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Novel insights into gene expression regulation during meiosis
revealed by translation elongation dynamics
Renana Sabi1 and Tamir Tuller 1,2

The ability to dynamically control mRNA translation has a great impact on many intracellular processes. Whereas it is believed that
translational control in eukaryotes occurs mainly at initiation, the condition-specific changes at the elongation level and their
potential regulatory role remain unclear. Using computational approaches applied to ribosome profiling data, we show that
elongation rate is dynamic and can change considerably during the yeast meiosis to facilitate the selective translation of stage-
specific transcripts. We observed unique elongation changes during meiosis II, including a global inhibition of translation
elongation at the onset of anaphase II accompanied by a sharp shift toward increased elongation for genes required at this meiotic
stage. We also show that ribosomal proteins counteract the global decreased elongation by maintaining high initiation rates. Our
findings provide new insights into gene expression regulation during meiosis and demonstrate that codon usage evolved, among
others, to optimize timely translation.
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INTRODUCTION
For over decades, most of the gene expression studies were based
on transcript levels measured by techniques such as microarrays
and RNA-seq.1 The development of ribosome profiling in 20092

allowed for the first time a high-resolution view into in vivo
translation on a large scale. In the past few years, ribosome
profiling has rapidly become a widely used tool for studying
messenger RNA (mRNA) translation, yielding an increased number
of studies on gene expression regulation at the translational
level.2–11

In the context of translation regulation, however, a major focus
is dedicated to the initiation phase and little is known about the
unique role of the elongation phase. Specifically, whereas
translation initiation is believed to be the major regulatory phase
that dictates translation rates, translation elongation is rather
assumed to occur at fixed rates and thus, not to play a role in a
condition-specific translational control.12–17 Nevertheless, the idea
that elongation rates can change under different conditions has
been previously proposed. For example, simulation of translation
based on the ribosome flow model in S. cerevisiae revealed that
changes in the tRNA pool due to different levels of available
glucose in the media lead to changes in the decoding rate of
different codons.18 Another study by Frenkel- Morgenstern et al.,19

have suggested that cell cycle-regulated genes may use different
synonymous codons to adjust their adaptation to the varying
tRNA pool during the cell cycle; raising the prospect that
elongation rates can vary in a functional manner. However, there
is currently no direct, in vivo evidence regarding codon-specific
changes in the typical decoding rates along multiple conditions.
A useful experiment for studying in vivo translation under

different conditions is ribosome profiling. However, this approach
provides information on the translation process as a whole,
without isolating the specific contribution of the translation
elongation stage from other gene expression aspects. Specifically,

during the processing of ribosome profiling data, the positions of
translating ribosomes are mapped over the entire transcriptome,
producing transcript-specific ribosomal footprint-count profiles.
Ideally, each profile is expected to provide a full picture of the
decoding time at each position along the transcript.2 In practice,
however, the generated read count (RC) is a superposition of
transcript levels, initiation rates, elongation rates, noise and
experimental biases.20–22 In addition, ribosomal footprints are
mapped only to a very partial subset of codon positions mainly
occurring within highly expressed genes,21–23 thus, restricting the
ability to analyze all genes including very lowly expressed ones.
In this work, we analyze for the first time, the elongation rates of

all S. cerevisiae genes in multiple time points/conditions during
sporulation, based on the estimation of the Mean of the Typical
codon Decoding Rate (MTDR).23,24 Using a mathematical and
statistical model applied to ribosome profiling data, the MTDR
extracts the specific component related to the elongation phase of
translation, estimating the typical elongation rates of each codon.
To investigate translation elongation rates under different

cellular conditions, we analyzed MTDR calculated based on
ribosome profiling data sampled throughout meiosis in yeast.4

Meiosis is a conserved specialized form of cellular division,
essential for sexual reproduction in nearly all eukaryotes.
Particularly, it is of great importance in the production of genetic
diversity and in the maintenance of a correct number of
chromosomes in the progeny (reviewed in25). In single-celled
budding yeast, Saccharomyces cerevisiae, meiosis is part of the
process of sporulation which is initiated by transferring diploid
yeast cells onto a nutritionally unbalanced medium. Starved for
nitrogen and carbon, a diploid yeast cell undergoes a two-step
nuclear division process, producing four haploid genetically
distinct daughter cells. These products are packaged into spores
within which they enter a dormant stationary phase. To enable a
rapid response to the wide range of environmental changes that
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occur during meiotic sporulation, a tight control over gene
expression is acting at both, the transcriptional26,27 and post-
transcriptional levels.4,28–30 Specifically, a major study by Brar and
co-workers has demonstrated a pervasive and dynamic transla-
tional control during the yeast meiotic sporulation program using
ribosome profiling experiments on sporulating S. cerevisiae cells.4

Here, we applied the MTDR approach to the ribosome profiling
data generated by Brar et al. to study the unique and dynamic role
of translation elongation in translational control during meiosis.
This work presents for the first time, a genome-wide study of
translation elongation in multiple conditions based on the analysis
of in vivo translation.

RESULTS
Estimating translation elongation rates from ribosome profiling
data
Our analyses rely on the separation of translational data obtained
from ribosome profiling into elongation and initiation (general
description of the approach is described in Fig. 1a). To this end, we
utilize the MTDR, a novel estimation of translation elongation
efficiency based on the analysis of ribosome profiling data.23

MTDR calculation consists of the following major steps: (1)
generating codon-specific histograms of ribo-seq RC; (2) fitting
each histogram into an exponentially modified gaussian, a
superposition of a normal distribution and a negative exponential
distribution; (3) using the maximum-likelihood estimation (MLE) to
infer the mean of each normal distribution, which represents the
mean of the typical decoding rate of each codon. The first stage of
the MTDR calculation seeks to learn the footprint count
distribution of each codon. To this end, RC profiles with a low
coverage are filtered, and the remaining are chosen to consist a
reliable reference set of profiles (distribution of the coverage is
visualized in Fig. 1b). Then, each profile within the set is
normalized by its average RC, enabling the comparison of RC
originated from genes with different mRNA levels and initiation
rates. In the next step, per-codon histograms are generated by
going over each normalized footprint count (NFC) profile and
collecting the NFC values in all occurrences of the codon. These
NFC histograms are expected to represent the distribution of the
decoding time of each codon and they resemble a log-normal
distribution which is shaped as a normal distribution with a
skewed right tail. It has been shown in24 that simulating
translation without considering ribosomal pauses yields codon
decoding rates that are normally distributed, suggesting that the
right tail represents non-typical decoding rates; these can stem
from either biases, traffic jams or extreme pauses. Thus, the
second major stage aims at separating typical NFC values from
non-typical, extreme values. This separation is achieved by
decomposing the distribution into two components: a normal
distribution corresponding to the typical decoding rate (TDR), and
a negative exponential distribution corresponding to non-typical
decoding rates (Methods).
In the final stage, the typical elongation time of each codon is

estimated by the mean of the normal distribution component.
Once all 61 codon decoding rates are inferred, per-gene MTDR is
calculated for all genes by the geometric mean of the TDR of its
codons.

Fluctuations in the typical decoding rates throughout sporulation
peaking at meiosis II
Calculations of TDR for all 61 coding codons at 27 time points
along meiotic sporulation revealed prominent fluctuations in the
typical decoding rates during meiosis (Fig. 2a). The relative
variability in the TDR during meiosis quantified using the
coefficient of variation (CV), turned out to be codon-specific,
varying from a minimum of 7% for the histidine codon, CAC, to

114.88% for the asparagine codon, AAT (Fig. 2a, bottom).
Particularly, AAT (asparagine) and CGA (arginine) showed the
highest variability amongst all codons. However, whereas the TDR
of CGA showed fluctuations during most time points, the high CV
of AAT was driven almost entirely by a dominant change at the
onset of anaphase II. With respect to rank changes, the most
dramatic shift was observed for two Arginine codons, CGA and
CGG, which changed their rank from the lowest to the highest at
least at one time point during meiosis. Intriguingly, both are
known to be rare codons characterized by extremely low
decoding rates under normal vegetative growth (Methods). The
TDR rank of CGG, for example, had increased from the lowest rank
at the vegetative growth phase, to the highest possible TDR rank
at the onset of Metaphase I. A table summarizes all calculated TDR
of the 61 codons at each of the 27 analyzed time points is
provided as Supplementary Table 1.

Fig. 1 a Flow chart describing research approach: Ribo-Seq
footprints at multiple time points were retrieved and mapped to
the transcriptome. Positional RC profiles were generated and
filtered. Each RC profile was normalized by its average RC, producing
a transcript-specific NFC profile. For each codon, NFC values were
collected from all NFC profiles, and per-codon histograms were
generated. Using the MLE criterion, the histograms were fitted to an
exponentially modified gaussian (EMG) distribution and the typical
decoding rate of the codon was determined by the µ parameter.
Finally, the MTDR of each gene was calculated by the mean of the
typical decoding rates of its codons. Initiation rates were inferred
using an optimization approach based on the totally asymmetric
exclusion process (TASEP) model. The per-codon TDR and the
ribosomal density were calculated based on the filtered ribo-seq
profiles and ribosome occupancy data (details in the Methods). mRNA
levels were calculated based on RNA-seq experiments performed at
multiple time points along the yeast meiotic sporulation program.4

b Coverage of the RC profiles are shown on a violin plot. Values
correspond to the raw sequencing data produced by Ribo-seq. Time
points labels appear as in.4 Median values are denoted by blue
squares and mean values by orange “+“ symbol
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Genomic/static measures of codon usage bias such as the tRNA
Adaptation Index (tAI)31 and the Codon Adaptation Index (CAI)32

(Supplementary Tables 2-3) turned out to be positively correlated
with the TDR of codons at most time points of meiotic sporulation.
However, in 8 of the 27 analyzed time points, tAI and CAI
exhibited negative Spearman’s rank correlations with decoding
rates, implying that TDR cannot be trivially explained by codon
usage bias. Prominently, the negative correlations were observed

along two sequential meiotic stages, the metaphase II and the
anaphase II (Fig. 2b).
Aiming at further understanding the factors affecting the

observed decoding rates, we quantified the demand of each
codon by its frequency in all presented mRNA at a given time
point (Methods, Supplementary Table 4). Clearly, it can be
observed that rare codons (in the genome) are significantly more
overrepresented in the mRNAs presented in the cell during
meiosis II, indicating an increased demand for these codons

Fig. 2 a Changes in codon decoding time during meiosis. Rows represent time points along sporulation and columns represent codons. To
enable the comparison of TDR calculated at different time points, TDR are ranked at each time point. Blue and red entries correspond to low
and high decoding rate, respectively. Codons are ordered according to a hierarchical clustering based on Euclidean distance. Below is the CV
(%) corresponding to the relative variability in the TDR rank of each codon (“Methods” section). b Spearman’s rank correlations of codons’ TDR
with CAI (top) and tAI (bottom) at each time point. Bars fall within meiosis II are colored in green and the area is shaded in gray. Significant
correlations (p < 0.05) are designated by asterisks. c. The per-codon ratio between the total frequency of occurrences in all transcripts at
vegetative growth, and at each other time point (Methods). Ratios are standardized per codon by the average over the time points. d
Distribution of the CV in TDR of codons with the highest and lowest CAI; Methods). Medians are marked by horizontal red lines. P-value
corresponding to the statistical difference between the medians is denoted. e Changes in the average TDR per-amino acid during meiosis.
Rows represent time points along sporulation and columns represent amino acids. A dendrogram of the hierarchical clustering of the amino
acids based on their average TDR pattern is shown above. f Distribution of the CV in TDR of amino acids with slow and high TDR at the
vegetative growth time point. Medians are marked by horizontal red lines. P-value corresponding to the statistical difference between the
medians is denoted. P-value remained significant after sampling equal number of RC for each codon (Supplementary Figure 2, Methods
section)
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(Fig. 2c). Alternatively, frequent codons (in the genome) seem to
rather be underrepresented at these stages (Fig. 2c).
To test whether the extent of fluctuations in TDR during meiosis

is associated with codon usage bias, we compared the CV in TDR
of rare and frequent codons (lowest and highest CAI, respectively;
Methods) using a right-tailed Wilcoxon rank sum test. The group
of rare codons turned out to be the least homogenous in this
manner (median CV of 76.7% compared to 40.15% for the
‘frequent’ group, p= 2.34·10−5, Fig. 2d). Medians remained
significantly different also after controlling for the different
number of NFC values sampled for each codon (Methods,
Supplementary Figure 1).
Seeking to determine whether changes observed at the codon

level are specifically linked to changes at the amino acid level, for
each amino acid at each time point, we calculated the mean
decoding rate over its synonymous codons such that each codon
contributes to the average TDR according to its genomic
frequency (Methods). Although the Pearson correlation between
the TDR pattern of codons and the TDR pattern of their
corresponding amino acids was high (r2 > 0.67, p < 10−323, not
including amino acids with only one codon), the TDR pattern
observed at the amino acid level was generally more homo-
genous than the one observed at the codon level (Fig. 2e).
However, asparagine (N) showed prominently high variability (CV
of 108.1%). The most extreme shift in the average TDR was
observed for asparagine (N) and arginine (R), who changed their
rank from the top decile to the bottom at least at one time point
during meiosis. In fact, asparagine and arginine are encoded by
AAT and CGA respectively, which turned out to be the most
variable codons.
As nitrogen and carbon are crucial components of all amino

acids that become limited during sporulation,33 we speculated
that the average TDR of amino acids which were already limited
prior to meiosis, would be the most affected. Thus, we compared
the relative change in the average TDR (in terms of CV) of the five
amino acids with the highest TDR rank in the vegetative growth
time points and the and the five amino acids with the lowest
vegetative rank. Strikingly, the CV of the amino acids with the
highest vegetative rank was higher (p= 0.0022, Fig. 2f).

Dynamics in the elongation rates of genes during meiosis is
related to their function
Given that MTDR represents an estimation of the elongation rate
of codons, our analysis implies that the elongation rates of
individual genes might be selectively affected during the different
developmental stages of meiosis. To investigate this, we
calculated MTDR for all S. cerevisiae genes in all 27 analyzed time
points (Supplementary Table 6). To enable the comparison of
different time points, all MTDR values were normalized for the
time point and z-scores were obtained for each gene (Methods).
Unsupervised clustering of the genes revealed 21 clusters, 7 of
them turned out to emerge from functionally related groups
(Fig. 3a).
Whereas different statistical measures based only on RC profiles

require sufficient coverage, MTDR can be calculated for any input
sequence, regardless of the depth of its RC profile coverage.
Specifically, our analysis included all 6,579 budding yeast genes
(excluding paralogous; Methods). Considering that, it is specifically
important to emphasize clusters with very lowly expressed genes
that cannot be captured by RC-based analysis. As can be
prominently visualized in Fig. 3a, for example, we identified a
large cluster of 1,497 genes (C1), all translated with very low
elongation rates at most stages of meiosis (corresponding average
RC coverage varies between 5% and 35%, depends on the time
point). Interestingly, C1 turned out to be significantly enriched for
genes involved in sister-chromatid segregation, precisely coherent
with its sharp time point-specific shift toward increased

elongation rate at the onset of anaphase II (Fig. 3b). The possible
functional effect of the elongation rates of the C1 genes on the
translational status, was further examined using whole cell
simulation of translation that includes all the mRNA and
ribosomes in the S. cerevisiae cell. Specifically, translation at the
anaphase II onset was simulated twice: first, with the original
genome and second, with a randomized version of the genome in
which the codon composition of the C1 genes was randomly
generated according to the genomic codon usage bias (Methods).
Changing the synonymous codons in C1 resulted in a decrease in
both, the pool of free ribosomes and the average translation rates
(Supplementary Figure 3), which are expected to have very
significant effect on the fitness of the organism.
Another prominent cluster of similar size (1,228 genes) but

fundamentally different MTDR pattern, was C2 (Fig. 3a). In contrast
to C1, C2 was mainly composed of highly expressed genes,
translated with high elongation efficiency during most time points
of meiosis. Consistently, functional enrichment analysis revealed
that C2 is most significantly enriched for cytoplasmic translation
(p= 1.7·10−86), and other housekeeping functions such as
oxidation-reduction process (p= 3.3·10−44). Considerably low
elongation rates of C2 genes were observed at the late phase of
anaphase I, the middle phase of metaphase II and most
prominently, at the onset of anaphase II (Fig. 3b). Strikingly,
C3 showed an opposite pattern, presenting almost a perfect
mirror-image of C2 (Fig. 3a). Most of the enriched annotations in
C3 were related to non-translational aspects of gene expression
and metabolic regulation such as transcription, splicing and
phosphorylation. This may suggest that C3 genes act to regulate
the decreased elongation levels of the housekeeping genes in C2
at the transcriptional and post-translational level. All enriched
clusters and their corresponding gene annotations are detailed in
Supplementary Table 7.
Seeking to determine whether similarity in the TDR of genes

may be partially associated with the amino acid content of their
proteins, we calculated the local pairwise alignment between
every pair of genes within each cluster. Comparison of the
alignment scores with the scores obtained for random group of
genes of the same size, revealed a signal of AA similarity for
clusters C1, C3, C5, and C9. These clusters turned out all to also be
functionally enriched. The average score for these clusters was
significantly higher than for random (p value < 0.01). This result
suggests additional possible association between mutual elonga-
tion and protein functions.
To further show that changes in elongation rates encapsulate

biological information, we calculated the correlations between the
meiotic MTDR pattern of each pair of genes (MTDR co-score,
Methods section). The obtained correlation revealed that genes
associated with protein–protein interactions (PPI) tend to have
more similar MTDR pattern than genes of non-interacting proteins
(Spearman’s rank correlation of 0.206, p < 10−323, Fig. 3c). MTDR
co-scores of interacting proteins turned out also to correlate with
the PPI strength score (Fig. 3d), which represents the confidence
level of the protein–protein interaction (Methods).34

Positive regulation of the anaphase II pathway at the level of
translation elongation, translation initiation and transcription
Anaphase II is the third stage of the second meiotic division in
which the two sister chromatids of each chromosome separate
and begin to move towards the opposite spindle pole body.
Segregation of sister chromatids requires the removal of a stable
cohesion complex that holds them at the centromeric region.
Although the major cascade required for the removal of the
cohesion in anaphase II is well established (depicted in Fig. 4a), the
complete gene expression regulation at this time point has yet to
be fully understood. Following the unique MTDR dynamics
observed at the onset of anaphase II, we decided to further
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investigate the translational regulation at this time point. To this
end, we compared rates of transcription, translation initiation and
translation elongation for the genes involved or regulated in the
anaphase II phase. Whereas elongation rates could be easily
assessed for any given gene based on the MTDR, transcription and
translation initiation rates (IR) were both dependent on the
availability of ribo-seq and mRNA-seq data (see details in the
Methods section). Within anaphase II genes, we distinguished
between two groups: genes that are expected to undergo
upregulation during anaphase II (i.e. promote the progression of
anaphase II) and those expected to undergo downregulation at
this time point (i.e. interfere with the progression of anaphase II,
Methods). Remarkably, at the onset of anaphase II, the expected
upregulated genes showed increased transcription and translation
levels (all-p < 10−2, Fig. 4b). The expected downregulated genes
on the other hand, did not show decreased expression rates
(Supplementary Figure 4). However, since the cohesion is removed
only after several processes including phosphorylation followed
by cleavage of the Rec8 subunit, we speculated that the
expression levels of genes acting to preserve the cohesion may

decline only towards the end of anaphase II. To test this
conjecture, we calculated the expression rates of the expected
downregulated group also in a late time point during anaphase II
(Methods). Indeed, some of the expected downregulated genes
showed decreased expression rates only late at anaphase II (Fig.
4c, d). Rec8 for example, which holds the cohesion complex
together and must undergo phosphorylation prior to being
cleaved by separase, was found in high levels at the onset of
anaphase II (Fig. 4c). However, at the late anaphase II, it decreased
in all levels (Fig. 4d). Generally, whereas transcript levels exhibited
a relatively homogenous pattern, MTDR and IR showed more
subtle fluctuations (Fig. 4c, d).

Ribosomal proteins exhibit low elongation rate at anaphase II but
maintain high initiation rate during all meiosis stages
Owing to their fundamental role in translation, ribosomal proteins
undergo selection for efficient elongation that consumes less
ribosomes and improves cellular fitness. However, at meiosis II, the
most efficient codon usage is inversely correlated with the usage
in other time points. Thus, their elongation rate is lower at this

Fig. 3 a Unsupervised clustering of the genes by the relative changes in MTDR along meiosis. MTDR were standardized to bring all time
points to the same average so that z-scores represent the distance from the time point-average in terms of standard deviation. For each time
point, z-scores greater/lower than the time point-average are shown in red/blue, respectively. Clusters are ordered by their size, from the
largest to the smallest (from left to right). Meiotic stages are labeled to the left of the corresponding time points (rows). Top gene annotations
enriched within C1, C2 and C3 are listed to the right, sorted based on their p-values (from the most significantly enriched to the less). b Mean
MTDR values along meiosis for clusters C1 (black) and C2 (gray). The sharp opposite pattern observed at the onset of anaphase II is shaded in
orange. c Distributions of MTDR co-scores for genes significantly associated with PPI (blue) versus genes of non-interacting proteins (gray).
The p-value represents the difference between the medians of the two distributions. d Spearman’s rank correlation between MTDR co-score
and PPI strength score. The correlation is based 21,638,331 points (corresponding to all possible pairs of the analyzed genes. Linear fitting of
the points is denoted by an orange line
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stage (Fig. 5, left). Despite the net decrease observed at the level
of translation elongation at the end of anaphase I, at metaphase II
and at anaphase II, the ribosomal proteins turned out to maintain
relatively high IR in all time points, enabling translation to proceed
during the different meiotic stages (Fig. 5, right).

DISCUSSION
Throughout the cell cycle, certain proteins need to be synthesized
rapidly and in higher abundance to ensure the intact progression
of each phase.4,19,35,36 In addition to other mechanisms such as

transcriptional and posttranslational regulation, cells exert a tight
control over mRNA translation. The ability to adjust translation
rates for mRNAs presented in the cell in comparable abundance,
enables a dynamic and rapid adaptation to sudden protein
demand. Here we suggest that the elongation phase of translation
also plays a functional and dynamic role in the regulation of mRNA
translation during meiosis. Specifically, we show that changes in
translation elongation efficiency during the yeast sporulation
program ensure that transcripts of stage-specific proteins are
selectively translated with higher efficiency. However, changes in
translation elongation may contribute to the organism fitness not

Fig. 4 a Initiation of anaphase II occurs with the ubiquitination of the anaphase-promoting complex/cyclosome (APC/C). Once activated, the
APC/C targets Securin (Pds1) for degradation, enabling the activation of separase (Esp1) which targets Rec8 for cleavage. Shugoshin protein
(Sgo1) in complex with protein phosphatase 2A (PP2A) and its regulatory subunit Rts1 protect the cohesion until the onset of anaphase II.88,89

Hrr25 and Cdc14 contribute to the phosphorylation of Rec8 which is important in the cohesion cleavage.80–82 b The statistic describes the
percentage of expected upregulated genes with increased rate at the onset of anaphase II (relatively to the average rate, z-score > 0). Gray
bars represent the mean percentage based on 100 randomization, error bars represent the standard deviations (Methods). Corresponding p-
values comparing the real and random numbers are denoted. c, d Relative rates (z-scores) of transcription, translation elongation and
translation initiation for genes participating in early c and late d anaphase II. The expectedly upregulated genes (purple labels) are separated
from the expectedly downregulated ones (green labels) by a vertical dashed line. Red x symbols denote genes for which IR could not be
inferred
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only through directly affecting the protein levels of genes. Among
others, improved elongation rates can decrease error rate during
translation,37 decrease traffic jams to promote better allocation of
ribosomes,38 or affect mRNA degradation rate.39,40

The novelty of this study is reflected by the following three
aspects: (1) The study is specifically focused on translational
control at the elongation stage; (2) It provides a condition-specific
view of elongation, differently from currently existing works which
analyze elongation rates based on static/steady state conditions;
(3) All S. cerevisiae genes are analyzed, including very lowly
expressed genes which are harder to be ‘captured’ based on
experiments only.
The decoding time of codons along the analyzed time points

exhibited a dynamic, time point-specific pattern that could not be
trivially explained by codon usage bias quantifications. The
substantial changes in the decoding time of several codons from
the highest to the lowest ranks, demonstrate a strong fine-tuning
regulation of elongation in response to environmental changes.
Particularly, the effect of rare codons on elongation regulation was
found to be more condition-specific than the effect of frequent
codons. At the amino acid level, the most extreme changes were
observed for asparagine, which was found to have slow decoding
rates during most stages of meiosis, but a relatively high decoding
rate at the onset of anaphase II. Intriguingly, intracellular
asparagine levels were found to play a critical role in cancer cell
growth and proliferation.41–43 Furthermore, it was shown that low-
asparagine diet could slow down the spread of breast cancer.44

Being the restrictive factor of the process, further limiting their
levels in cancer cells may slow down the cancer growth rate. It is
possible that mitosis and meiosis share some global translational/
metabolic aspects and thus, amino acids that are found in limited
levels during meiotic cell division (and hence, induce slow
decoding rates) might also be limited during cancer cell growth.
Intriguingly, we found that Rec8 has increased elongation and

initiation rates at the onset of anaphase II, although it was found
in very low mRNA levels. It is possible that the efficient elongation
may not be directly related to improved protein levels (despite the
general correlation between these two variables). For example, it
is possible that due to its functionality (e.g. various PPI with other
proteins expressed at anaphase II), it undergoes selection for
certain protein structures that are dictated by specific amino acids
that induce the codons with the elevated elongation rates at this
time point. However, although seemingly, Rec8 does not have to
be synthesized at anaphase II, it is also possible that it has
additional roles that can be further investigated. Indeed, several
studies have raised the prospect for a cohesion formation in

additional time points after the s-phase45,46 and suggested that its
full function is not completely understood.47

Overall, the fluctuations in the codon elongation rates were, in
most cases, compatible with those observed at the amino acid
level. This may suggest that the shifts towards low TDR observed
for certain codons, may be a consequent of slow amino acid
metabolism or poor aminoacylation. It was indeed shown early on
that the intracellular amino acid pool can change substantially
under different growth conditions.48 Specifically, meiosis is
initiated by an extracellular signal of deprivation in nitrogen and
carbon,33 crucial components of all amino acids. Here we suggest
that amino acids that were already limited in the pool prior to
meiosis, have a greater effect on the decoding time of their
codons. Other codon-related factors, such as the tRNA pool which
can considerably change during the cell cycle, may also affect the
actual TDR.19 Another potential cause for the changes in the TDR
can be related to modification of the ribosome. Specifically, it is
possible that changes in the ribosome during meiosis (e.g. via RNA
modifications49) can affect the relative elongation speed of the
different codons.
Today we understand that the elongation speed can affect

protein folding during a co-translational folding process.50,51

However, measuring and modeling this process is very challen-
ging and is currently assumed to be static52 (i.e. not to vary across
different conditions). Thus, a potential future study can utilize the
resultant changes in the elongation rates to study their relation to
changes in the protein structure and folding, seeking to determine
whether this relation can be condition-specific. The fact that the
TDR pattern of interacting and non-interacting proteins turned out
to be significantly different, provides additional and more general
association between protein function and elongation speed. Such
a relation can be explained, indirectly, based on the idea that
follows: Genes associate with PPI are required to act together at
the same time point and are thus expected to have similar protein
abundance in the cell.53 To produce similar protein levels, these
genes undergo similar translation and thus, have also similar
elongation rates.
Importantly, the positive relation between translation rate and

protein levels remains also when protein degradation is part of the
regulation.18 However, incorporating large-scale measurements of
degradation rates during meiosis can provide an interesting layer
to the analyses. Nevertheless, measuring protein degradation
remains a challenging task as for a given organism, proteomic
data is usually available for approximately only half of the proteins
(the most highly expressed,54). Thus, there is currently no

Fig. 5 Translation elongation rates (left) and initiation rates (right) of the ribosomal proteins during meiosis. Each column represents a
ribosomal protein and each row represents a time point along meiosis. Elongation rates are quantified by MTDR. Ribosomal MTDR and IR are
represented by their rank among all genes such that blue and red entries represent low and high rates, respectively, relatively to the rates of
all other genes. Yellow entries correspond to proteins for which initiation rates could not be inferred at specific time points (Methods)
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approach to infer protein degradation rates for all proteins in all
cell cycle steps.
Interestingly, at several time points in meiosis II, the estimated

elongation rates were inversely correlated with those found in
other time points. We suggest that housekeeping genes that are
generally required for translation (such as ribosomal genes)
undergo an evolutionary selection for codons optimally adapted
to the standard/normal tRNA pool and thus, tend to be highly
expressed at most time points along the cell cycle. Alternatively,
genes required specifically only at several time points (such as
anaphase II), have adopted non-optimal codon usage that would
fit the unique tRNA pool presented in the cell at these time points.
Nevertheless, the fact that a subset of genes is not regulated at
the translation elongation level at a certain time point, does not
imply that it does not regulated at all. It is plausible that the same
genes are regulated at both anaphase I and II, but the regulation is
not at the elongation level. Other types of regulation can be
related, for instance, to global higher translation initiation at
anaphase I, post-translational regulation, and protein or mRNA
degradation. Considering transcript levels to determine the
dynamic codon demand has revealed that rare codons are
required significantly more than frequent codons during meiosis II.
The idea that codon usage may induce cell cycle-dependent
protein demand is supported by previous observation of enriched
non-optimal codon usage in sets of cell-cycle-regulated genes.19

Here, however, we provide a high-resolution description regarding
the way such codons regulate relevant pathways in meiosis. Since
rare codons (which are usually slow) are expected to be the
bottleneck of the translation rate along an mRNA, their modula-
tion should have the largest effect on translation. Thus, an efficient
way to control translation would be via elongation modulation of
rare codons.
Improving the elongation speed of the rare codons for the

genes that encode the proteins that are required at the onset of
anaphase II is expected to improve their expression. It has been
previously suggested that highly expressed mRNAs tend to
include faster codons (that induce faster elongation) due to
various reasons: First, faster codons lead to a direct increase in the
translation rate and thereby, in the protein levels of their
transcript.55–61 Second, ribosomes spend less time on faster
codons. Thus, the usage of faster codons decreases the ribosomal
density, which is specifically important for genes with many
mRNAs. Faster codons on such genes should have a significant
effect on minimizing the amount of energy required for
translation via improving ribosomal allocation.62–64 Third, it is
believed that the probability of translational errors and protein
misfolding is generally reduced for faster codons.37,61,65 Since the
negative effect of such errors is expected to be stronger for highly
expressed genes, they are expected to undergo selection to
include faster codons.
Since the cellular resources required for translation are limited,

the translation of the large cluster of genes with fast elongation
rates at the anaphase II, is expected to slow down the translation
of other genes. Indeed, we observed a general translational
repression at the elongation level at the onset of anaphase II. It
has been already shown that during mitotic cellular division,
global translation is inhibited at the 5’ cap-dependent initiation
level66–68 so the ribosome accesses mRNAs independently of the
cap-binding protein eIF4E using a cis-regulatory element known as
the internal ribosome entry site (IRES).12,69 It was also shown that
during mitosis translation is globally arrested at the elongation
level.70 Here we suggest that translational repression at the
elongation level also occurs at the onset of anaphase II, in line
with the fact that the second meiotic division resembles mitosis in
a manner that similar forces and attachments operate in both.71

Despite a net decrease in translation elongation at the onset of
anaphase II, the translation initiation rates of the ribosomal
proteins turned out to be maintained at relatively (to other genes

in these conditions) high levels. It is thus plausible to suggest that
cells exert a mechanism to maintain high initiation rates for the
ribosomal proteins to compensate their reduced elongation due
to non-optimized codons.
While several recent studies suggested that elongation may

contribute to translation regulation,72 our findings demonstrated a
high-resolution functional and dynamic role for translation
elongation in translational control under different developmental
and cellular conditions. The codon-based calculation of the MTDR
allowed us to perform a genome-wide analysis that include very
lowly expressed genes that otherwise could not be analyzed
based on direct ribosome profiling measurements. Along with a
better understanding of evolutionary constraints and novel
insights into gene expression regulation during meiosis, this work
also provides a practical implication on gene expression
engineering by which translation elongation should be an
important consideration in the engineering of any intracellular
system that involves gene expression optimization.

METHODS
Ribo-Seq data
Ribosome footprints and mRNA-seq sampled through the 27 time points
in4 were retrieved from https://www.ncbi.nlm.nih.gov/geo/ with series
accession number GSE34082. Reads of both, footprints and RNA, were
mapped according to the mapping approach described in.21

MTDR calculation
Codon decoding rates were calculated according to the stages described
in.23,24 As in,23 the first and last 20 codons were excluded from the per-
gene NFC profiles in order to account for potential biases related to these
regions. The coverage (in percent) for each profile was calculated based on
the filtered profiles and only genes with a coverage of at least 40% were
included in the subset. In addition, the minimal number of occurrences for
each codon was set to 100. Our results, however, remained robust also for
small changes in these thresholds. Based on this subset of genes, per-
codon NFC distributions were generated. As been shown in,24 the NFC
distribution of a codon can be represented by an EMG distribution, a
superposition of two distributions: a normal distribution characterized by
mean μ and variance σ2, and a negative exponential distribution with rate
parameter λ. While the normal component describes the typical decoding
time of the codon, the exponential component describes the non-typical
decoding time. The non-typical component can be a result of noise and
biases, or may be related to relatively rare phenomena of translational
pauses and ribosomal interactions such as traffic jams. Although these rare
phenomena can be of biologically meaningful, the exponential component
is filtered since the non-typical rates it represents, are not suitable for
estimating elongation in genes that do not have ribo-seq measurements.
The parameters μ, σ2, and λ were estimated by fitting the measured NFC
distributions to the EMG distribution, under the log-likelihood criterion.23

The typical decoding time of a codon was then determined by the mean of
the normal distribution (μ) and the typical decoding rate of a codon was
defined accordingly by 1/μ. Although the TDR can be influenced also by
secondary structures along the mRNA which are expected to slow down
elongation,59 this aspect cannot be fully taken into account in our codon-
centric analysis since the current models for predicting mRNA folding are
based on local RNA segments, rather than on a single codon. In addition,
these models are based on static sequence features, whereas our approach
is focused on dynamic aspects. Nevertheless, it is possible that future
techniques to measure dynamic mRNA structures generated along the
transcript will allow the consideration of mRNA folding in dynamic
decoding rates analyses. Outliers were removed from the NFC distribution
of each codon at each time point in the following way: let NFCi denote the
i-th point in the codon NFC distribution and ni be the number of points in
its distribution. We calculated the probability (pi) to see a value larger or
equal to NFCi based on the probability density function fitted to the codon
(EMG distribution) and removed points for which pi* ni was lower than
0.001.
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TDR versus the median of the NFC distribution
The typical elongation rates estimated by the TDR approach were
compared to elongation rates estimated by the median of the NFC
distribution. In general, the median-based results were less significant,
however, in agreement with the original TDR-based results. The average
Spearman’s rank correlation between the decoding rates obtained by the
approach (TDR) and the median-based rates was 0.436, for all time point
with a minimal RC coverage of 10% (Coverage distribution is presented in
Fig. 1b). In addition, clustering of the median-based genes’ decoding rates
along meiosis revealed some overlapping clusters. Particularly, the clusters
that included highly expressed genes at most time point were the most
robust clusters. For example, the TDR-based cluster C2 presented in Fig. 3a,
which turned out to be composed of translation-related genes, had a
corresponding median RC-based cluster with an overlap of 496 genes
(89%); the dominant GO term ‘cytoplasmic translation’ was also included
with a slightly higher p-value (7*10−84, compared to 1.7*10−86 in the
original cluster). More specific GO terms such as branched-chain amino
acid biosynthetic process (p-value increased from 1.1*10−10 to 2.9*10−6)
and vitamin binding (p-value has only slightly changed, from 1.5*10−6 to
1.3*10−6) were also observed. For clusters containing mainly lowly
expressed genes, the signal was much weaker, yet, in agreement with
the original cluster. For example, the TDR-based cluster C1 presented in
Fig. 3a which included functions related to the M phase and anaphase II,
had a corresponding cluster with 391 (63%) genes in common; these
genes turned out also to be enriched with functions related to M phase
(corresponding p-value increased from 1.1 × 10−27 in the original TDR-
based cluster, to 7.9 × 10−10).

MTDR standardized score
To enable the comparison of MTDR between different time points while
controlling for different coverage and biases in the different time points,
MTDR values were standardized to have the same mean in all time points.
Specifically, for each time point, mean MTDR and standard deviation were
calculated based on all genes and z-scores were obtained for each gene by
taking the difference between its MTDR and the mean, divided by the
standard deviation.

Codon adaptation groups
For the analysis described in Fig. 2, two groups of codons were defined
based on the per-codon CAI reported in32 (See also Supplementary Table
2). For each amino acid, we chose the codon with the maximal and
minimal CAI to construct the ‘High CAI’ and ‘Low CAI’ groups, respectively.
In order not to bias the results by including codons with no synonymous
counterparts, we filtered the two codons of Methionine and Tryptophan.

tRNA Adaptation Index
The tAI of each codon was calculated based on the relative adaptiveness of
each codon as in.31 The tRNA copy number of each tRNA was retrieved
from the genomic tRNA database at http://gtrnadb.ucsc.edu/ for Sacchar-
omyces cerevisiae s288c. The tAI values used here are provided in
Supplementary Table 3.

Coefficient of Variation in TDR
For each time point, codons’ TDR were ranked from 1 to 61 (where 1
denotes the lowest TDR and 61 denotes the highest). Then, CV of the
ranked TDR was calculated for each codon using the following formula:

CV ¼ S TDR
M TDR

� �
� 100

Where M_TDR and S_TDR are the mean and standard deviation of the
ranks of the codon along the analyzed time points, respectively. The CV
calculated for the amino acids was performed in the same way.

Quantifying the dynamic demand for each codon
The genomic per-time point demand for each codon was calculated based
on the frequency of the codon in all transcripts. Specifically, the number of
occurrences of the codon in the gene was multiplied by the transcript level
of the gene (RNA-seq in RPKM4) and the product was summed over all
genes. The total frequency of each codon in all transcripts was normalized
by the total frequency of the corresponding amino acid and is provided as

Supplementary Table 4. Transcript levels are provided as Supplementary
Table 5.

Per-amino acid Average TDR
To estimate the per-time point TDR of each amino acid, we calculated
TDRAA, a weighted average based on the TDR of its synonymous codons in
the following way:

TDRAA ¼
Xn
i¼1

wi � TDRi

Where n is the number of synonymous codons, wi is the normalized
genomic frequency of the i-th codon (i.e., the number of occurrences of
the i-th codon normalized by the total number of occurrences of the amino
acid) and TDRi is the per-time point TDR of the i-th codon.

Clustering and functional enrichment analysis
Unsupervised clustering of genes’ MTDR (z-scores) was performed by the
CLICK algorithm73 via the EXPANDER tool version 7.1.74 Functional
enrichment analysis on the resultant clusters was performed by the
TANGO tool of EXPANDER. Paralogous gene sequences were excluded
from the clustering analysis as they share the same sequence and thus, the
same MTDR.

MTDR co-score
The co-score given to each pair of genes was calculated by:

MTDR co� scorei;j ¼ r tp½ �i ; tp½ �j
� �

where [tp]i is the vector of MTDR values calculated for the i-th gene in all
time points and r is the Pearson correlation between the two MTDR vectors
of the i-th and the j-th gene.

The effect of the C1 genes on translation using the whole cell
simulation of translation
In order to examine the role of the unique elongation pattern of the C1
genes (Fig. 3) on translation at the anaphase II onset, we utilized the whole
cell simulation of translation that includes all the ribosomes and mRNAs in
the cell with parameters inferred based on ribo-seq data, to allow a good
reflection of in vivo translation.75 According to this model, ribosomes from
the free pool are allocated to the different transcripts presented in a cell at
a certain time point based on the initiation rates of the genes. After a
ribosome is entered, it progresses along the codons in a speed that is
determined by the elongation rate of each codon. A ribosome that
encounters a stop codon, completes translation and re-joins the free pool
(Supplementary Figure 3A). For the simulation, we set the total number of
mRNAs in the cell to 60,000, based on the number reported in.76 As the
number of ribosomes is of the order of 2*105 in a S. cerevisiae cell,77 we set
the total pool of ribosomes to 200,000.77 A chuck size of 10 codons was
used to occupy a ribosome based on the simulation in.75 We used the
initiation rates inferred here, and the TDR at the anaphase II onset as the
estimated per-codon elongation rates. To run the model at anaphase II, we
first mapped the TDR at the exponential time point to the decoding rates
used in63 and the initiation rates at the exponential time point to those
used in75 using a linear interpolation. Then, we used the mapping on the
TDR and initiation rates on anaphase II. To test the effect of synonymous
changes of genes in the C1 cluster on the pool of ribosomes, we generated
20 versions of a randomized genome by changing the coding sequences
of the genes in the C1 cluster in the following way: for each amino acid in
each gene, we have randomly drawn a synonymous codon from a
distribution that represents the original codon demand (that is, the
genomic codon usage bias of the genome multiplied by the number of
transcripts that require it at normal vegetative growth condition). We
found that for simulation with the original C1 codons, the pool included
60,000 ribosomes while for the second case (random codons based on the
genomic distribution of codons) the average free pool over all
randomizations was decreased by 5.83% (z-score= 24.37). The size of
the free ribosomal pool is directly related to translation initiation efficiency
which directly, and usually linearly, affects translation rate. Indeed, the
mean estimated translation rate (over all genes) decreased on average in
6.04% (z-score= 36.65) for the randomized genomes (Supplementary
Figure 3B). Since ~80% of the intracellular energy is spent on translation,78

an increase of 6% in the free ribosomal pool should have a similar effect on
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increasing the growth rate; this is a very significant effect in case of micro-
organisms.

Construction of the anaphase II pathway
The anaphase II pathway genes described in Fig. 4 were collected from
several resources including the budding yeast meiosis pathway from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database79

and additional information manually curated from recent papers.
Specifically, we included casein kinase (Hrr25) which has been very
recently shown to contribute to the phosphorylation of centromeric Rec8
at anaphase II.80 Also, based on the findings of Attner and Amon81 which
have also been experimentally supported by,82 we added the Cdc
Fourteen protein that was found to contribute to the metaphase to
anaphase transition also in meiosis II. We removed the KEGG protein Ama1
which was found to be required for the first meiosis and spore formation
but not for the second meiosis.83

The expectedly up/down regulated genes during anaphase II
Based on KEGG79 and the additional papers used for the pathway
construction80–82, and as reviewed in,84 we classified the genes participat-
ing in the anaphase II stage of the yeast meiosis based on their expected
direction of regulation at anaphase II. During anaphase II the centromeric
cohesion which holds sister chromatid together is removed and sister
chromatids are segregated. Thus, genes whose products are expected to
promote the removal of the cohesion were classified as ‘expectedly
upregulated genes’, and genes whose products act to maintain the
cohesion, or constitute its components, were classified as ‘expectedly
downregulated genes’. Due to significantly low RC and RNA-seq coverage,
we excluded the Doc1 protein, a member of the APC/C complex. Full lists
of these genes are presented in Supplementary Tables 9-10.

Definition of early and late anaphase II
We used the time points classifications in4 to confine the anaphase II stage.
Based on the classification, three time points fall between the stage of
anaphase II (labeled consecutively as 11, 12 and 13). For the analysis
described in Fig. 4, we set the ‘11’ time point to denote ‘early anaphase’
and the ‘13’ time point to denote ‘late anaphase’.

Inference of translation initiation rates
To infer initiation rates during meiosis we implemented an optimization
approach using a stochastic computational model that simulates transla-
tion, the TASEP.85 According to the TASEP model of translation, the
translation rate of a given gene (along with the number of ribosomes on its
mRNA and other translational-related features) is evaluated based on
inputted initiation rate and the local translation rates of its codons. Here,
we implemented a backward approach by which we determined the
desired TASEP output and searched for the input initiation rate that would
lead to the closest output. Based on our approach, the initial initiation rate
is guessed and iteratively changed to fit a predicted output number of
ribosomes. Specifically, we used ribosome occupancy data from86 to get
the expected number of ribosomes and the ribosomal density on each
mRNA under vegetative growth condition. We calculated the correlation
between ribosome occupancy and the analyzed RC data to verify
compatibility
(r= 0.4615, p= 1.17*10−275, Supplementary Figure 5). Then, we calculated
ribosomal density in reads per kilobase million (RPKM) based on the
ribosome profiling data sampled also at a time point during vegetative
growth4 (Supplementary Table 8). In the next step, we performed a linear
interpolation to map ribo-seq footprints average (RPKM) at each time point
into the expected number of ribosomes, which is one of the TASEP
outputs. Finally, we inputted the estimated codons’ TDR and an initial IR
guess into the TASEP, and performed a binary search to gradually change
the IR such that the number of ribosomes on the mRNA predicted by the
TASEP fits the expected number of ribosomes. The output of this
procedure is an estimated initiation rate for each mRNA. As this approach
requires ribosomal density calculations, we were not able to infer time
point-based initiation rates for genes that did not produce a RC profile at
the time point in question.

Statistical analysis of expression rates during anaphase II
The analysis described in Fig. 4 panels B-D was aimed at quantifying the
tendency of the upregulated group to increase early at anaphase II, and
the tendency of the downregulated group to decrease late at anaphase II.
The statistical test was performed in the following way: First, for each gene
within the expectedly upregulated group and for each tested expression
level (transcription, translation initiation and elongation), we calculated a z-
score quantifying the distance in standard deviations between the rate at
the onset of anaphase II and the average rate over all time points.

PPI data
PPI network and confidence scores were downloaded from the STRING
database version 10.5.34,87 For the PPI analyses, we used only proteins for
which the interaction type (as defined by STRING) is of type ‘binding’.

Controlling for variability in the number of NFC per codon
The per-codon NFC distributions used for the TDR calculation, are
generated based on the occurrences of each codon in the reference set
of genes used at a given time point. Owing to their number of occurrences
in the genome, frequently used codons tend naturally to include more
points in their NFC histograms. To validate that the findings presented in
Fig. 2d are not biased by variability in size of the NFC distribution, we
sampled the same number of RC for all codons at a given time point and
repeated the statistical analyses. Specifically, the chosen number of RC was
dictated separately for each time point, by the maximum between 100 and
the minimal number of occurrences of a codon at that time point.
Importantly, all the statistical tests reported here were robust to this control.

Reporting Summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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