the resultant fluorescence level
per cell are between dozens to
hundreds of percentages.
(G) Blue: The ratio (maximal
estimated protein levels)/(mini-
mal estimated protein levels)
for each library; Green: The ratio
(maximal estimated protein lev-
els)/(minimal estimated protein
levels) for each library when
sampling for the libraries L5UTR
and L2-41C the same number
of points as in the library L42-
81C (average over 100 sam-
ples). (H). The CV (Coefficient of
Variance) of the estimated pro-
tein levels in each library.
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recovered36,37 (see Fig. 3A). After
processing and reverse-transcrip-
tion, these are sequenced, mapped,
and used to derive ribosomal density
profiles. In order to estimate the
typical nominal relative codon
decoding times in endogenous S.
cerevisiae genes under natural condi-
tions, we implemented a novel sta-
tistical approach that filters biases
and considers ribosomal traffic
jams20 (Fig. 3A and Methods).
Subsequently, we aimed at estimat-
ing the effect of codon usage bias on
protein levels via the effect of
codons on ribosomal elongation
rates in natural conditions. To this
end, we computed the correlation
between the estimated Mean of the
Typical codon Decoding Rates
(MTDR20; based on data from37,
details in the Methods section) and
PA in the L2-41C and L42-81C
libraries. Interestingly, the correla-
tion in the first library was relatively
low but significant when controlling
for the folding energy (FE) of the
mRNA in this region, specifically: r (MTDR, PA) D 0.14 (p D
0.08); r (MTDR, PA j FE) D 0.24 (pD 0.0034). However, in the
case of the second library, it was found to be both relatively high
and significant: r (MTDR, PA) D 0.56 (p D 0.004); r (MTDR,
PA j FE)D 0.6175 (pD 0.0013) (details in the Methods section).

It is important to mention that results obtained in a similar
analysis based on the tRNA adaptation index (tAI) (Methods38)
were quantitatively similar to the ones obtained for MTDR, albeit
weaker, demonstrating the advantage of the MTDR measure: in
the case of L2-41C, r (tAI, PA j FE) D 0.24 (p D 0.0029); in the
case of L42-81C, r (tAI, PA j FE)D 0.41 (pD 0.0466).

These findings may suggest that in S. cerevisiae the effect of
codon usage at the very beginning of the ORF is strongly related to
mRNA folding via its effect on initiation (as suggested in prokar-
yotes11,13,14), but it is also significantly related to elongation rates.
Moreover, the results may also suggest that the decoding times of
codons is different at the beginning of the ORF than afterwards.39

Furthermore, our results also suggest that after the beginning
of the ORF the frequency of codons can affect protein abundance
in a causal/direct way due to the fact that different codons have
different decoding rates. Therefore, elongation rates can directly
affect expression levels; this relation can be partially explained via
the fact that codons that are recognized by tRNA species (and
other translation factors) with higher abundance tend to have
higher decoding rates.

Finally, the result demonstrates that it is possible to deduce
codon decoding times for heterologous genes from the analysis of
ribosome profiling in endogenous genes, potentially enabling new
design tools for engineering gene expression in synthetic systems.

The correlation with estimated protein levels cannot be
explained by changes in mRNA levels

To demonstrate that the reported signals and changes in the
estimated protein levels are not due to effects on mRNA levels,
but are directly related to translation, we measured the mRNA
levels of some of the variants for each of the libraries (Methods).
For example, in the case of the L42-81C library, we found that
mRNA levels do not correlate with protein levels (r D ¡0.371;
p D 0.497; correlation in the “wrong” direction). Fot these meas-
urements, the correlation between MTDR and protein levels was
found to be significant (rD 0.886, pD 0.033), and remained sig-
nificant even after controlling for mRNA levels ( r(PA, MTDR j
mRNA)D 0.89, pD 0.04). In contrast, no significant correlation
was found between MTDR and mRNA levels (r D 0.371,
p D 0.497). These results support the conjecture that the correla-
tion between protein levels and MTDR is indeed related to ribo-
some elongation speed and not to mRNA levels. Similar
conclusions were obtained for the other libraries: non-significant
correlation between mRNA levels and protein levels (r D 0.19
p D 0.66 for L5UTR; r D ¡0.22, p D 0.4 for L2-41C ) were
observed.

The direction of the effect of synonymous codons and silent
mutations on protein abundance may vary along the coding
sequence

At the next step, we aimed at understanding the effect of syn-
onymous codons in different parts of the transcript on protein
levels via their effect on mRNA folding. To this end, we com-
puted the local mRNA folding energy in different windows for

Figure 3. Correlation between YFP levels and codon decoding times estimated based on Ribo-Seq in
endogenous genes. The mean of the codon decoding rate of a variant is unit-less and is expected to be pro-
portional to the mean decoding rate (1/time) of its codon (details in the Methods section). (A). The Ribo-Seq
approach and estimating typical codon decoding times. (B). Correlation between mean typical codon
decoding times and YFP levels for the first 40 codons library (the inset is related to bins of size 15 (Meth-
ods)). (C). Correlation between mean typical codon decoding times and YFP levels for the second 40 codons
library (the inset is related to bins of size 3 (Methods)).
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all the variants in all the libraries (Methods). The local mRNA
folding energy is predicted for overlapping/sliding windows of
length 40nt with a slide of 1nt (Methods); the folding energy of a

nucleotide sequence is related
to the energy needed for its
unfolding after folding to its
strongest structure: a more
negative number is related to
stronger folding.

For each nt position
(which induces a window of
length 40nt as described
above), we computed the cor-
relation between folding
energy and protein levels. As
can be seen in Figure 4A, B,
the correlation between local
mRNA folding energy and
protein levels is significant
and positive at the 50UTR
and the first »10–13 posi-
tions/windows inside the

ORF (stronger folding at the 50 end of the ORF tends to have a
negative effect on protein levels). This result supports previous
conclusions based on the experimental analysis of the prokaryote

Figure 4. The effect of codons
on the protein levels varies
along the coding sequence.
(A) Correlation with folding win-
dow (40nt) in the beginning of
the UTR and the beginning of
the ORF based on the L5UTR
library. (B) Upper-part – Correla-
tion with folding windows (40nt)
at the beginning of the ORF
based on the L2-41C library in
heterologous and endogenous
genes (red/green denotes signif-
icant positive/negative correla-
tion respectively). Lower-part –
the mean genomic mRNA fold-
ing energy in endogenous
genes (red/green denotes selec-
tion for significant weak/strong
folding respectively). (C) Correla-
tions between mean local FE
and PA in S. cerevisiae endoge-
nous genes vs. correlations
between local FE and PA in the
heterologous genes (details in
the main text). (D) Local FE Z-
scores in S. cerevisiae endoge-
nous genes corresponding to
the FE in the real genome in
comparison to randomized ver-
sions of the genome vs. correla-
tions between the local FE and
PA in the heterologous genes
(details in the main text). (E) The
effect of codons on the protein
levels in the L2-41C library vs.
the effect of codons on protein
levels based on the L42-81C
library.
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E. coli11; however, this is the first time such a causal result is
reported for a eukaryote. In addition, it supports previous evolu-
tionary analyses of transcripts that suggested that in many organ-
isms there is selection for weak local folding of the mRNA
sequence at the beginning of the ORF, probably to improve initi-
ation efficiency and the recognition of the START site by the
pre-initiation complex.23,32 It may also explain the difference in
the ‘linearity’ of the profiles that appear in Figure 2D, F, relative
to the profile in E. (that is less ‘linear’), which may be related to
the central effect of mRNA folding near the 50end of the ORF
on protein levels in L2-41C. It is probable that this affect is dis-
tributed in a bi-modal manner in the database, so that it is rela-
tively easy to randomly generate variants with either strong
folding / many base-pairs / relatively low protein levels, or weak
folding / few base-pairs / relatively high protein levels.

Interestingly, as can be seen in Figure 4B, after the first 20
positions/windows both in the endogenous genes and in the het-
erologous genes there is a region where the correlation between
folding energy (FE) and protein levels (PA) is reversed (i.e. nega-
tive, strong folding tends to increase protein levels).

In the case of the endogenous genes, the region is relatively
long (dozens of codons afterwards) and significant. In the case
of the heterologous genes, there are several such short regions
which are not significant (probably due to the lower number
of points).

This result supports a previous study that demonstrated based
on a comparison to randomized versions of the genome that there
is a selection for strong mRNA folding in after the first~14 posi-
tions/windows of the ORF40 (Fig. 4B); this region appears
downstream of region with a selection for weak mRNA folding
at the very beginning of the ORF. A possible explanation for this
result is that strong mRNA folding further downstream improves
the fidelity of translation initiation by blocking the pre-initiation
complex from scanning it, and increasing the probability that it
will remain in the vicinity of the START codon and recognize it
correctly.34,41-43 It is also possible the strong structure down-
stream may help prevent strong folding at the START codon. In
order to further demonstrate that the reported relation between
mRNA folding and protein levels in our heterologous system can
explain folding evolution in S. cerevisiae endogenous genes, we
observed that the effect of mRNA folding on protein levels is
similar in endogenous genes and in our heterologous libraries.
To this end, we computed the correlation between 1) the vector
of correlations between the mean local FE and PA in S. cerevisiae
endogenous genes and 2) the vector of correlations between the
local FE and PA in the first 50 windows heterologous gene; we
found it to be highly significant (r D 0.7; p D 6.28¢10¡8;
Fig. 4B, C). Similarly, we showed that the observed correlation
between protein levels and folding energy in the heterologous
library increases with the significance of the level of selection of
the latter in endogenous genes. To this end, we computed the
correlation between 1) the vector of the local FE Z-score in the
first 50 windows of the wild-type S. cerevisiae endogenous genes,
with respect to the corresponding randomized variants maintain-
ing various genomic properties (Methods) and 2) the vector of
correlations between the local FE and PA in the first 50 windows

in the heterologous gene; we found it to be highly significant
(r D 0.7; p D 2.4¢10¡8; Fig. 4B-D).

At the next step, we aimed at understanding how the effect of
different codons on protein levels changes along the coding
sequence. Each dot in Figure 4E correspond to one codon, and
includes the correlation between its frequency and protein levels
in the library L2-41C (x-axis) vs. the correlation between its fre-
quency and protein levels in the library L42-81C (y-axis). Inter-
estingly, while in general an agreement between the 2 libraries
(r D 0.33; p D 0.07) can be observed, there are cases where the
effect of codon frequency on protein levels in the first 40 codons
is different from its effect in the second 40 codons, supporting
the conjecture that the effect of codon frequency on protein levels
is context dependent and changes along the ORF. For example,
the codon GGA has a positive effect on protein levels when it
appears in codons 2–42 (r D 0.24, p D 0.0035 ), but it has neg-
ative effect on protein levels when it appears in codons 42–81
(r D ¡0.47, p D 0.018 ) (Fig. 4E).

Discussion

Our synthetic biology driven approach to study the effect of
synonymous or silent mutations in different parts of the tran-
script on protein abundance, enabled us to gain an improved
understanding of the relation between transcript features and
their corresponding protein levels. Previous studies based on evo-
lutionary systems biology of endogenous genes could not infer
the causality of the relations between transcript features and pro-
tein levels. Our systematic study of rationally designed heterolo-
gous genes bypasses many of the pitfalls characterizing the
investigation of endogenous gene expression. This approach is
becoming increasingly available due to rapid advances in DNA
library construction methodologies. The results reported in here
emphasize the utility of applying synthetic biology for decipher-
ing how transcripts modulate their expression and enables us to
provide quantitative estimations of the relations between various
features of the transcript and translation/protein levels in a
eukaryote.

Our analyses support the hypothesis that in eukaryotes weak
mRNA folding near the beginning/end of the ORF/50UTR
respectively, improves translation initiation and increases protein
levels.11,13,23,32,40-42,44,45 Specifically, the results emphasize the
negative effect of strong mRNA folding at the beginning/end of
the ORF/50UTR on translation initiation and protein lev-
els.11,13,23,32,41,44,45 The analysis also quantifies the effect of the
affinity of the nucleotide context surrounding the START codon
to the pre-initiation complex on protein levels, demonstrating
that this is one of the major determinants that can explain the
effect of silent/synonymous mutations in this region on transla-
tion and protein levels. Previous studies addressing this problem
either analyzed small numbers of heterologous or mutated var-
iants,30,31 or analyzed endogenous genes.34,46

Our analysis provides the first comparative estimation of the
possible effect of silent/synonymous mutations in different parts
of the transcript on protein levels. Specifically, it suggests that the
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most deleterious mutations (the ones resulting in the lowest pro-
tein levels) at the initiation region (the 50UTR) have one order of
magnitude higher effect on protein levels abundance than the
most deleterious mutations in the elongation region (the coding
region): the lowest protein level obtained for 50UTR (L5UTR)
mutations was around 10 times lower than the lowest protein
level obtained for coding region mutations (codons 42–81; L42-
81C). It was suggested that the beginning of the ORF (codons
2–41; L2-41C) is related to both initiation and elongation16;
indeed the lowest protein level obtained for a mutation in this
region was around 5 times higher than the lowest protein level
obtained for 50UTR mutations (i.e., between the 2 other
regions).

Finally, we show that codon decoding rates, inferred via ribo-
some profiling measurements, affect protein levels in a direct and
casual way. This result supports previous studies performed on
endogenous genes that suggested, based on various proxies of
elongation rates, that protein levels can be affected by codon dis-
tributions in the ORF, possibly due to their effect on translation
elongation.1,17,23,47 Our study demonstrates for the first time the
strong relation between codon decoding times and protein levels
in a direct causal manner. It is important to emphasize that this
result does not contradict previous findings suggesting that the
correlation between measures of codon frequencies and protein
levels in endogenous genes is partially due to non-direct reasons
such as global ribosomal allocation, protein folding, and transla-
tion fidelity, etc.16,24,26,48 Thus, predictors based on ribosomal
profiling data may be used for inferring protein levels of heterolo-
gous genes. Such predictors may be helpful specifically in cases of
genes that do not enable reliable measurements of protein levels
(e.g. very short ones49), and can be used for engineering heterolo-
gous genes for tailored gene expression. Furthermore, this result
demonstrates that elongation speed is not constant and that both
this speed and the associated protein levels can be affected by syn-
onymous features of the transcript (as was suggested for example
in17,20-22), and not only by initiation rates and/or the amino acid
content encoded in the coding sequence (as was suggested
in18,19,50).

The current accepted model is that translation initiation is the
rate limiting step of the translation process, and thus synonymous
mutations near the beginning of the ORF modulate protein lev-
els, while synonymous mutations downstream of this region do
not (see, for example,11,51). The analyses reported here demon-
strate that elongation and codon distribution downstream of the
ORF 50 end do significantly modulate protein levels (specifically,
when the region near the START codon is ‘optimal’). This does
not contradict the fact that the nucleotide composition near the
beginning of the ORF, as well as translation initiation, can have
stronger effects on protein levels compared to codon frequencies
downstream of the ORF 50 end and translation elongation.

Our study differentiates the nature and strength of the effect
of synonymous mutations in different parts of the transcript/
ORF on protein levels, and may be used to guide the design of
synthetic genes.52 The reported results support the notion that
the term ‘optimal codons’ (see, for example,27,53), which
describes the preferred codon for each amino acid in a certain

organism, should be fine-tuned; optimal codons are context
dependent and may vary among different parts of the ORF. Spe-
cifically, we analyzed a viral gene (HRSVgp04) and demonstrated
that silent and synonymous mutations in different parts of its
transcript can significantly affect its protein levels. Thus, these
results may serve as a proof of concept for the use of accurate
design of such mutations to generate rationally tailored expres-
sion of genes.

Materials and Methods

Methods for DNA library construction
Construction of all the DNA variants of the HRSV genes

fused to the reporter gene was performed according to the meth-
ods described in.54,55 A cloned and sequenced wild type version
of the HRSV gene was constructed as a Minigene (IDT DNA).
HRSV variants were generated by fully or partially randomizing
specific nucleotide positions within the HRSV gene. Randomized
nucleotide positions were ordered as machine mixed synthetic
nucleotides (IDT DNA) within DNA Ultramers (IDT DNA),
that were used to edit the wild type HRSV fragment and fuse it
to the YFP gene, following the methods described in54,55 with
slight modifications, as follows:

The HRSV wild type Minigene was edited to generate var-
iants by using it as a template in extension PCR reactions using
different randomized Ultramers as the reverse primer. The Ultra-
mers also contained at their 50 a segment for homologous recom-
bination into a promoter-less YFP in the yeast genome. The
forward primer of the HRSV Minigene PCR amplification con-
tained at its 50 an overlap segment for its fusion with a second
PCR fragment, that contained a promoter for the HRSV-YFP
fusion and a URA3 selection cassette (amplified from a pre-made
template).

Primer phosphorylation
300 pmol of single stranded DNA in a 50 ml reaction con-

taining 70 mM Tris–HCl, 10 mM MgCl2, 7 mMdithiothreitol,
pH 7.6 at 37 �C, 1 mM ATP and 10 units T4 Polynucleotide
Kinase (NEB) was used. Reaction is incubated at 37 �C for
30 min, then at 42 �C for 10 min and inactivated at 65 �C for
20 min.

Elongation between single stranded DNA fragments
1 pmol of single stranded DNA of each progenitor in a 25 ml

reaction containing 2.5 ml of Hot Start DNA Polymerase (Nova-
gen, 71086-3) reaction according to manufacturer’s guidelines
was used. Three cycles of annealing were executed for each elon-
gation to ensure full yield of elongation.

PCR of elongation reaction
All PCR reactions were performed in 96 well PCR micro-

plates, using KOD Hot Start DNA Polymerase (Novagen,
71086-3) according to its protocol.
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Digestion of phosphorylated PCR strand by Lambda
exonuclease

1–5 pmol of 50 phosphorylated DNA termini in a 30 ml reac-
tion containing 67 mM Glycine–KOH, 2.5 mM MgCl2, 0.01%
Triton X-100, 5 mM 1,4-dithiothreitol, 5.5 units Lambda exo-
nuclease (Epicentre) and SYBR Green diluted 1:50,000. Thermal
Cycler program is 37 �C for 15 min, 42 �C for 10 min, enzyme
inactivation at 65 �C for 10 min.

Chemical oligonucleotide synthesis
Standard PCR primers for all experiments were ordered from

IDT with standard desalting.
DNA UltramersTM (IDT DNA) harboring modified HRSV

sequences were used as PCR primers in order to insert the vari-
able segments of the HRSV variants. Specifically, we integrated
precise mixes of degenerate (N, K and others) bases at predefined
positions that effectively recoded the genes according to a prede-
fined DNA sequence specification.

DNA purification
DNA purifications required in the process of DNA construc-

tion were performed with the ZR-96 DNA Clean & Concentra-
tor (Zymo research) kit using standard protocols.

The master strain
The master strain was created by integrating into the yeast

genome a cassette containing a promoter-less YFP, followed by a
NAT (Nourseothricin) resistance marker under its own pro-
moter. The entire sequence was inserted into the his3D1 locus.

Transformations of the library into yeast his3D1 locus
All HRSV variants were transformed into the master strain

using the LiAc/SS carrier DNA/PEG method following the
procedures described in.56 Cells were plated on solid agar
SD-URA selective media and incubated at 30 �C for 3–
4 days. Transformant colonies were handpicked and patched
on SD-URA C NAT (Werner BioAgents) agar plates in 384
format. Correct transformation was verified for all variants by
PCR amplification from the yeast’s genome, gel electrophore-
sis and DNA Sequencing. The constructs were transformed
into the master strain which contained a promoter-less YFP
coding sequence at the his3D1 locus. Each synthetic construct
contained a URA3 selection marker under its own promoter
followed by a TEF promoter, the relevant HRSV gene ORF,
and the beginning of the YFP ORF (for recombination
purposes).

Sequencing
Colonies were picked manually from the plates of each

variant, the specific integration locus was PCR amplified
from each clone. Correct size amplifications were verified by
gel electrophoresis. Amplicons were sequenced in house using
Sanger sequencing. Colonies with the correct sequences were
chosen for analysis.

Culture, fluorescence measurements and mRNA
quantification

The variant strains of all genes were maintained in 384 well
format on SD-URA C NAT solid medium using the Singer col-
ony arrayer (RoToR, Singer instruments). In order to measure
growth and fluorescent protein expression, the Singer colony
arrayer was used to inoculate all colonies of the library from solid
medium into 100 ml of SD-URA media in a 384 well growth
microplate (Greiner bio-one, 781162). Following 24 h of pre-
incubation, 5 ml of the yeast cultures was diluted into 80 ml of
SD complete media in a 384 well microplate, to reach a starting
O.D600 of »0.1–0.2.

A microplate reader (Neotec Infinite M200 monochromator)
was then set to measure the 384 well plates following parameters
in cycles of 10 min: Cell growth (as extracted from absorbance at
600 nm) and YFP expression (Ex. 500 Em. 540). Each cycle con-
tained 4 min of orbital shaking at amplitude of 3 mm. The num-
ber of cycles was set to 100 (16h) and the temperature to 30 �C.
We performed triplicates of the expression measurements.

mRNA quantification of YFP reporter
mRNA level measurements were performed using quantitative

real-time PCR (qPCR). Yeast strains were grown to mid-log and
RNA purification was performed using the MasterPureTM yeast
RNA purification kit (Epicentre) according to manufacturer’s
protocol. First strand cDNA synthesis was performed using the
SuperScript� III First Strand Synthesis kit (Invitrogen) according
to manufacturer’s protocol, and qPCRs on yeast cDNA’s were
performed in a LightCycler 480 Real-Time PCR system (Roche)
in 384 well-format using SYBR�. Green detection mode and rel-
ative quantification analysis was performed using default parame-
ters of the DDCT method. Normalization of mRNA levels was
performed according to mRNA levels of the highly expressed
Actin gene, and several negative controls were performed to vali-
date our results including (1) no reverse transcription, (2) no
PCR template, (3) no YFP (Yeast strain without the HRSV
fusion), as well as a positive control for RNA extraction with a
known RNA extract. The estimated mRNA levels were based on
the average of all replicates.

Sequences of primers for RT-PCR are as follows:

Actin Fwd: ‘CTGGGACGATATGGAAAAGAT’;
Actin Rev: ‘GTTCACTCAAGATCTTCAT’;
YFP Fusion Fwd: ‘ATTCACTTGGTGTTGTCCCAATT

TTGG’;
YPF Fusion Rev: ‘GATCTGGGTATCTAGCAAAACACATC’.

Computational analysis

Designing the heterologous gene variants

As describe in the main text, we analyzed the gene HRSVgp04
and generated 3 libraries (L5UTR, L2-41C, L42-81C) to under-
stand the distinct effect of the nucleotide compositions in differ-
ent regions of the transcript on protein levels. The structure of all
3 libraries was identical: All had the same promoter, followed by
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the 50UTR (14nt) of the TEF gene, and the HRSVgp04 gene
fused with a YFP reporter (Fig. 1A).23,32

To make sure that the effect of the mutations of protein levels
will resemble its effect in natural conditions,16,57 we chose for each
amino acid of the HRSVgp04 protein the codon with the highest
tRNA adaptation index (tAI) in S. cerevisiae coding sequence-
s38_ENREF_23; then we choose the first 39 nucleotides of the
coding sequence such the strength of the folding there will be min-
imal (Folding energy close to zero)23,32; in addition, the context/
Kozak sequence related to the 6 last nucleotides of the 50UTR was
optimized based on the optimal sequence of S. cerevisiae endoge-
nous genes.30,34 All the variant sequences appear in Table S2.

By randomizing this basic transcript we generated the 3 librar-
ies (L5UTR, L2-41C, L42-81C).

Normalizations and filtering of the data
Estimated protein levels were based on the mean YFP/OD

over all cycles. Note that the reported results are robust to various
definitions of outlier filtering.

Inferring the mean typical decoding rate of an ORF based on
ribosomal profiling data

The method for estimating codon decoding times, MTDR,
was published in.20 For clarity we briefly describe the method
here: S. cerevisiae ribosomal profiles were reconstructed using the
data published in the GEO database, accession number
GSE13750 (GSM346111, GSM346114).57

Ribosomal profiles were normalized (to get normalized foot-
print counts, NFCs) as in previous studies, by dividing each pro-
file by its mean read count; this enables to control for variation
in initiation rates and mRNA levels of different genes, and ana-
lyzing/comparing all the genes/profiles in a unified manner.
Next, for each codon type we generated a vector consisting of
NFC values originating from all analyzed genes. These vectors
were used to generate, for each codon type, a histogram reflecting
the probability of observing each NFC value in the expressed
genes (the number of times each NFC value occurs in the data
normalized by the total number of times the codon appears in
the data), that was named the ‘NFC distribution’ of the codon.

Based on the characteristics of the NFC distributions (see
some explanations below and in20) we suggest https://www.goo-
gle.com/search?qDweChypothesizedandspellD1andsaDXandei
DU6sEUtG6NcXmOaPVgfgMandvedD0CCoQvwUoAA that
their topology could result from a superposition of 2 distribu-
tions/components: the first one describes the ‘typical’ decoding
time of the ribosomes, which was modeled by a normal distribu-
tion characterized by its mean m and variance s2 with a probabil-
ity density function fx.x;m; s/ (for a random variable X ) of 20:

fx.x;m; s/D 1

s
ffiffiffiffiffiffi
2p

p e
¡ .x¡m/2

2s2 : (1)

The second component describes relatively rare translational
pauses and ribosomal interactions, such as traffic jams due to the
codons’ different translation efficiency, and was modeled by a

random variable with an exponential distribution characterized
by one parameter l, with a probability density function
fz.y; λ/(for a random variable Y ) of:

fy.y; λ/D f λe
¡ λy; y�0

0; y< 0:
(2)

The mean of the exponential distribution is 1/ l and can reflect
the average NFC of a non-typical/non-nominal phenomenon
such as traffic jams, pauses, and biases.

It is known that the distribution of a random variable w(t,)
which is the sum of 2 independent random variables f .t/ and
g.t/ (i.e. w(t) D f .t/ C g.t/), is calculated as a convolution
between the 2 distributions58:

w.t/D f .t/ � g.t/
D
Z t

¡ 1
f .t/ g.t¡ t/dt 8 f ; g : ¡1 ; 1½ Þ!R:

(3)

Thus, the summation of 2 independent normal and exponential
random variables corresponding to the distributions mentioned
above results in a distribution which is named ‘exponentially
modified Gaussian’ (EMG), which is a convolution of a normal
and exponential distribution. Formally, the EMG distribution
function fz.y;m; s; λ/, of a random variable Z (where
ZDX CY )59 is:

fz.z;m; s; λ/D λ
2
e
λ
2.2mC λs2 ¡ 2z/erfc

mC λs2 ¡ zffiffiffi
2

p
s

� �
(4)

where

erfc.x/D 1¡ erf .x/D
Z1
x

e¡ t2dt: (5)

The parameters m; s; λ were estimated by fitting the measured
NFC distributions to the EMG distribution, under the log-likeli-
hood criterion.

Intuitively, the model above is supported by the following
points (see all the details in20): 1) A simulation of ribosome pro-
filing when there are no traffic jams, biases, or pauses (the simula-
tion was based on the S. cerevisiae genome and ribosomal
profiling measurements). In this case we found the NFC of the
codon to be normal/Gaussian. Thus, we determined that the
component of typical decoding time to be normal/Gaussian.
2) When traffic jams (various codon decoding rates) and extreme
NFC values are added to the model/simulation the distribution
is skewed and it looks log normal or like an EMG. 3) We expect
that extreme pauses or traffic jams (due to slower codons for
example) will increase the NFC values of a codon, resulting in a
right tail. A natural and simple way to describe such a right tail is
via an exponential distribution. This is the reason we added the
second component of the EMG distribution, the exponential
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distribution. 4) We performed a simulation of ribosomal profil-
ing where we know the translation rate/time of each codon. We
run the EMG filter on the simulation and show that it accurately
estimates the true translation times (r D 0.99). 5) We used
Akaike information criterion (AIC) to show that the NFC distri-
butions are better described by an EMG distribution than by
either exponential or normal distributions. 6) We found that the
estimated typical decoding rate correlates with measurements
related to the translation decoding rate (such as tRNA levels) and
the mean typical decoding rate correlates with protein levels and
proteins per mRNA levels of endogenous genes.

The typical decoding time of a codon is its m; the mean typi-
cal decoding time/rate of a gene is the geometric mean of m or
1/ m respectively.

All the per-codon inferred values appear in Supplemental
Table 3.

Note that the normalized footprint count (Z) is dimensionless
since it is obtained via normalizing/dividing the vector of read
count (RC) related to each coding region by the mean RC of the
coding region. This means that in our case m, l, and s are
dimensionless parameters of this distribution(s) (normal distribu-
tion, exponential distribution, and EMG). Therefore (by defini-
tion) the normalized read count and also m are dimensionless
values that describe the ratio between 1) the read count of the
codon and 2) the mean read count of the codons.

We expect that (given a certain initiation rate and mRNA lev-
els) the read count related to a codon be proportional to the time
the ribosome spends on it (or to the probability to see the ribo-
some on the codon relatively to other codons), thus, the normal-
ized read count and also m (and l, and s) are dimensionless
values that describe the ratio between 1) the decoding time of the
codon and 2) the mean decoding time of codons.

Hence we multiply the m for a certain codon c by a constant
related to the mean decoding time of codons in a genome, we
should get an estimation of the decoding time of the codon c.

mRNA folding predictions
The local pre-mRNA folding profiles were computed based

on the ViennaRNA Package60 with default parameters (e.g., tem-
perature is 37 �C). We used a 40 nt length sliding window (with
1 nt step), corresponding to the approximated ribosome size in
fungi.

In the case of the correlations reported in Figure 3, we consid-
ered the mean folding energy of all the windows intersecting with
the variable part of the library. In the case of Figure 4, we consid-
ered the folding in windows of size 40 nt (details in the main text).

Correlation between codon frequencies and protein levels
For the correlation reported in Figure 4E we considered only

the 31 codons with non-constant frequency distribution both in
the L2-41C and the L42-81C library.

Folding profiles and protein abundance of endogenous
S. cerevisiae genes (Fig. 3B)

The coding sequences and UTRs of S. cerevisiae were down-
loaded from.61 The coding sequences sequences were randomized

as follows: for each amino acid in each gene, we sampled a codon
from the distribution of genomic codon frequencies/codon-bias
in the S. cerevisiae (i.e., more frequent codons in the genome
have a higher probability of being sampled). Thus, the random-
ized variants maintain both the amino acid content of each cod-
ing sequence, and the codon frequencies of the original genome.
20 randomized versions of the genome were generated in this
manner; local folding vectors were computed for each gene in the
randomized genome, and were used to generate the z-score pro-
files that appear in Figure 4.

For S. cerevisiae endogenous genes we considered 4 quantita-
tive large scale measurements of Protein Abundance (PA).6,62,63

We averaged across the 4 datasets (after normalizing each data set
by its mean) to reduce experimental noise (resulting with 1,448
genes with measurements in all datasets).

Statistical analyses
Statistical analyses were performed using Matlab. All the

reported correlations (including partial correlations) are Spear-
man. In this study we computed, among others, partial correla-
tions between 2 variables (x and y) when controlling for the third
variable (z), which is denoted by r(x,yjz). Partial correlation is a
standard way to measure the degree of association between 2 ran-
dom variables, when the effect of a set of controlling random var-
iables is removed. False Discovery Rate (FDR see Table S1) was
performed based on Benjamini and Hochberg64 and Storey65

methods (we used FDR cutoff of 5%).

The tAI Index
The tAI index38 uses the adaptiveness of the codons of a gene to

the tRNA pool. Denote the adaptiveness value of codon of type i
with Wi. Let tCGNij be the copy number of the j-th anti-codon
that recognizes the i-th codon, and let Sij be the selective constraint
of the codon-anti codon coupling efficiency. The s vector38,66

[sI :U , sG:C, sU :A, sC:G, sG:U , sI :C , sI :A, sU :G, sL:A] was defined for
eukaryotes as [0, 0, 0, 0, 0.561, 0.28, 0.9999, 0.68, 0.89]. Then,
the absolute adaptiveness value of a codon is defined by

Wi D
Xni

jD 1

.1¡ Sij/tCGNij: (6)

Let us mark the relative adaptiveness value of codon i with wi, by
normalizing eachWi with the maximalWi value among the 61Wi

values. The tAI index for a gene is an average over the wi of its
codons.

The analyzed UTR features for L5UTR
In addition to local mRNA folding calculated across 40nt

windows, we analyzed the following features:
ATG context score was computed as in34:
Specifically, we calculate the context score (corresponding to

6 nt upstream of the START codon and 3 nt downstream of it)
according to the following steps: 1. Select percentage of highly
expressed/translated endogenous genes (in our case we used 2%
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of highly expressed genes, according to the ribosomal load).
2. Calculate a position specific scoring matrix (PSSM) based on
the nucleotide context surrounding the start codon of the selected
highly expressed genes. Let 3. Calculate the context score for a
START codon according to the PSSM:

ATGCSj D exp
X

i
log pij

� �� �
, where j is the variant index, i

the nucleotide position, Pij the probability that the ith nucleotide
of the j-th gene appears in the i-th position (based on the PSSM).

The Kozak score was computed as the hamming distance (i.e.
number of mutations) from the Kozak consensus sequence:
‘ACCATGG’.33

The similarity to binding sites of different RNA binding
proteins was based on consensus sequences of 22 RBP taken
from35. The score of each variant was based on the hamming
distance of a window in the variant (we checked all sliding
windows with a length identical to the consensus sequence)
with the minimal number of mutations relative to the con-
sensus sequence.

In addition, for each position in the UTR, and for each of the
4 nucleotides, we defined a binary variable (i.e., 14¢4D 56

variables) as follows: its value is ‘1’ if the nucleotide appears in
the position; otherwise the value is 0. Correlation of the different
UTR features with protein levels appear in Table S1.
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