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ABSTRACT

Translation Complex Profile Sequencing (TCP-seq),
a protocol that was developed and implemented on
Saccharomyces cerevisiae, provides the footprints
of the small subunit (SSU) of the ribosome (with ad-
ditional factors) across the entire transcriptome of
the analyzed organism. In this study, based on the
TCP-seq data, we developed for the first-time a pre-
dictive model of the SSU density and analyzed the
effect of transcript features on the dynamics of the
SSU scan in the 5′UTR. Among others, our model is
based on novel tools for detecting complex statistical
relations tailored to TCP-seq. We quantitatively esti-
mated the effect of several important features, includ-
ing the context of the upstream AUG, the upstream
ORF length and the mRNA folding strength. Specifi-
cally, we suggest that around 50% of the variance re-
lated to the read counts (RC) distribution near a start
codon can be attributed to the AUG context score.
We provide the first large scale direct quantitative
evidence that shows that indeed AUG context affects
the small sub-unit movement. In addition, we suggest
that strong folding may cause the detachment of the
SSU from the mRNA. We also identified a number of
novel sequence motifs that can affect the SSU scan;
some of these motifs affect transcription factors and
RNA binding proteins. The results presented in this
study provide a better understanding of the biophys-
ical aspects related to the SSU scan along the 5′UTR
and of translation initiation in S. cerevisiae, a fun-
damental step toward a comprehensive modeling of
initiation.

INTRODUCTION

mRNA translation is a complex process consuming most of
the energy in the cell (1–4) and affecting various fundamen-
tal biological processes and aspects (2,5–7). Thus, accurate
modeling of this process has numerous applications (8–11).

For many years, researchers aimed at modeling translation
using small scale experiments and/or genomic data (3,7,12–
20) that might result in biased conclusions as they do not
measure translation directly.

Many translation models (see, for example (21–25)) have
been enabled by the establishment of the Ribo-seq approach
(2). However, since Ribo-seq is based on the generation
of footprints related to the complete ribosomes during the
elongation step, these models focus on elongation. Recently
another approach, TCP-seq (26), was suggested, aimed at
monitoring the movement of the small subunit (SSU) of the
ribosome accompanied by initiation factors during the initi-
ation step. Thus, this novel type of data can now be used for
the first time for understating and modeling initiation, a rate
limiting phase of the translation process (27). Nevertheless,
the TCP-seq data are very challenging due to varying read
lengths caused by various conformations of the SSU and
the relevant factors in different positions along the mRNA
(Figure 1).

Translation initiation in eukaryotes involves the binding
of the pre-initiation complex (consisting of the small (40S)
ribosomal subunit loaded with initiation tRNA) to the
mRNA near the 5′ end. The pre-initiation complex, accom-
panied by additional initiation factors, scans the 5′UTR to-
ward its 3′ end until recognition of the START codon (usu-
ally an AUG codon) (28–30). It was suggested that a par-
ticular context around the main AUG is required for the
pre-initiation complex to recognize it and initiate transla-
tion (28). However, the aforementioned scanning mecha-
nism and the dynamics of the SSU scan are not completely
understood. For example, although the scanning mecha-
nism predicts that initiation will occur at the nearest 5′end
AUG codon, there are reported cases of leaky scanning (29),
where the pre-initiation complex skips AUG codons with
sub-optimal context and initiate translation farther down-
stream. In addition, a previous study showed that in many
cases an AUG in the 5′UTR with relatively optimal context
score doesn’t initiate translation (31).

Additional features are considered to affect the SSU scan,
such as the mRNA secondary structure, as it was previously
shown that the presence of strong secondary structures in
the 5′UTR can significantly reduce protein levels (32–37).
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Figure 1. TCP-seq protocol provides the footprints of the SSU of the ribosome with additional initiation factors, resulting in RC distribution that has
dependency both on SSU location in the 5′UTR and on footprint length. (A) TCP-seq protocol illustration. The scanning of the SSU is accompanied
with additional initiation factors that promotes the movement toward the AUG start codon. The initiation complex size changes during the scan. The
S. cerevisiae cells were crosslinked using formaldehyde that stall and attach the translation complex to the mRNA. Next, in order to generate protected
mRNA fragments, the translation complexes were isolated and digested using RNase I. The SSU fractions were separated from the ribosome fractions using
sedimentation velocity before the retrieval of footprints. Finally, the diverse sizes footprints were mapped to the S. cerevisiae genome. (B) RC histogram
as function of footprint length, ranges between 15 and 100 nucleotides. It can be seen that most of the RC are up to ∼75 nucleotides. (C) The footprint
5′ends relative to the main AUG start codon are plotted versus footprint length, presenting the RC distribution around the main AUG start codon. The
color scale corresponds to the number of RC, displayed in logarithmic scale. The dependency on both the location in the 5′UTR and both on footprint
length creates a gray scale image that later was discretized in order to perform computational analyses. (D) Different SSU configurations near start codon,
an illustration. SSU footprints coalesced into three major sizes at start codons––19, 29 and 37 nucleotides, mainly due to dynamic rearrangements at the
entry to the mRNA channel––from an open to a closed state following start codon recognition.
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This inhibitory effect presumably stems from the ability of
the pre-initiation complex to disrupt base pairing only to
a certain limit, and to a lower extent than that of the 80s
ribosome (38,39). Upstream open reading frames (uORF)
also have a negative impact on translation efficiency as they
engage the SSU before it reaches the main AUG start codon
(40,41). It was reported that four major uORF properties
are associated with greater inhibition: (i) strong upstream
AUG (uAUG) context, (ii) evolutionary conservation, (iii)
increased distance from the cap and (iv) multiple uORFs in
the 5′UTR (41).

Note, however, that all previous studies on this topic
haven’t directly analyzed measurements related to the SSU
and haven’t quantified the effect of various features on the
SSU at a genomic level. Thus, this is the topic of the current
study.

Specifically, the aim of this study is to identify transcript
features that affect the SSU scan based on direct measure-
ment of the pre-initiation complex movement, to provide
evidence for features that are considered to affect the scan
and to find new undiscovered features, and to develop for
the first time a computational predictive model for under-
standing translation initiation based on TCP-seq data. We
identified different transcript features that affect the dynam-
ics of the SSU scan, such as uAUG context score, uORF
length, mRNA folding energy, various 5′UTR motifs etc.,
using quantitative tools such as linear regression, motif de-
tection, and the Maximal Information Coefficient (MIC)
(42). The results presented in this paper allow better model-
ing and engineering of initiation and the entire translation
process.

MATERIALS AND METHODS

TCP-seq data

Translation Complex Profile Sequencing (TCP-seq) is a pro-
tocol that was developed from the Ribo-seq approach, de-
signed to monitor the movement of the small subunit of the
ribosome accompanied by initiation factors during the ini-
tiation step (26). The protocol was developed and imple-
mented in S. cerevisiae, and can be found in (43).

In general, TCP-seq starts with snap-chilling of a yeast
suspension culture by adding crushed ice and immediately
cross-linking with formaldehyde, to stall and attach any
translation complex type to the mRNA at their native po-
sitions. Next, RNase I was used to digest the unprotected
mRNA fragments, generating protected (by any translation
complex type) fragments, that will be referred as footprints.
The ribosomal subunits, complete ribosomes and polyribo-
somes (polysomes) can be physically separated into differ-
ent fractions by their sedimentation velocity, using two steps
of density gradient ultracentrifugation: first, polysomes and
mRNA associated with one complete ribosome, is concen-
trated into the pellet, whereas other messenger ribonucleo-
proteins, as well as free SSUs and LSUs, remain in the su-
pernatant. Second ultracentrifugation is being used to sep-
arate the fractions of SSU and full ribosome complexes
before retrieval of footprints, each associated with their
respective protected mRNA footprints. Finally, the high-
throughput sequencing reads were mapped to the yeast

genome (43). The study was perform in YPAD in OD600
of 0.6–0.8 and not in stress conditions.

TCP-seq data provide the nucleotide footprints of the
small subunit of the ribosome across the entire transcrip-
tome of the analyzed organism at a single nucleotide reso-
lution, as the footprint position is mapped by its 5′ end (see
specific examples in Supplementary Figure S1). 5′UTR SSU
footprints sizes ranged mainly from ∼15 to ∼75 nt (beyond
the width of the SSU alone), due to the additional initiation
factors that accompanies the SSU scan. It follows that each
RC has a dependency both on SSU location in the 5′UTR
and on footprint length.

Sequencing data

TCP-seq footprint sequences were obtained from (26)
(WT:Input, WT:RS and WT:SSU fractions, accession
SRR3458591-3). Transcript sequences were obtained from
Ensembl release 87 for S. cerevisiae (R64-1-1), with UTR
annotations (longest isoform) from (44). Sequenced reads
were mapped as described in (45) with the following mi-
nor modifications. We trimmed 3′ poly-A adaptors from
the reads using Cutadapt (46) (version 1.17) and utilized
Bowtie (47) (version 1.2.1) to map them to the S. cerevisiae
transcriptome. In the first phase, we discarded reads that
mapped to rRNA and tRNA sequences with Bowtie pa-
rameters ‘–n 2 –seedlen 21 –k 1 –norc’. In the second phase,
we mapped the remaining reads to the transcriptome with
Bowtie parameters ‘–v 2 –a –strata –best –norc –m 200’.
We filtered out aligned reads >100 bp and <15 bp. First,
unique alignments were assigned to the occupancy profiles.
For multiple alignments, the best alignments in terms of
number of mismatches were kept. Then, multiple aligned
reads were distributed between locations according to the
distribution of unique reads in the respective surrounding
regions. To this end, a 100 nt window was used to compute
the read count density RCDi (total read counts in the win-
dow divided by length, based on unique reads) in vicinity
of the M multiple aligned positions in the transcriptome,
and the fraction of a read assigned to each position was
RCDi/

∑M
j=1 RCD j . The results are very similar when not

including non-unique sequence.

mRNA levels

For mRNA levels we considered measurements of RNA-
seq from (48).

Linear regression

Our aim was to predict the density of the SSU in sliding
windows of 30 nucleotides (steps of 1 nucleotide), which is
the size of the SSU alone. In order to predict the density of
the SSU, we built a linear regressor based on the following
scheme:

First, we generated a set of features that are related to
various properties of the transcript (see sub-section ‘Fea-
tures’). In total, we created a set of 399 transcript features.
Next, the RC of the SSU in all footprint lengths were nor-
malized by the mRNA levels of each gene. Out of a total
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number of 6664 genes of S. cerevisiae, 17 genes were ex-
cluded since their mRNA levels equal to zero and could
not be normalized. All of the sliding windows were divided
into three sets: train (60%), test (20%) and validation (20%),
where the sampling was performed randomly 20 times, thus
resulting in 20 predictors for each footprint length. This was
done in order to avoid overfitting and to perform statistical
analyses of the features that were selected by multiple pre-
dictors. We implemented a greedy feature selection process,
meaning that in each iteration we added every feature to
the growing regressor, and the feature that contributed the
most to the correlation between the predictions and the real
RC was selected. The process continues while the added fea-
ture raises the correlation by more 0.001, aiming to avoid
overfitting to the train set. At the end of each stage, the
current predicted regressor coefficients of the selected fea-
tures are assessed on the test set. The selected regressor is
then evaluated on the validation set. We chose to use Spear-
man correlation since it detects monotonic trends, while
the Pearson correlation is strongly biased towards linear
trends.

Features

Feature Feature description
Number of

features

Features
derived from
the genes

The 5′UTR
length

1

The ratio of
the length of
the 5′UTR to
the ORF

1

Features
derived from
the sliding
windows

mRNA
folding energy

Approximation of the
mRNA secondary
structure, calculated by
MATLAB’s rnafold
function

1

AUG context
score

A score for each AUG
context (i.e. the
nucleotides before and
after the AUG).

1

GC content The percentage of
nitrogenous bases on a
DNA or RNA molecule
that are either Guanine
(G) or Cytosine (C).

1

Nucleotide
distribution

The frequency of each
nucleotide in the sliding
window

4

Groups of two
nucleotides
distribution

The frequency of each
nucleotide pair in the
sliding window

16

Groups of
three
nucleotides
distribution

The frequency of each
group of three
nucleotides in the sliding
window

64

Sequence
motifs

Short sub-sequences that
are enriched in the
5′UTR.

293

mRNA folding energy

The predicted mRNA folding energy is an approximation of
the mRNA secondary structure, calculated by MATLAB’s
rnafold function (MATLAB Bioinformatics Toolbox). The

function predicts the folding energy of the secondary struc-
ture associated with the minimum free energy for an RNA
sequence or subsequence in kcal/mol units.

We used a 30 nt sliding window in order to estimate the
local mRNA folding energy, the same size as the sliding win-
dow in which we predicted the SSU density. We used this
size for a number of reasons: first, this value is close to the
size of the ribosome and the SSU, and in the order of mag-
nitude of various intracellular complexes (2,49) and func-
tional mRNA structures (34). Second, we aim at studying
local mRNA folding, which is related to the local structures
that are obtained on the mRNA when it starts to fold and
before the folding is disrupted by various factors such as ri-
bosomes. Third, we and others have shown that the results
are robust to small changes in the size of the window (e.g.
(50)). Last, the error of the RNA folding prediction tools is
extremely high when working with windows larger than a
few dozen nucleotides. Many others have used similar win-
dow size to predict the local mRNA folding energy (see, for
example, (12,51–55)). See Supplementary Figure S2 for a
dot plot which includes the actual folding energy for win-
dows with different RC.

Several folding energy features were created for each slid-
ing window: the folding energy in the current sliding win-
dow (position 1 in the sliding window); the folding energy in
a sliding window within a distance of 30 nucleotides, which
is the estimated size of the SSU (position 31); the mean and
minimal folding energy in all sliding windows from the cur-
rent sliding window to a sliding window within a distance
of 30 nucleotides (positions 1:30); the mean and minimal
folding energy in all sliding windows within a distance of
15/20 nucleotides from the current sliding window to a slid-
ing window within a distance of 30 nucleotides (positions
15/20:30). See Figure 6A for an illustration of the above
features.

AUG context score

The score for each AUG context (i.e. the nucleotides be-
fore and after the AUG) was computed as follows for all
AUGs in the 5′UTR: first, we selected the top 5% of highly
expressed genes based on their mRNA levels. Second, we
calculated a position specific scoring matrix (PSSM) for
6 nucleotides upstream and 3 nucleotides downstream to
the initiating (START) AUG codon according to the nu-
cleotide (A, C, G, U) appearance probability, based on the
nucleotide context around the start codon of the selected
highly expressed genes. Third, the AUG context score was
computed for every AUG that appears in the 5′UTR ac-
cording to:

AUGCSj =
∑

log(pi j )

Where j is the AUG index, i is the nucleotide position,
pij is the probability that the ith nucleotide of the jth AUG
appears in the ith position on the PSSM, and AUGCSj is the
context score of the jth AUG in the 5′UTR.

For an AUG that appears in the sliding window without
6 nucleotides upstream or 3 nucleotides downstream (due
to end-of-sequence positioning) we assumed a uniform dis-
tribution (i.e. a probability of 0.25 for each nucleotide). Sev-
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eral AUG-based features were created: the number of AUGs
in the sliding window; a binary feature based on whether or
not there is an AUG in the sliding window (‘1’- there are
one or more AUGs in the sliding window, ‘0’- there isn’t
an AUG in the sliding window); the mean distance of the
AUGs in the sliding window from the real START AUG;
the mean and maximal AUG context score in the sliding
window; the mean and maximal AUG relative context score
in the sliding window (the context score of the current AUG
divided by the context score of the real START AUG of the
ORF).

Sequence motifs

Sequence motifs are short sub-sequences that are enriched
in a certain set of sequences and are represented by Position-
Specific Scoring Matrixes (PSSMs). To infer such PSSMs
we used the HOMER (Hypergeometric Optimization of
Motif EnRichment) tool (56). HOMER is based on a differ-
ential discovery algorithm which identifies sub-sequences
that are specifically enriched in the target set relative to a
reference set. We defined all of the 5′UTRs as the target set,
and created the reference set in the following manner: for
each 5′UTR we considered a sequence in the same length
as the real UTR that is in a gap distance of 100 nucleotides
upstream to the beginning of the real 5′UTR. The motiva-
tion was that since we are trying to find motifs specific to
the 5′UTR that may have regulatory function, we’ll use a
reference set that is not part of the UTR but close to it in
the genome (thus, it may have similar mutation pattern and
bias); this approach may allow us to detect motifs that are
under selection in the 5′UTR due to their functionality. The
length of the motif wasn’t pre-determined, the motifs were
found using the algorithm from (56).

The algorithm detected 271 known motifs (all significant)
and 32 de-novo motifs. Yet 6 of the de-novo motifs were
marked as possible false discoveries and therefore were ex-
cluded from the features list. For each motif the HOMER
algorithm outputs a PSSM; using that PSSM we calculated
in each sliding window a set of scores for the motif accord-
ing to the motif length. For example, if the length of the mo-
tif is 12 nucleotides, we moved it along the sliding window in
positions 1:19 (out of 30), and for every position calculated
the motif score. The score is calculated in the same way that
was described above for the AUG context score. Finally, the
feature that was set to the sliding window was the maximum
score of all the values calculated in the window.

We have tried an additional approach for finding motifs
as follows: we defined as target and reference sets windows
with high and low SSU density (top and bottom 10% values,
respectively); in order to avoid overfitting, this was done us-
ing only windows from the training group of each run. The
motivation was that since we are trying to find motifs in the
5′UTR that may affect the SSU density, we’ll use the tar-
get and reference sets mentioned above, aiming to find mo-
tifs that are enriched in the high-density windows relative to
low-density windows. The algorithm detected between 237
and 260 motifs (all significant), depending on the run num-
ber and the sliding windows that were used on the training
set. These analyses gave very similar results to the results
described in the article.

Features analyses

In order to estimate how the features affect the dynamics of
the SSU, we calculated the partial Spearman correlation be-
tween each feature and the RC of the SSU, while controlling
for the rest of the features and mRNA levels.

Additional analyses were performed only on the folding
energy features, allowing better estimation of the effect of
folding energy strength on the SSU scan. First, we created
an additional predictor that is based only on folding energy
features, using 80% of the data to train the model. Next, we
predicted the SSU density based only on these features, us-
ing 20% of the data as a test group, the same 20% that were
used to evaluate the general predictor in order to ensure a
fair comparison between them. Finally, we calculated the
partial Spearman correlation between the predicted densi-
ties and the real RC, while controlling for the other features
and mRNA levels.

Detecting complex statistical relations between variables us-
ing MIC

In order to find how specific features affect the scanning of
the SSU and compare between them, we used the Maximal
Information Coefficient (MIC) (42), a measurement that is
based on the mutual information of two variables. MIC en-
ables detecting various relations (of any type) between pairs
of variables in large data sets. Intuitively, the basic idea of
MIC is that if we scatterplot two variables that have a rela-
tionship, then a grid can be drawn in a manner that will par-
tition the data based on that relation. To calculate the MIC
score related to the measurements of two-variable, we ap-
plied all grids in size of x-by-y to the data, up to a maximal
resolution that is dependent on the sample size (42). The al-
gorithm detects the grid with the maximal possible mutual
information that can be achieved by any x-by-y grid. Then,
the algorithm normalizes all of the mutual information val-
ues which allows for a fair comparison between different
grid sizes and modified values between 0 and 1. The MIC is
the maximal value of the characteristic matrix M=(mx,y),
which contains the highest normalized mutual information
achieved by any x-by-y grid.

Data processing

With the aim of finding which AUG features and sequence
motifs affects the scanning of the SSU, we constructed a
matrix for all AUGs or sequence motifs (according to the
relevant analysis) in the 5′UTR that corresponds to a spe-
cific feature in the following manner: first, all of the rele-
vant AUGs or sequence motifs in a given footprint length
were aligned according to their first nucleotide position.
Second, we looked on the RC of the SSU 50 nucleotides
upstream and downstream to the relevant AUG or motif.
Third, we normalized each position in the number of genes
that have this location (since not all of the positions have
50 nucleotides upstream). The above was done for all foot-
print lengths (15–100 nucleotides), resulting in a matrix of
all the relevant AUGs or sequence motifs corresponding to
the specific feature, depending on both location in 5′UTR
and footprint length.
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Discretization process

In order to use the MIC, a discretization process needs to
be performed due to the dependency on both location and
footprint length, meaning that we transferred a grey scale
matrix into a binary one. Several discretization processes
were tested. First, a discretization process that sets a thresh-
old for each row (i.e. footprint length) as the threshold that
maximizes the MIC score of the entire matrix. Second, in
order to show that the results stay robust and that they
are not a result of the optimization process, manually se-
lected parameters were set as the threshold for each row.
The thresholds that we tested are mean (m), 2*m, mean
plus standard deviation, and median.

Null model and P value

For each signal we created 1000 null model randomizations
by permutating the matrix of the constructed signal along
the x axis (location relative to AUG or sequence motif in
the 5′UTR). For every permutated matrix, the discretization
process described above was performed and the MIC score
was computed. The P value was calculated as the number of
times that the randomized matrix had a higher MIC score
than the real one, divided by the total number of permuta-
tions.

An additional permutation process was tested; in order
to show that the results stay robust and that they don’t stem
from the number points that passes the threshold, we cre-
ated 1000 additional permutations for each signal after the
discretization process was done. For each signal, we con-
trolled the number of points that passes the threshold by
using the next iterative process: we started by adding ep-
silon = 1 × 10−5 to the threshold of each row. If the number
of points that passes the threshold was still too large––the
process continues, and epsilon is added again. When we
reached the desired number of points––the process stopped.
For each comparison between signals, the number of points
that passes the threshold was aligned to the signal with the
lowest number of points.

AUGs in 5′UTR with high/low context score

First, we computed the AUG context score for all AUGs
in 5′UTR in the same way as described above (see sub-
section ‘AUG context score’ under ‘Features’). Next, we di-
vided them into two groups of high and low context score,
according to top and bottom 10% scores, respectively. The
‘high context score’ group contained 2587 AUGs, and the
‘low context score’ group contained 2333 AUGs. In order to
compare between them and the real AUG START codon,
we randomly chose 2465 genes out of 6664 genes of S. cere-
visiae for analyzing the signal surrounding the main AUG
START codon. The results stay robust to different group of
genes that were selected. For each group we constructed the
signal as was described above, then the MIC score and the
P value were calculated.

We performed the same analysis for AUG-like codons,
using the same PSSM which was used for AUG codon, to
calculate the MIC score around AUG-like codons (CUG,
AUU, AGG). For comparison we also analyzed all the rest
of the codons. In each case, we considered both the MIC

score surrounding the codon and the actual pattern of RC
accumulation upstream of the codon.

AUGs in 5′UTR with short/long distance to the nearest
STOP codon

The uORF that we analyzed were simply define by us as a
sequence of nucleotides starting with AUG ‘codon’/triplet,
ending with a ‘stop’/triplet and divided by three. We did
not consider in addition an experimental evidence as we
wanted to get a general result which are not affect by ex-
perimental bias and/or are partial. In order to examine the
effect of the distance from the nearest STOP codon (‘UAA’,
‘UAG’, ‘UGA’), we divided the AUGs to two groups of long
and short distance from the nearest STOP codon, accord-
ing to the top and bottom 20% distances, respectively. For
these analyses we considered three optional reading frames:
frame 0 is the reading frame that correspond to the relevant
AUG, frames 1 and 2 represent a frame shift of 1 or 2 nu-
cleotides relative to frame 0. For each group in each frame
we constructed the signal as was described above. Then the
MIC score and the empirical P value were calculated.

The last two sub-sections were performed twice; first to
consider all AUGs that correspond to a specific feature, and
again to take in consideration only AUGs that don’t have
an additional AUG codon in the sequence 50 nucleotides
downstream or upstream to the relevant AUG.

AUGs in 5′UTR with presence of stable/unstable structure
downstream

In order to examine the effect of the presence of sta-
ble structures downstream to the uAUG, we first defined
stable/unstable structure as 10% lowest/highest folding
energy values, respectively. We considered uAUGs with
high/low folding energy on average in the 20 sliding win-
dows downstream to the AUG, as only one position is not
necessarily indicative for definition of stable/unstable struc-
ture. For each group we constructed the signal as was de-
scribed above, then the MIC score and the P value were cal-
culated.

We also tested the signal for short and long uORFs. In
this case, we changed the cut-offs of stable/unstable struc-
ture to 50% lowest/highest folding energy values, respec-
tively. This is because using a 10% threshold resulted very
small number of relevant uAUGs, which might lead to bi-
ased and unreliable results. For a higher cut-off, we obtained
similar number (as in previous signals) of uAUGs.

Motifs in the 5′UTR with high/low score

The objective of this section was to apply the MIC calcula-
tions on sequence motifs that were selected many times by
the predictors in order to examine how they affect the SSU
scan. First, for each motif, we calculated the motif score in
sliding window in size of the motif along the 5′UTR (see
sub-section ‘HOMER motifs’ under ‘Features’). Next, we
divided the windows into two groups of high and low score,
according to top and bottom 5% scores, respectively. The
groups contained a similar number of motif windows that
constructed the signal, about 88,000 in size. Finally, for each
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group we constructed the signal as was described above.
Then the MIC score and the P value were calculated.

RESULTS

In order to understand the dynamic of the SSU scan from
the 5′ to the 3′ of the mRNA, we analyzed TCP-seq data, a
protocol that provides the footprints of the SSU of the ribo-
some across the entire transcriptome at a resolution of sin-
gle nucleotide (26) (see Materials and methods section). The
scan, which begins in the 5′cap and moves forward in the 3′
direction until the detection of the AUG start codon, is ac-
companied by different initiation factors (5,57), resulting in
footprints that have dependency both on the location of the
SSU in the 5′UTR and on footprint length (Figure 1A). A
total number of 482,390 RC were mapped onto 6664 genes
of S. cerevisiae. SSU footprints sizes ranged mainly from
∼15 to ∼75 nt (Figure 1B).

As can be seen in Figure 1B,C and previously published
in (26), the SSU RC coalesced into three major sizes (19,
29 and 37 nt) at the main AUG start codons. During ini-
tiation phase, the SSU scans the 5′UTR until the detec-
tion of the start codon and is joined by the large subunit of
the ribosome to form the 80S complete ribosome. For that
reason, the highest amount of RC observed is prior to the
main AUG start codon (as can be seen if Figure 1C). The
start-codon-associated SSU footprints exhibited three main
lengths, 19, 29 and 37 nucleotides, mainly due to dynamic
rearrangements at the entry to the mRNA channel- from
an open to a closed state following start codon recognition
(26). FP length of 19 nucleotides probably derive from SSU
paused at the start codon, yet it is still in an open, scanning-
component configuration. Next, the SSU moves to a close
state, protecting 29 nucleotides, following the recognition
of the start codon. Finally, the third state corresponds to
a state where eIF5B:GTP attaches the entry of the mRNA
channel just before the large subunit of the ribosome joins.
As a result, the protection is further extended to 37 nu-
cleotides. An illustration of the process can be seen in Figure
1D.

In the following research we tested two different, yet po-
tentially complementary, approaches, in order to study the
dynamics of the SSU scan.

The first approach was based on linear regression, in or-
der to meet two main objectives. The first one was to pre-
dict the density of the SSU based on transcript features and
compare the results to the SSU RC from the TCP-seq data.
The second objective was to perform comprehensive feature
analyses, aiming to reveal how different transcript features
affect the scanning of the SSU.

The second approach was based on the Maximal In-
formation Coefficient (MIC) (42), tailored to the TCP-seq
data. We named it Translation Complex Profile Informa-
tion Coefficient (TCP-IC), and it was used in order to de-
tect complex statistical relations between variables, which
allowed us to perform computational analyses to examine
the effect of different features on the SSU scan. The moti-
vation to use MIC is that it enables detecting various rela-
tions (of any type) between pairs of variables in large data
sets and can be used for analyzing the distribution of all the
read lengths together. Intuitively, MIC estimates the mutual

information between two variables based on a scatterplot of
the two variables (Figure 2A,B). MIC score X is analogous
to a correlation of R2 = X (e.g. MIC score of 0.8795 it is
equivalent to R = 0.9378) (42,58).

In our case, for each AUG or sequence motif in the
5′UTR that was examined, we considered related features
that surround it. Thus, we analyzed AUGs and motifs with
specific features near it via the alignment of all of the RC
profiles surrounding these relevant AUGs and motifs, cre-
ating a matrix of the SSU RC surrounding the relevant po-
sition (Figure 2C,D). Due to the dependency of the RC on
both location in the 5′UTR and on footprint length, the
data were discretized (i.e. it was transferred from a grey scale
image to a binary one) in order to use the MIC (Figures 2D
and 8). Then, for each matrix we calculated the MIC score
and P value in order to compare between the different fea-
tures.

Using these two approaches on the TCP-seq data allowed
us to perform wide analyses and to get a broader under-
standing of the SSU scan during the initiation phase.

Prediction of the small subunit density based on transcript
features

In the following section, we used linear regression in or-
der to predict the SSU density based on transcript features
alone, as we trained and tested the model using the RC from
the TCP-seq data. In general, we divided all of the genes into
sliding windows in size of 30 nucleotides, which is the size of
the SSU alone. For each sliding window we calculated a set
of features, including the 5′UTR length, different features
related to the mRNA folding strength, GC content, uAUG
related features, the frequency of nucleotides, pairs of nu-
cleotides and triplets of nucleotides, motifs (sub-sequences)
in the 5′UTR, etc. (see ‘Features’ in the Materials and meth-
ods section). In total, we created a set of 399 transcript fea-
tures. All of the sliding windows and densities vectors were
divided into three sets: train (60%), test (20%) and valida-
tion (20%), where the sampling was performed randomly 20
times, thus resulting 20 predictors in each footprint length.
This was done in order to avoid overfitting and to perform
statistical analyses of the features that were selected by mul-
tiple predictors. We trained the model on the training set
and assessed it on the test set, where in each iteration we
added the feature that contributed the most to the correla-
tion between the predictions and the real RC (greedy fea-
ture selection process). An independent model was trained
with a different set of optimized features for each footprint
length. Finally, for each predictor we calculated the Spear-
man correlation between the predicted RC and the real RC.

The obtained Spearman correlations between the pre-
dicted RC and the real RC are relatively low, probably due
to various sources of bias and noise in the data and the very
large number of points, yet very significant, as the P values
are extremely low for most of the footprint lengths (Figure
3B). The P values remain significant for Pearson correla-
tion as well (Supplementary Figure S3). The correlations
decrease for longer footprint lengths, a trend that can be
explained by the number of sliding windows with densities
greater than zero (Figure 3C). For longer footprint lengths
there are fewer sliding windows with densities greater than
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Figure 2. Illustration of MIC computation and its application on TCP-seq data. (A). An example of simple association between two variables with 15 data
points. Two different grids are drawn, a 2-by-2 and a 2-by-3 grids. Using the probability to see data points in each bin, we calculated the resulted mutual
information I(X,Y) for each grid. The 2-by-3 grid resulted in a higher mutual information compared to the 2-by-2 grid. (B) The MIC algorithm searches
for the X-by-Y grid that maximizes the mutual information of the two variables for each pair (X,Y). It then compiles it to a matrix that stores the best score
at that resolution, where the scores are normalized in order to compare between the different resolutions. The MIC corresponds to the maximal value of
the matrix (circled in pink) (42). More details in the Materials and methods section. (C) For each AUG and sequence motif in the 5′UTR, we considered
related features that surround it. For example, AUGs corresponding to a specific feature are marked in purple. We analyzed all of the AUGs with a specific
feature by aligning their RC profiles according to the AUG position. (D) An example for resulted matrix of the SSU RC distribution surrounding AUGs
with a specific feature (RC distribution surrounding the main AUG start codon), before and after discretization. The MIC algorithm was applied on the
discretized image on the right and resulted in a high MIC score of 0.8795.
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