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Multiple sclerosis (MS) is a central nervous system autoimmune inflammatory T-cell-mediated disease with a
relapsing—-remitting course in the majority of patients. In this study, we performed a high-resolution systems
biology analysis of gene expression and physical interactions in MS relapse and remission. To this end, we
integrated 164 large-scale measurements of gene expression in peripheral blood mononuclear cells of MS
patients in relapse or remission and healthy subjects, with large-scale information about the physical inter-
actions between these genes obtained from public databases. These data were analyzed with a variety of
computational methods. We find that there is a clear and significant global network-level signal that is related
to the changes in gene expression of MS patients in comparison to healthy subjects. However, despite the
clear differences in the clinical symptoms of MS patients in relapse versus remission, the network level
signal is weaker when comparing patients in these two stages of the disease. This result suggests that
most of the genes have relatively similar expression levels in the two stages of the disease. In accordance
with previous studies, we found that the pathways related to regulation of cell death, chemotaxis and inflam-
matory response are differentially expressed in the disease in comparison to healthy subjects, while path-
ways related to cell adhesion, cell migration and cell—-cell signaling are activated in relapse in comparison
to remission. However, the current study includes a detailed report of the exact set of genes involved in
these pathways and the interactions between them. For example, we found that the genes TP53 and IL1
are ‘network-hub’ that interacts with many of the differentially expressed genes in MS patients versus healthy
subjects, and the epidermal growth factor receptor is a ‘network-hub’ in the case of MS patients with relapse
versus remission. The statistical approaches employed in this study enabled us to report new sets of genes
that according to their gene expression and physical interactions are predicted to be differentially expressed
in MS versus healthy subjects, and in MS patients in relapse versus remission. Some of these genes may be
useful biomarkers for diagnosing MS and predicting relapses in MS patients.

INTRODUCTION

Multiple sclerosis (MS) is an autoimmune inflammatory
T-cell-mediated disease, believed to result from a misdirected
immune attack against central nervous system (CNS) myelin
antigens. The damage of myelin in MS leads to neurological
dysfunction (1-3). MS attacks mainly young adults (usually
between ages 20 and 40), and is predominant in women. In

northern Europe and the USA, the disease has prevalence of
around 100 per 100 000 (2). Thus, it has a significant socioe-
conomic impact.

The trigger of the autoimmune process in MS is unknown. It
is believed that MS occurs as a result of some combination of
genetic, environmental and infectious factors (4), and possibly
other factors such as vascular problems (5). For example,
studies of identical twins have demonstrated a concordance
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of 30% to develop MS (3), suggesting that the genetic back-
ground has a relatively limited but significant role in triggering
MS.

Symptoms of MS are unpredictable and include, among
others, motor weakness, loss of balance and muscle coordi-
nation, slurred speech, cognitive decline, sensory impairment
and bladder dysfunction.

In 85% of the patients, the disease has a relapsing—remitting
course, which is characterized by the onset or deterioration of
the neurological symptoms (relapses), which are followed by
partial or complete recovery (remissions). Relapses are the
consequence of complex immunological and neurodegenera-
tive processes. They result in the development of new acute
inflammatory lesions or the activation of old lesions within
the CNS, and are associated with myelin and axonal loss
(1,2,6). Accordingly, relapses are the visible clinical
expression of the complicated immunopathological mechan-
isms that occur in the CNS.

As was demonstrated in numerous previous studies, tran-
scriptional profiling of peripheral blood mononuclear cell
(PBMC) is a useful tool for identifying gene expression signa-
tures that are related to MS and other autoimmune diseases
(7—-16, reviewed in 17). A possible explanation for the advan-
tageousness of PBMC in this context is the fact that autoreac-
tive immune cells initiate the autoimmune inflammatory
process against the corresponding target organs (18—24).

The aforementioned studies concerning gene expression in
MS were based solely on measurements of mRNA levels.
The first stage of gene expression regulation is transcription
(i.e. changes in mRNA levels). However, several steps in the
gene expression process may be regulated, including transcrip-
tion, post-transcriptional modifications, such as RNA splicing,
translation and post-translational modifications of a protein
(25). Thus, studying changes in gene expression should give
a very limited and coarse depiction of the regulatory
changes that occur in the disease. Indeed, it was shown that
in human and other organisms, the gene mRNA levels
explain only ~30% of their protein abundance variance
(26,27). In addition, mRNA measurements usually suffer
from various elements of noise and bias (28).

The goal of the current study is to improve the understand-
ing of the regulatory changes in PBMC in MS, by incorporat-
ing in addition to gene expression, prior knowledge about
protein—protein interactions (PPIs) in human. By integrating
this additional data, we were able to identify genes that
undergo regulatory changes in MS, which are not necessarily
at the transcription level. It has been shown that such an
approach is useful for identifying markers related to metastasis
(29) and yields better results compared with analyses based
solely on gene expression; the current paper is the first time
that such an approach was employed for the analysis of an
autoimmune disease. In autoimmune diseases, as in cancer
metastasis, many of the regulatory changes are posttranscrip-
tional; thus, such an approach should be beneficial in both
cases.

We identified proteins that have many PPIs with differen-
tially expressed genes (in terms of mRNA levels) in MS com-
pared with healthy subjects, and in MS relapse when
compared with MS remission. Such genes have not previously
been reported in large-scale studies of mRNA levels in MS.
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With high probability, such genes undergo transcriptional
and/or post-transcriptional regulation. Thus, our approach
enables uncovering suspected transcriptional and post-
transcriptional regulatory changes in the disease.

Indeed, as demonstrated in the following sections, we
supply a more accurate and comprehensive analysis of the
genes and pathways involved in MS than previously reported.

RESULTS

We analyzed a DNA-microarray gene expression dataset that
included a total of 164 subjects. To detect genes that are dif-
ferentially expressed (in terms of mRNA levels) in the
disease, we employed a statistical method which takes into
account their demographical parameters and batch effects
(Materials and Methods). Next, to better understand the mol-
ecular mechanisms related to MS, the data of the differently
expressed genes were integrated with large-scale measure-
ments of PPI and protein—DNA interactions (PDIs, Materials
and Methods, Fig. 1).

At all stages, we analyzed two datasets. Each dataset was
related to a comparison of two groups of patients or healthy
subjects:

(i) The first dataset included patients with MS (relapse or
remission, 123 patients) that were compared with
healthy subjects (41 subjects). This dataset was utilized
to understand regulatory processes that appear in both
relapse and remission stages of MS.

(i) The second dataset included MS patients with relapse (34
patients) that were compared with MS patients with
remission (75 patients with active disease, EDSS >0,
Materials and Methods). This dataset was used to better
understand the regulatory processes that are specific to
each stage of the disease.

We named the first dataset MS/healthy and the second
dataset Rel/Rem. The properties of these datasets (e.g. age,
gender, disease duration of the analyzed patients) appear in
Table 1 (see also Supplementary Material, Table S1).

Differentially expressed genes in MS and their projection
on the PPI and PDI networks: a global (network-level)
view

Gene expression data were normalized, statistically over/
under-expressed genes were found in each dataset based on
the analysis of variance [ANOVA (30)] and the false discov-
ery rate [FDR; (31) see the Materials and Methods section
for more technical details regarding the normalizations]. We
found that 1268 and 938 genes were significant according to
ANOVA (P-value <0.05) in the MS/healthy and the Rel/
Rem databases, respectively.

In both datasets, no gene passed the FDR criterion based on
the ANOVA P-values (Table 2 for the list of genes with the
most significant ANOVA P-value; see also Supplementary
Material, Tables S2 and S3 for the entire list of P-values)
demonstrating the essentiality of integrating additional infor-
mation sources in order to augment the differentially
expressed genes signature.
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Figure 1. Flow diagram of the analysis performed in this study.
Table 1. Clinical and demographical characteristics of the patients/subjects in the analyzed datasets
Group Age Disease duration Annual relapse rate EDSS F/M
(A)
All (n = 164) 355 +10.31 N/A N/A N/A 99/65
MS patients (n = 123) 35.6 +10.8 6.16 + 6.15 1.58 + 1.66 225+ 145 78/45
Healthy subjects (n = 41) 35.1 +£8.7 N/A N/A N/A 21/20
(B)
All (n = 109) 36.6 +10.47 6.6 + 631 1.46 + 1.59 2.54 +1.28 72/37
Patients in relapse (n = 34) 34.0+ 84 6.14 + 4.13 1.0 + 0.65 329+ 1.2 25/9
Patients in remission (n = 75) 377+ 11.14 6.8+ 7.1 1.7+ 1.8 221 +1.18 47/28

(A) The entire dataset (MS/healthy—MS patients versus healthy subjects). (B) The subset of patients in relapse and in remission (Rel/Rem dataset). See also

Supplementary Material, Table S1.

At the next stage, we computed for each gene a P-value that
was based on the number and expression levels of genes that
have protein interaction with it (but not including mRNA
levels of the gene itself). We named this P-value PPI
P-value. Genes that have a relatively high number of PPIs
with differentially expressed genes have a higher probability
to undergo regulatory changes, possibly post-transcriptional,
themselves and thus have more significant PPI P-values.

We found that 398 and 257 genes were PPI significant
(P-value <0.05) in the MS/healthy and Rel/Rem databases,
respectively (see Supplementary Material, Tables S2 and S3
for the entire list of P-values).

Figure 2 includes a global view of the projection of the dif-
ferentially expressed genes on the PPI network. In the remain-
der of this section, we report several global P-values that are
related to the expression levels of the entire set of genes and
the physical interactions between them. The P-values were
based on comparisons to random networks with similar prop-
erties to the original ones (Materials and Methods).

The first global P-value tests if differentially expressed
genes tend to be close to each other in the PPI network, as
expected for the real biological signal. We found that this
global P-value was significant in the case of the MS/healthy
dataset (P-value = 0.05) but was not significant in the case
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Table 2. Genes with the most significant P-values (ANOVA and PPI) for the MS/healthy dataset (A) and for the Rel/Rem dataset (B)

ANOVA P-values

Protein interaction P-values

Gene Fold  P-value Description Gene Fold  P-value Description
change change
)
GNAIl -1 9.80E — 06  Guanine nucleotide binding protein (G protein), alpha inhibiting activity ~ JUN 1 1.52E — 14 jun oncogene
polypeptide 1
PDE3A 1 5.93E — 05 Phosphodiesterase 3A, cGMP-inhibited SMAD3 -1 1.43E — 11 SMAD family member 3
PANK4 -1 8.99E — 05 Pantothenate kinase 4 RBI1 1 1.26E — 10 Retinoblastoma 1
STK38 -1 9.99E — 05 Serine/threonine kinase 38 JUNB 1 6.48E — 10 jun B proto-oncogene
PARP4 -1 0.0001179  Poly (ADP-ribose) polymerase family, member 4 FOS 1 1.13E — 09 FBJ murine osteosarcoma viral oncogene homolog
PDCDI10 -1 0.0001555  Programmed cell death 10 JUND 1 1.12E — 08 jun D proto-oncogene
MMP9 1 0.0001914  Matrix metallopeptidase 9 (gelatinase B, 92 kDa gelatinase, 92 kDa type IV TP53 -1 7.71E — 08 Tumor protein p53
collagenase)
OR2W1 -1 0.0002247  Olfactory receptor, family 2, subfamily W, member 1 TRAFI -1 1.75E — 07 TNF receptor-associated factor 1
PLEKHF1 -1 0.0002551  Pleckstrin homology domain containing, family F (with FYVE domain) BRCAlI —1 1.15E — 06 Breast cancer 1, early onset
member 1
SOCS1 1 0.0003106  Suppressor of cytokine signaling 1 TBP —1 1.21E — 06 TATA box binding protein
(B)
GNG4 1 7.12E — 06  Guanine nucleotide binding protein (G protein), gamma 4 PTPRD 1 2.21E — 10 Protein tyrosine phosphatase, receptor type, D
C6orf103 1 2.53E — 05 Chromosome 6 open reading frame 103 PDGFRB 0 6.55E — 09 Platelet-derived growth factor receptor, beta
polypeptide
GPR116 -1 2.66E — 05 G protein-coupled receptor 116 STATSA 0 6.55E — 09 Signal transducer and activator of transcription SA
KIAA1654 1 2.68E — 05 KIAA1654 protein PTPRF 1 1.67E — 08 Protein tyrosine phosphatase, receptor type, F
CCL14- 1 4.00E — 05 Chemokine (C-C motif) ligand 14/chemokine (C-C motif) ligand 15 PPFIA1 0 1.67E — 08 Protein tyrosine phosphatase, receptor type,
CCL15 f polypeptide (PTPRF), interacting protein
(liprin), alpha 1
ST7L 1 4.26E — 05 Suppression of tumorigenicity 7 like PTPRS 1 4.40E — 08 Protein tyrosine phosphatase, receptor type, S
ACCN3 1 0.000108689 Amiloride-sensitive cation channel 3 STATSB —1 4.68E — 08 Signal transducer and activator of transcription 5B
ALOX15 1 0.000117418 Arachidonate 15-lipoxygenase PTPRA —1 1.65E — 07 Protein tyrosine phosphatase, receptor type, A
CARD14 1 0.000120208 Caspase recruitment domain family, member 14 PPFIA2 1 1.65E — 07 Protein tyrosine phosphatase, receptor type,
f polypeptide (PTPRF), interacting protein (liprin),
alpha 2
LGR4 1 0.000132248 Leucine-rich repeat-containing G protein-coupled receptor 4 SCNNIB 0 1.65E — 07 Sodium channel, non-voltage-gated 1, beta

All the PPI P-values pass the FDR.
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Figure 2. Global view on genes that is differentially expressed in MS and the PPIs between them. The graph includes edges of two types: continuous edges
correspond to PPI; dashed edges corresponding to paths of length two (via a gene that is not differentially expressed). The graph also includes three types
of nodes: differentially expressed in MS/healthy and Rel/Rem (red), differentially expressed in MS/healthy (blue), differentially expressed in Rel/Rem
(yellow). Differentially expressed genes in MS tend to be close to each other in the PPI network (P-value = 0.05).

of the Rel/Rem dataset (P-value = 0.2). The result suggests
that the two stages of the disease are relatively similar in
terms of the gene expression signature; thus, in general, the
differentially expressed genes in the Rel/Rem database do
not seem to be clustered in the protein interaction network.

In the second global P-value, we checked if the number of
genes with significant PPI P-values is higher than in random
networks with similar properties (Materials and Methods).
This number was significantly higher than expected in ran-
domized networks for the MS/healthy dataset (275 in the
real data versus 88 in the randomized data; P-value 0.01)
but non-significant in the Rel/Rem dataset (Materials and
Methods).

The third global P-value was related to the number of sig-
nificantly expressed genes (according to the ANOVA
P-value) that also have PPI with other significantly expressed
genes (see exact details in the Materials and Methods section).
We found that in both datasets, this number was higher than
expected from random permutations with similar properties
(69 genes in the real dataset versus a mean of 34 in the ran-
domized gene networks for the MS/healthy dataset,
P-value < 0.01; and 40 genes in the real dataset versus a
mean of 22 in the random networks, P-value < 0.05 for the
Rel/Rem dataset; Materials and Methods). Thus, we deduce
that P-values based on more refined measures do detect sig-
nificant global changes also in the Rel/Rem dataset. In the fol-
lowing sections we report additional, more specific and highly
significant P-values related to functional groups of genes and
single genes, which are differentially expressed in the Rel/
Rem dataset.

PDI analysis of 111 transcription factors (TFs) and their
targets (a total of 5787 interactions, Materials and Methods)
revealed that 8 and 16 TFs changed their expression according
to the ANOVA P-value in the Rel/Rem dataset and the MS/
healthy dataset, respectively. We found 31 and 119 pairs of
TFs and their targets that are both ANOVA significant in the
Rel/Rem dataset and in the MS/healthy dataset, respectively.
The number of such pairs was significantly higher compared

with randomized networks (Materials and Methods) in the
case of the MS/healthy dataset (mean number of genes in
the real data: 119 versus mean number of genes in the random-
ized data: 53; P-value = 0.03) but not in the Rel/Rem dataset.
The resultant lists of genes that are differentially expressed
and have differentially expressed TFs appear in Supplemen-
tary Material, Tables S2 and S3.

Enriched gene ontology groups for genes with significant
ANOVA or PPI P-values

To gain a picture of the cellular processes that are specific to
MS and the cellular processes that are differentially expressed
in relapse versus remission, we performed a gene ontology
(GO) enrichment analysis of the genes with significant
ANOVA P-values and PPI P-value (Materials and Methods).
Some cellular functions with the highest enrichment
P-values, which pass FDR, are depicted in Table 3 (all the
enriched cellular functions can be found in Supplementary
Material, Tables S4—S7).

In the MS/healthy dataset, the list of enriched cellular pro-
cesses that were based on the genes with ANOVA significant
P-values includes the following functional groups: positive
regulation of cell death, chemotaxis, inflammatory response
(all P-values < 0.0014; Table 3). These cellular processes
are known to be key mechanisms in MS.

Almost all the cellular functions that were enriched accord-
ing to genes with ANOVA significant P-values were also
enriched based on genes with PPI significant P-values.
However, the enrichment results according to the PPI signifi-
cant P-values included additional relevant cellular functions
that were not discovered by the ANOVA-based enrichment.
For example, the cellular functions positive regulation of
NF-kappaB TF activity, immune system development and
regulation of caspase activity (all P-values < 0.0021;
Table 3) were uncovered only by the PPI-based enrichment.

In the case of the Rel/Rem dataset, the following cellular
functions were enriched based on the genes with ANOVA
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Table 3. Some of the cellular processes that were significantly enriched in (A)
MS/healthy dataset and (B) Rel/Rem dataset

Gene expression  PP-net
P-value P-value
(A)
Term
Positive regulation of cell death 4.16E — 06 1.03E — 17
Chemotaxis 9.9E — 06 -
Regulation of transcription from 0.00076 341E — 55
RNA polymerase II promoter
Inflammatory response 0.0014 1.73E — 06
Positive regulation of NF-kB - 0.00094
transcription factor activity
Immune system development - 7.22E — 08
B cell differentiation — 0.00217
Regulation of caspase activity - 0.000367
®)
Cellular process
Cell adhesion 0.00012 4.99E — 07
Cell migration 0.000034 8.15E — 10
Cell—cell signaling 2.2E — 06 1.77E — 07
Regulation of cell motion 0.0007 1.48E — 10
Positive regulation of cell - 5.95E — 08
proliferation
Synaptic transmission - 4.61E — 06
T cell receptor signaling pathway - 0.0000395
T cell activation — 0.000349
Regulation of T cell proliferation - 0.0007
T cell differentiation - 0.0009
Positive regulation of natural killer =~ — 0.00245
cell-mediated cytotoxicity
Regulation of apoptosis - 1.26E — 06

Full tables appear in the Supplementary material based on the ANOVA
P-values and based on the PP network P-values (Materials and Methods).

significant P-values: cell adhesion, cell migration, cell—cell
signaling and regulation of cell motion (all P-values <
0.0007; Table 3).

A similar analysis based on genes with significant PPI
P-values again revealed additional relevant cellular functions:
positive regulation of cell proliferation, T cell receptor signal-
ing pathway, T cell activation, regulation of T cell prolifer-
ation, T cell differentiation and positive regulation of natural
killer cell-mediated cytotoxicity and regulation of apoptosis
(all P-values < 0.00245; Table 3).

These results demonstrate that many of the regulatory
changes in MS cannot be detected based solely on gene
mRNA levels; however, incorporating PPIs can further the dis-
covery of additional relevant regulatory changes in MS.

Genes with significant PPI P-values

The genes with the highest PPI P-values appear in Table 4 (see
the entire list in Supplementary Material, Tables S2 and S3).
In this case, many of the P-values passed the FDR threshold
(16 genes for the Rel/Rem dataset and 11 for the MS/
healthy dataset). Several of the genes that passed the FDR
test are known to be key-apoptotic genes such as 7P53 and
TRAF1 that mediate the anti-apoptotic signals from tumor
necrosis factor (TNF) receptors, and the anti-apoptotic gene
JUND. Other genes that passed the FDR are related to
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growth and proliferation (e.g. FOS and BRCA) and transcrip-
tion (e.g. TBP, SMAD3, JUN).

The list of genes that passed the FDR test according to the
PPI P-value in the Rel/Rem dataset included many genes that
related to phosphorylation (e.g. PTPRD, PTPRF, PPFIAI,
PTPRS, PTPRA, PPFIA2).

Interestingly, when we focused on genes with known single
nucleotide polymorphisms (SNPs) that are associated with MS
(32) (HLA-DRBI, IL2RA, CD58, IL7R, PLPI1, MAG, MOG),
we discovered that many of them have significant P-values
(ANOVA or PP]) in at least one of the analyzed databases
(Table 4); specifically, we found enrichment in the number
of genes with SNPs associated with MS among the PPI signifi-
cant genes in the Rel/Rem dataset (hyper-geometric P-value =
0.001).

One interesting gene is /L7R which is a receptor for inter-
leukin 7 (IL7). IL7 has been shown to play a critical role in
the V(D)J recombination during lymphocyte development
(33). This protein also controls the accessibility of the TCR
gamma locus by STATS and histone acetylation (34). Knock-
out studies in mice have suggested that blocking apoptosis is
an essential function of this protein during differentiation
and activation of T lymphocytes (35). We found that /L7R,
which does not have a significant ANOVA P-value, has a sig-
nificant PPI P-value in the Rel/Rem dataset (P-value =
0.00003), but not in the MS/healthy dataset. Thus, this result
may suggest that protein levels of /L7R tend to change
between relapse and remission periods of MS, even though
no change is observed at the mRNA level of this gene.

Sub-networks of genes with both ANOVA and PPI
significant P-values

Next we analyzed the specific set of genes that have both
ANOVA and PPI significant P-values. We also considered
the PPIs between these genes (Materials and Methods). The
resultant protein interaction networks corresponding to these
genes appear in Figure 3 (MS/healthy) and Figure 4 (Rel/
Rem; see also Supplementary Material, Tables S8 and S9).
As can be seen in Figure 3, the MS/healthy network includes
genes related to transcription, regulation of proliferation and
apoptosis, inflammatory response, response to cytokine stimu-
lus and T cell activation (all P-values < 0.004). The Rel/Rem
network (Fig. 4), on the other hand, includes genes related to
protein amino acid dephosphorylation, and cell adhesion (all
P-values < 0.003).

Clusters of genes with both ANOVA and PPI significant
P-values

We clustered the sub-networks mentioned in the previous sub-
section to find modules (clusters) of genes with relatively more
PPIs between them ((36); Materials and Methods). The resul-
tant networks and the clusters appear in Figure 3 (for the MS/
healthy dataset) and Figure 4 (for the Rel/Rem dataset). We
verified that the modularity of the resultant clustering is
higher than in random networks with similar properties
(P-value < 0.01; see details in the Materials and Methods
section), suggesting that these clusters indeed have biological
significance.
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Table 4. ANOVA P-values, PPI P-values and the P-value ranks for genes with SNPs related to MS (32)

Symbol Entrez P-value PPnet

Rank PPnet

P-value ANOVA Rank ANOVA

HLA-DRBI1 3123 100133661 Rel/Rem: pval = 1

3127 MS/cont: pval = 1

IL2RA 3559 Rel/Rem: 0.0382
MS/cont: 1

CD58 965 Rel/Rem: 1
MS/cont: 1

IL7R 3575 Rel/Rem: 0.0000335
MS/cont: 1

PLP1 5354 Rel/Rem: 1
MS/cont: 1

MAG 4099 Rel/Rem: 0.0646257
MS/cont: 1

MOG 4340 Rel/Rem: 1
MS/cont: 1

Rel/Rem: 1884
MS/cont: 2135
Rel/Rem: 208/13523
MS/cont: 2277/13523
Rel/Rem: 943/13523
MS/cont: 1244/13523
Rel/Rem: 24
MS/cont: 2290
Rel/Rem: 2844
MS/cont: 3050
Rel/Rem: 280
MS/cont: 2564
Rel/Rem: 2431
MS/cont: 2666

Rel/Rem: 4556
MS/cont: 1244
Rel/Rem: 12130
MS/cont: 12951
Rel/Rem: 12588
MS/cont: 42
Rel/Rem: 8498
MS/cont: 11984
Rel/Rem: 1126
MS/cont: 5735
Rel/Rem: 12597
MS/cont: 13488
Rel/Rem: 1240
MS/cont: 4312

Rel/Rem: pval = 0.3134
MS/cont: pval = 0.0491
Rel/Rem: Pval = 0.8932
MS/cont: pval = 0.9509
Rel/Rem: pval = 0.9266
MS/cont: pval = 9.3791E —004
Rel/Rem: pval = 0.6162
MS/cont: 0.8654
Rel/Rem: pval = 0.062
MS/cont: pval = 0.3548
Rel/Rem: pval = 0.927
MS/cont: pval = 0.9969
Rel/Rem: pval = 0.06997
MS/cont: pval = 0.2466

The MS/healthy network includes many apoptotic genes
and modules that will be discussed in details in the following
section. One striking module includes the cytokine /L/B and
its receptor, which are over-expressed in MS. /L] is known
to have an important role in activation of lymphocyte prolifer-
ation. Specifically, it induces TNF-alpha release by endothelial
cell, proliferation of CD4+ cells, IL-2 production,
co-stimulates CD8+-/IL-1R+ cells, induces proliferation of
mature B cells and immunoglobulin secretion, induces IL-6
and granulocyte colony-stimulating factor secretion and stimu-
lates expression of fibroblast growth factor and epidermal
growth factor (EGF). In addition, it was found that MS
patients tend to have polymorphisms in this gene and its recep-
tor (37-39).

The Rel/Rem network includes modules related to phos-
phorylation, the growth factor receptors (EGFR) and cell
adhesion.

The epidermal growth factor receptor (EGFR), a receptor
tyrosine kinase, is a hub in one of the modules. EGFR (and
some of the proteins interacting with it) is over-expressed
(in terms of mRNA levels) in relapse relative to remission.
EGFR signaling is initiated by ligand binding to the extra-
cellular domain of EGFR, and following activation, phos-
phorylation of cytoplasmic substrates occurs, and a signaling
cascade is launched. As a result, many cellular responses are
derived. Specifically, there are changes in gene expression,
cytoskeletal rearrangement, anti-apoptosis, increased cell pro-
liferation and adhesion. The EGFR cluster is enriched with
genes related to adhesion (P-value = 0.03; Fig. 4); thus, the
genes that appear in the EGFR cluster suggest that in our
context (relapse versus remission in MS), EGFR mainly
plays an important role in adhesion.

Pathways analysis of genes with significant P-values
(ANOVA and PPI)

In order to better understand the molecular mechanisms that
are involved in MS/healthy signatures, we combined the
genes with significant ANOVA P-values with those with sig-
nificant PPI P-values, and analyzed them with Ingenuity soft-
ware  (http://www.ingenuity.com). We considered the
canonical pathways of Ingenuity and found that the most

striking biological pathways that were enriched with these
genes were related to IL1-IL8-induced inflammation (P =
4.7 x 10~'%; Fig. 5A) and suppression of Fas li%and (FASL)
and P53-dependent apoptosis (P = 1.1 x 10~'%; Fig. 5B).
IL-1 is produced by activated macrophages, B cells and fibro-
blasts: it is a pivotal pro-inflammatory cytokine that is cen-
trally involved in local and systemic responses in the
immune system, which lead to typical effects of inflammation.
Its deregulation, prolonged synthesis and release in chronic
inflammation contribute to diseases such as MS. There are
two forms of IL-1 encoded by distinct genes, /L-/« and
IL-18, both of them were found to be over-expressed in the
MS/healthy signature. The IL-1 receptor has two subunits,
IL-1R1 and IL-1RAP, that upon ligand binding form a
complex; in accordance with the previous results, the genes
encoding /L-1 receptor were also up-regulated.

Binding of IL-1 to its cell-surface receptor activates G-
proteins, which in turn stimulate adenylate cyclase activity,
which leads to an increase in the intracellular level of
cAMP. Cyclic AMP activates PKA which then activates the
pro-inflammatory NF-kB pathway as demonstrated by the sig-
nificant P-value of the two subunits of NFKBI. Activated
NF-«kB, JNKI1 and p38MAPK are translocated to the nucleus
where, either directly or via the transcriptional regulators
c-Jun and c-Fos (both found to be over-expressed), they
induce genes that regulate inflammation.

Another mechanism of NF-«kB, c-Jun and c-Fos activation
involves the recruitment of IRAK and TRAF6 (Fig. 5A).

Interleukin 8 (IL-8) is a member of the C-X-C family of che-
mokines, which plays a central role in inflammation. Activation
by IL-8 can trigger inflammation in cells like neutrophils, which
leads to chemotaxis, granule release and increased cell
adhesion. Interestingly, over-expressed IL-8 similarly to IL1
can also induce nuclear TF-kappa B (NF-«kB) through a
TRAF6-dependent pathway, and activate cyclooxigenase
(PTGS2) and prostaglandin type of inflammation, which we
found in the MS/healthy signature. This last mechanism is
also supported by the significant over-expression of /L/A4 and
Apl genes. In our context, the most imperative result of IL8
activation is the up-regulation of matrix metalloproteinase
(MMP2 and MMP9), which is involved in the blood brain
barrier damage mechanism in MS. The activation of
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Figure 3. Differentially expressed interactions in the MS/healthy dataset. The graph includes only genes that were differentially expressed and also have
significant PPI P-values. The graph was clustered [Materials and Methods (36); each cluster has a different color], and for each cluster we performed a functional

enrichment analysis (Materials and Methods). (B) The functional enrichments for the entire graph.
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Figure 4. Differentially expressed interactions in the Rel/Rem dataset. (A) The graph includes only genes that were differentially expressed with significant PPI
P-values. The graph was clustered [Materials and Methods (36); each cluster has a different color], and for each cluster we performed a functional enrichment

(Materials and Methods). (B) The functional enrichments for the entire graph.

inflammatory cellular response in the MS/healthy signature was
also demonstrated by the over-expression of the CXCR4 signal-
ing mechanism. As can be seen in Figure 5A, the CXCR4 recep-
tor and its specific CXCL/2 chemokine were over-expressed.
This over-expression should lead to an increased phosphoryl-
ation of multiple focal adhesion components.

The down-regulation of apoptotic mechanisms in MS has
been demonstrated in previous studies (40). Here, by combin-
ing gene expression and PPIs, we were able to reveal more
precisely the mechanisms of apoptosis deficiency in the MS/
healthy signature (Fig. 5B). We found that FASL, which med-
iates apoptosis, and its effector CASP8 proteolitic protein, was
suppressed in MS. The downstream apoptotic cascade includes
the genes Daxx, JNK, BcL-XL, CIAP, CASP3 and CAD, which
had significant PPI P-values. Another apoptotic pathway
which appears in the MS/healthy signature is initiated by the
binding of TNF family ligands to their receptors inefficiently
due to under-expression of TRAF1/2 adaptor protein, which
facilitate binding to pro-caspase &8 and pro-caspase
(Fig. 5B). In addition, we found clues which suggest that the
p53 signaling pathway is also suppressed in MS: first, as we
previously mentioned, we found that p53 is under-expressed;

secondly, we found that p53 masters regulatory proteins
such as MDM2, WTNI1, p300 and PCAF, which have highly
significant PPI P-values; thirdly, we found that ¢JUN, which
is known as an antagonist of p53, is over-expressed in MS.
Downstream negative regulators of cell cycle, like retinoblas-
toma 1 (RB), were also over-expressed. Thus, the suppression
of immune cell’s apoptotic mechanisms could lead to expan-
sion of autoimmune cell clones and maintenance of autoim-
munity.

The Rel/Rem signature (Fig. 5C) characterized by acti-
vation of lymphocyte migration mechanisms (P <5.7
x 10~%) includes a large group of significantly over-expressed
cytokines and chemokines (according to the ANOVA test).
Specifically, the set of over-expressed genes in the Rel/Rem
dataset included the protein CCL14, a cytokine which
induces alterations in intracellular calcium concentrations,
enzymes released in monocytes and the chemokine CCBP2.
These proteins physically interact with each other and are
critical for the recruitment of effector immune cells to the
inflammation site (Fig. 5C; 41,42).

The activation of chemotaxis of lymphocytes and mono-
cytes is demonstrated by the over-expression of members of
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Figure 5. Pathway analysis by Ingenuity based on the significant (PPI and
ANOVA) genes in MS/healthy (A, B) and Rel/Rem (C). Two signaling path-
ways found to be enriched by Ingenuity in the MS/healthy database: the
inflammation pathway (A) and the apoptosis pathway (B); one pathway was
significant in the Rel/Rem database: the lymphocyte and monocyte adhesion
pathway (C). Red/green nodes denote ANOVA significant over/under-
expression, respectively; black nodes denote genes with significant PPI
P-values (but with non-significant ANOVA P-value).

the MIPI family such as CCL15, which induces changes in
intracellular calcium concentrations, and acts via the CCR1
receptor (Fig. 5C; 41,42).

An important chemokine which is over-expressed in Rel/
Rem is CCL22 (Fig. 5C). It plays a role in trafficking dendritic
cells and natural killer cells to the inflammatory sites of mono-
cytes, and chronically activated T lymphocytes. It also dis-
plays a mild activity in primary activated T lymphocytes,
though has no chemoattractant activity for neutrophils, eosino-
phils and resting T lymphocytes (41,42).
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Another piece of evidence that supports lymphocyte acti-
vation in Rel/Rem is the over-expression of CCLI2
(Fig. 5C), which is known to play a role in the pathogenesis
of diseases that are characterized by monocytic infiltrates,
such as psoriasis, rheumatoid arthritis and MS (43—45).

In addition, we found that the VNT molecule, which is found
in serum and tissues, and promotes cell adhesion and spread-
ing, is over-expressed in acute relapse (Fig. 5C). We also
uncovered that acute MS relapse is characterized by stimu-
lation of pro-inflammatory molecules such as MMP1 and
ALOX15 (Fig. 5C; Supplementary Material, Table S3).

To complete the picture of lymphocyte activation and
monocyte trafficking in inflammatory sites, we report a few
additional relevant proteins with significant PPI P-values
(Fig. 5C). This set of proteins includes (Fig. 5C, Supplemen-
tary Material, Table S3) IL2R and CXCR4—a receptor for
CCL12, and the focal adhesion kinase (P38MAPK). In
addition, it incorporates CD44 (Fig. 5C), a cell-surface glyco-
protein that is involved in cell adhesion and migration, as well
as interaction with other ligands, such as osteopontin, col-
lagens and MMPs. CD44 also binds to chemokines in the
intracellular matrix. Interestingly, the receptor of TGFB
[PDGFRA (46)], which is an upstream regulator that increases
the expression of CCL12 and CCBP2, was over-expressed in
the Rel/Rem database as well (Fig. 5C).

DISCUSSION

In this study, we reported the first systems biology study of
gene expression in MS patients under remission and relapse,
encompassing 164 large-scale measurements of gene
expression in PBMC, including clinical and demographical
characteristics of the patients, batch effects and physical inter-
actions between proteins. Using this approach, we were able to
report the regulatory changes that occur in the disease with a
much higher resolution than before (8,12). The results that are
reported in this study can be classified into three major levels
of resolution: global, pathways and gene groups and single
genes.

At the global level, when considering the expression levels
of all the genes and the physical interactions between them, we
show that there is a strong global signal related to the disease
in the MS/healthy dataset. Even though there are clear differ-
ences between the two disease stages (relapse and remission),
and despite the fact that there are specific genes and pathways
that are differentially expressed between the two stages of the
disease, we discerned a considerably weaker global signal in
the Rel/Rem dataset. Thus, roughly speaking, most of the
MS gene expression signature remains relatively constant in
relapses and remissions.

At the pathway and gene modules level, the current study
includes a detailed report of modules and pathways that are
involved in the disease (MS/healthy dataset) and its two
stages (Rel/Rem dataset), including the exact set of relevant
proteins, and the interaction mechanisms among them (see
Figs 3-5 that includes only genes with significant PPI and/
or ANOVA P-values). Previous papers (8,12) included only
a high-level report of the pathways that appear to be related
to the disease (e.g. T-cell activation, apoptosis and
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inflammation). Thus, the pathways outlined in this paper
improve our understanding of the disease phenotypes at the
signaling pathways level. For example, we found that EGFR
is a ‘hub’ which interacts with many ANOVA significant
genes in the Rel/Rem database, possibly to promote improved
adhesion. Thus, it is plausible that the gene expression of the
EGFR sub-network is a good candidate for relapse prediction.

At the single gene level, we employ novel statistical ana-
lyses that overcome some of the biases related to gene
expression analysis, and the fact that many of the regulatory
mechanisms are not transcriptional. Thus, we detail a robust
list of potential biomarkers of the disease in PBMC
(Tables 2 and 4 and Supplementary Material, Tables S1—-S3,
S8 and S9). To the best of our knowledge, many of these
genes are novel in this context, and have not been reported
in previous studies (8,12). For example, to the best of our
knowledge, the genes SMAD3, RBI, FOS, TP53, BRCAIl and
TBP with significant P-values in the MS/healthy dataset (see
Table 2) and the genes PTPRD, PDGFRB, STAT54, PTPRF,
PPFIAl, PTPRS, PPFIA2 and SCNNIB with significant
P-values in the Rel/Rem dataset (Table 2) are novel potential
biomarkers in the MS context.

Finally, since gene expression in PBMC has been utilized in
the study of other autoimmune diseases (7,15,16), the
approach employed in this study can be useful in the case of
these diseases as well.

MATERIAL AND METHODS
Population study

The clinical and demographical characteristics of each of the

analyzed dataset (MS/healthy and Rel/Rem) appear in Table 1.
In the Rel/Rem dataset, we did not include patients whose

Expanded Disability Status Scale (EDSS) (47) was zero.

All the MS patients were diagnosed with definite MS
according to the McDonald criteria (48). MS relapse was
defined as the onset of new objective neurological symp-
toms/signs or the aggravation of existing neurological disabil-
ity, not accompanied by metabolic changes, fever or other
signs of infection, and lasting for a period of at least 48 h
accompanied by objective change of at least 0.5 in the
EDSS score. Confirmed relapses and EDSS scores were
recorded consecutively.

RNA isolation and microarray expression profiling in MS

PBMCs were separated on Ficol-Hypaque gradient, and total
RNA was purified, labeled, hybridized to a Genechip array
(HU133A-2) and scanned (Hewlett Packard, GeneArray-TM
scanner G2500A) according to the manufacturer’s protocol
(Affymetrix Inc., Santa Clara, CA, USA).

The normalization and analysis of the gene expression
datasets

We used the Sheba MS center recorded computerized clinical
follow up and blood gene expression measurement dataset.
This dataset includes information regarding clinical variables
such as: age, gender and EDSS at the time of blood sampling.

The following steps of the data analysis were performed by
MATLAB:

(i) Expression values were computed from raw CEL files by
applying the Robust Multi-Chip Average (RMA) back-
ground correction algorithm. We averaged the expression
levels of all the probes of each gene, and each of the data-
sets underwent quantile normalization.

(i1) In the next step, in each of the datasets (MS/healthy and
Rel/Rem), we computed significantly over/under-
expressed genes based on ANOVA (30), considering
batch effects such as the scan date of each chip, and the
age and gender of each patient.

The drug regimen of each patient

Supplementary Material, Table S1 includes the drug regimen
of each patient during the month of blood withdrawal (last
column). We found that differing treatment is not a variable
that has a significant effect on the gene expression pattern:
the Spearman ranked correlation between the ANOVA
P-values of all the genes when considering only the untreated
patients versus the ANOVA P-values when considering all the
patients is close to perfect (r = 0.943), i.e. genes that are rela-
tively more significant based on the untreated group are also
more significant based on the entire group of patients
(roughly speaking the ranking of the genes’ P-values does
not change).

However, when we considered all the patients there we
uncovered 16% more significant genes (the statistical power
increases). Thus, we decided to employ all the patients.

The PPI network of human

The human PPI network was gathered from public databases
(49,50) and from recently published papers (51,52). The
final reconstructed network includes 7915 proteins and
28972 PPIs (a subset of 6850 proteins and 25931 PPIs
appears in the analyzed chips).

PDI network of human

This network was downloaded from the TRED database (53).
It includes 112 TFs, 2964 proteins that are regulated by these
TFs and a total of 7298 PDIs. When considering only the
genes that appear on the analyzed Genechip array, there are
111 TFs, 6069 proteins that are regulated by the TFs and a
total of 5787 PDls.

Gene-specific P-values based on the PPI network

For each protein in the PPI network, we computed a hyper-
geometric P-value that was based on the number of
ANOVA significant proteins that interact with it, the total
number of ANOVA significant and the topology of the PPI
network. Roughly speaking, a protein that interacts with a
larger number of interacting genes that are ANOVA signifi-
cant proteins will have a more significant P-value. We
named this P-value PPI (PPI network P-value) and calculated
it as follows:
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Let n; denote the number of proteins interacting with gene i,
let m; be the number of protein interactions with gene i that
have significant ANOVA P-values, let N be the total number
of proteins in the network and let M be the total number of
proteins with significant ANOVA P-values in the network.
At the first stage, we computed for each gene an initial
P-value; let PPI0 denote this P-value. The initial P-value of

gene i is:
(M) N <N— M>
z :”i j n; j

J=m; N
n;

To get a more refined P-value, we repeated iteratively (till
convergence) on the procedure described above in the follow-
ing way:

In iteration k£ compute for each gene a PPlk P-value that is
based on the PPIlk-1 P-values computed in the previous iter-
ation using the formula above, with the only change being
we replace ANOVA significant genes with genes that are
PPIk-1 significant (i.e. M is the total number of proteins
with significant PPIk-1 P-values and m; is the number of
protein interactions with gene i that have significant PPIk-1
P-value).

In this paper, we considered three sets of genes:

(1) Genes that satisfy two conditions: (1) significant
ANOVA P-value and (2) significant PPI-network
P-value. Such genes appear in Figures 3 and 4.

(i) Genes that satisfy only condition (2). Such genes appear
in the left sides of Tables 2 and 3.

(iii) Genes that satisfy only condition (1). Such genes appear
the right sides of Tables 2 and 3.

A global P-value related to the total number of PDIs

In this subsection, we describe a global P-value which is
related to the number of genes with ANOVA significant
P-values, such that each of them is regulated by at least one
ANOVA significant TF.

The aforementioned global P-value related to the number of
genes was computed as follows:

Repeat 100 times:

(1) Randomly choose a subset of genes of size M.

(2) Assume that the subset of genes that was chosen in 1
includes the ANOVA significant genes, and compute the
number of genes that are ANOVA significant and are
regulated by at least one ANOVA significant TF.

(3) Compute the empirical probability (frequency) that the
number of genes with ANOVA significant P-values that
are regulated by at least one TF which is ANOVA signifi-
cant, obtained in a random network, is larger (or equal)
than the number of such genes in the original network.
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A global P-value for the number of genes with significant
PPI-network P-values

A global P-value which is related to the number of genes with
significant PPI-network P-values was computed as follows:
Repeat 100 times:

(1) Randomly choose a subset of genes of size M.

(2) Assume that the subset of genes that was chosen in 1
includes the ANOVA significant genes, and compute for
all genes the PPI P-values mentioned above.

(3) Compute the empirical probability (frequency) that the
number of genes with significant PPI P-values obtained
in the random network is larger (or equal) than the
number of genes with significant PPI P-values obtained
in the original network.

A global P-value for the distance between ANOVA
significant genes in the PPI network

The aim of the global P-value described in this sub-section
was to demonstrate that genes with ANOVA significant
P-values tend to be close to other genes with ANOVA signifi-
cant P-values in the PPI network. Therefore the observed
changes in the gene expression are not random.

This global P-value was computed as follows:

(1) Find for each gene that is ANOVA significant, the dis-
tance to the closest gene in the PPI network that is also
ANOVA significant. Compute the mean distance.

Repeat 100 times:

(2) Randomly select a subset of M genes and assign them to
the nodes of the PPI network such that the degree distri-
bution of these nodes will be identical to the degree distri-
bution of ANOVA significant nodes in the original graph.

(3) Find the mean distance between each of the M random
ANOVA significant nodes and its closest neighbor, and
compute the mean distance.

(4) Compute the empirical probability (frequency) that the
random network has a smaller (or equal) mean distance
than the mean distance in the original one.

Clustering the differentially expressed networks

The clustering of differentially expressed networks was per-
formed by the Newman algorithm (36) for finding commu-
nities in biological networks. The algorithm was
implemented in MATLAB. This algorithm detects subsets
(clusters) of proteins that include relatively many protein
interactions between them (compared with other parts of the
network). By definition, a network is modular if it can be
divided to modules/sub-networks with a large number of
PPIs between proteins within the same module, and less
PPIs between proteins that reside in different modules.

We analyzed the PPI network consisting only of genes with
both significant PPI and ANOVA P-values, with the afore-
mentioned Newman algorithm

We used the modularity score that is described in the work
of Girvan and Newman (36). To evaluate the significance of
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the modularity score of the resultant clustering, we compare it
to the modularity score of randomized inputs as follows:

Let n denote the number of nodes (proteins) in the original
network. Let u/,v/, u2and v2 denote four proteins (nodes) in
the network and let (u/,vI) denote PPI between proteins u/
and v/.

Each random network was generated in the following way:

(1) Start with the original PPI sub-network.
(2) Repeat 10x n times on the following steps:

(a) Choose a random pair of edges (u/,v]) and (u2,v2) in
the network.

(b) Replace them with a new pair of edges (u/,v2) and
w2,vI).

GO enrichment

GO enrichment analysis of genes with significant ANOVA
P-values and/or of genes with significant PPI P-values (P <
0.05 in both cases) was performed by David (54) (http://da
vid.abcc.nciferf.gov/). In all cases, we considered GO groups
with enrichment P-values that passed the FDR. To this end,
we utilized the FDRs that were reported by David, and we
reported only cases with FDR of <5%.

FDR test for the P-values of single genes

In this case, we considered the nonparametric approach of
reference (31) with a threshold of ¢ = 0.05.

Fold change

To estimate the fold change in one condition versus the second
(e.g. relapse versus remission) while taking into account the
batch effects and additional variables, we performed a multi-
variate linear regression (55) in which the Rel/Rem (or MS/
control) is the dependent variable and all the other (Table 1)
previously mentioned variables (batch effects, clinical and
demographical variables) are the independent variables. The
scan date was represented by a set of dummy binary variables,
and other variables were either continuous or binary. The sign
of the coefficient related to the expression levels determined
the fold change in one condition versus the other. For
example, in the case of the Rel/Rem database, we set the
dependent variable to be ‘1’ in the case of relapse (and 0’
otherwise). Thus, a positive coefficient of the expression
levels variable corresponds to increased expression level of
the gene in relapse in comparison to remission.

Similar results were obtained when we used partial corre-
lations (Spearman or Pearson) between the Rel/Rem (or MS/
control) variable and the expression levels, given all the
other variables.
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