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Estimating the predictive power of silent mutations on cancer
classification and prognosis
Tal Gutman1, Guy Goren2, Omri Efroni2 and Tamir Tuller 1✉

In recent years it has been shown that silent mutations, in and out of the coding region, can affect gene expression and may be
related to tumorigenesis and cancer cell fitness. However, the predictive ability of these mutations for cancer type diagnosis and
prognosis has not been evaluated yet. In the current study, based on the analysis of 9,915 cancer genomes and approximately three
million mutations, we provide a comprehensive quantitative evaluation of the predictive power of various types of silent and non-
silent mutations over cancer classification and prognosis. The results indicate that silent-mutation models outperform the
equivalent null models in classifying all examined cancer types and in estimating the probability of survival 10 years after the initial
diagnosis. Additionally, combining both non-silent and silent mutations achieved the best classification results for 68% of the
cancer types and the best survival estimation results for up to nine years after the diagnosis. Thus, silent mutations hold
considerable predictive power over both cancer classification and prognosis, most likely due to their effect on gene expression. It is
highly advised that silent mutations are integrated in cancer research in order to unravel the full genomic landscape of cancer and
its ramifications on cancer fitness.
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INTRODUCTION
The rapid developments of New Generation Sequencing (NGS)
technologies and acceleration of computational abilities over the
past few years have led to the availability of extensive genomic
information1–5. Multiple research utilizing these high-dimensional
data establish cancer as a group of highly heterogeneous genomic
diseases, characterized by large inter-tumor and intra-tumor
diversities6–8. Moreover, common genetic features were repeat-
edly identified among patients of different cancer types and
significant diversities were found among patients diagnosed with
the same cancer type9,10. These findings highlight the need for
personalized, gene-targeted cancer treatments.
By now, hundreds of genes had been recognized as cancer

drivers11 and many more are currently researched. Some, like
TP5312, BRAF13, EGFR14, or IDH115 have already been targeted for
gene therapy. Nonetheless, there are still numerous obstacles to
overcome in order to fully unravel the cancer genomic landscape.
Currently, most contemporary research is based on data derived
by Whole Exome Sequencing (WES)2. In addition, most studies
focus exclusively or predominantly on non-silent mutations;
alterations in the coding regions that cause a change in the
amino-acid sequence of the produced protein. Silent mutations,
such as modifications in the introns, the untranslated regions
(UTR’5 and UTR’3), or even synonymous mutations in the coding
region itself are by and large excluded from the analyses16.
Yet, cancerous silent mutations could have detrimental effects

on gene expression16–19, which in some cases could even lead to
consequences more significant than non-silent mutations. Muta-
tions in regulatory regions, such as promoters or enhancers, can
destruct or form new transcription-factor binding sites and cause
changes in transcription regulation20–23. Mutations in the untrans-
lated regions can affect translation regulation or modify microRNA
binding sites and thus impact mRNA stability24. Synonymous
mutations can alter all aspects of gene expression25, impacting

translation rates26,27, protein-folding28, transcription29–31, mRNA
stability32, and splicing33,34. Overall, silent mutations could modify
all phases of the gene expression process, causing amplification or
reduction in protein quantities. Hence, even though most silent
mutations do not cause a change in protein functionality, they
could dramatically change protein abundance and could therefore
influence cancer fitness.
We believe that including these mutations in cancer research is

imperative for acquiring a broader understanding of the genomic
landscape profoundly linked with cancer development and
progression. Specifically, we believe that silent mutations should
be incorporated when building predictive models.
The incredible heterogeneity of cancerous genomes, even for

patients who presumably possess the same cancer type, highly
complicates predictive tasks. When examining only non-silent
mutations we miss a large part of the complex mutational patterns
of these cancerous genomes; considering the full patterns could
improve predictions. Additionally, silent driver mutations, even
though considered today as infrequent compared to non-silent
drivers, could be highly influential35 and thus also beneficial for
predictive models. Indeed, there are previous studies that have
demonstrated that silent mutations or non-silent mutations that
modulate gene expression can significantly affect the phenotype
of the cancer cell and its survival33,36–42. Additionally, some
contemporary studies identified silent mutations that are recur-
rent for specific cancer types and are possible drivers of
cancer20,23,35. However, to the best of our knowledge, no previous
study has performed a broad, quantitative comparison between
the predictive abilities of various mutation types on cancer
classification and progression. In this study, we explore silent and
non-silent mutations, aiming to quantify the predictive ability of
various types of silent mutations to perform cancer diagnosis and
to estimate patients’ survival probabilities over time, while
comparing it to the performance of non-silent mutations.
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RESULTS
Data processing and feature engineering
Genomic and clinical data of 9915 patients across 33 cancer types
were obtained from The Cancer Genome Atlas (TCGA)43. Data
characteristics are described in Fig. 1. The genomic data consisted
of detailed information about the patients’ DNA mutations while
the clinical data held personal information such as patients’ vital
status. These data were used to perform two tasks- patients’
cancer type classification and survival estimation. The full flow
chart of the study is depicted in Fig. 2.
As Fig. 2 indicates, the genomic data was split into five

categories. One category holds all non-silent mutations (amino-
acid-altering exonic mutations). The other four categories consist
of silent mutations from different regions within and adjacent to
the genes; synonymous mutations (exonic mutations that do not
directly affect the amino acids), mutations in introns, UTRs or
flanking regions. It is important to note that a genomic position is

considered mutated for a patient only if its nucleic acid content
differs between the patient’s cancerous and healthy tissue
samples.
In the next preprocessing step, for each category, the initial data

were used to create three kinds of features (Fig. 3), representing
different resolutions:

1. Low-resolution features—indicating the number of muta-
tions each patient had in an entire gene.

2. Medium-resolution features—indicating the number of
mutations each patient had in a 50-nucleotide-long gene
segment.

3. High-resolution features—binary features indicating
whether a specific mutation occurred or not, for each
patient.

Analyzing features from multiple resolution levels improves the
models’ results (Fig. 4a, Supplementary Table 1) and could also

Fig. 1 TCGA data characteristics. Description of the data retrieved from TCGA after initial preprocessing (discarding patients with missing
genomic or clinical data and patients with multiple genomic samples). Overall, 9915 patients across 33 cancer types are included in the study.
a Patient distribution across cancer types. b Sorting TCGA mutations to five categories for the study. The x-axis depicts the mutation
classification according to TCGA*. The y-axis depicts the number of mutations in the TCGA mutation categories. The legend depicts the five
categories to which the mutations are sorted for this study. *Note: In TCGA, Synonymous mutations are referred to as “Silent”. As the terms are
in fact not interchangeable (synonymous mutations are a subcategory of silent mutations) we replace the term “Silent” with “Synonymous”
where needed. c Mutation type distribution. The distribution includes all mutations of the 9915 patients. d Polymorphism type distribution.
Mutations could be either Single Nucleotide Polymorphisms (SNP), Deletions (DEL) or Insertions (INS). The distribution includes all mutations
of the 9915 patients, e Names and abbreviations of the 33 cancer types.
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identify specific mutations, regulatory regions, and entire genes
that are related to cancer fitness.
The features created for each of the five categories were used as

five separate datasets (referred to as single-mutation-type
datasets). A sixth dataset that combines features of all mutation
types (referred to as all features dataset) was also created. The six
datasets were used to perform cancer type diagnosis and patient
survival estimation. Evaluating the performance of models trained
on the six datasets enables us to compare the predictive ability of
features derived from silent and non-silent mutations (referred to
as silent features and non-silent features).

For all cancer types, the silent features improved cancer
classification in comparison to the null model
In the cancer type classification task, only cancer types with more
than 200 patients were included (a total of 19 types). A one-vs-all
(OVA), supervised learning model was created for every pair of
cancer type and dataset (see Methods). Specifically, each model
deployed the features in the dataset in order to predict whether
patients suffered from the specific cancer type (classified as
“Positive”) or suffered from any of the other types (classified as
“Negative”, since the model predicts only the existence of the
specific cancer). This section presents the results of this analysis.
As mentioned above, combining features from three levels of

resolutions led to the best performance of cancer type classifica-
tion. Figure 4b depicts the F1 scores (see Eq. (1) for the definition
of the F1 score) obtained by the OVA models by using features
from all levels of resolutions. The worst performing model, which
used flanking-region features in order to diagnose Glioblastoma
(GBM), was 1.9 folds better than the comparable null model (see
Methods for details about the null models). The best performing
model that used silent features was the intron model for
diagnosing Ovarian Serous Cystadenocarcinoma (OV), and its
F1 score was 20 folds higher than the comparable null model.
Even though the non-silent models generally achieved better
results than silent models, for several cancer types the perfor-
mances were substantially similar. For example, for detection of

Breast Invasive Carcinoma (BRCA), Liver Hepatocellular Carcinoma
(LIHC) and OV the performance difference between the non-silent
model and the intron model was less than 10%. For Sarcoma
(SARC) diagnosis, the non-silent model outperformed the UTR
model by a mere 2%, and the flank model was exceeded by only
12%. In addition, the all features models, which used both silent
and non-silent features, obtained higher F1 scores than the non-
silent models for 13 out of the 19 cancer types (denoted in red in
Fig. 4b) and for the other cancer types, the performances were
very similar.
To control for the number of features, the same analysis was

conducted using balanced datasets as well (see Methods) and the
results, shown in Supplementary Figure 1, accentuate the high
diagnostic ability of silent mutations; In the balanced version, the
Intron model outperformed the non-silent model for six cancer
types and the UTR and flank models were superior to the non-
silent model for two cancer types. Quite similarly to the
unbalanced datasets, combining silent and non-silent mutations
rather than solely using the latter improved classification results
for 12 out of 19 cancer types (keeping in mind that the all features
dataset had the same number of features as the non-silent dataset
in this analysis). All these findings support the hypothesis that
silent mutations do affect cancer mechanisms and hold additional
predictive information that could not be obtained from non-silent
mutations alone. Another confounder that could have influenced
the classification results is the total mutational burden. To ensure
that the improvement gained from adding silent features to non-
silent features is not mainly due to the increase in the total
mutational burden that occurs because of the addition, we
examined how the increase in total mutational burden is
correlated with the improvement in the F1 scores of the different
cancer types (Supplementary Fig. 2). Results demonstrate a
Pearson correlation of R= 0.38 (p= 0.1), indicating that only
14% of the change in the F1 score could be explained by the
increase in mutational burden. So, even though the mutational
burden does impact the results of classification, it is not the
leading factor.

Fig. 2 The flow chart of the study. Yellow boxes denote preprocessing steps performed for both tasks. Blue boxes denote steps performed
for the cancer type classification task and green boxes denote steps performed for the survival probability estimation task.
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Another interesting phenomenon demonstrated in Fig. 4b is the
considerable differences in the models’ ability to diagnose
different cancer types. While the majority of the BRCA, LGG
(Lower Grade Glioma) or COAD (Colon Adenocarcinoma) patients
were correctly diagnosed (by at least one model), KIRP (Kidney
Renal Papillary Cell Carcinoma) and STAD (Stomach Adenocarci-
noma) patients were often poorly diagnosed. To explore the origin
of this difference, we examined the similarity between genetic
profiles of the different cancer types and assessed whether
cancers with higher genetic similarity have higher misclassification
rates: For every pair of cancer types, the correlation between their
Jaccard similarity score and their misclassification rate was
inspected (see Methods). The results (Supplementary Fig. 3)
indicate a Spearman correlation coefficient of 0.72 (p-value
<10−28), suggesting the similarity between genetic profiles of
patients of different cancers is indeed a major cause for
misclassifications. However, this is not the only cause as it only
explains ~52% of the variance in their misclassification rate.
Another factor that could lead to misclassifications is high
mutation heterogeneity among patients of the same cancer type.

Silent features comprise 32% of the 10 most predictive
features for cancer classification, on average across cancer
types
Each OVA model provides an importance ranking for all its
features. Examining the ranking of silent features among all
features is another way to evaluate their predictive power.
Reviewing the feature importance ranking produced by the all
features models, silent features comprised nearly half of the top
ranked 100 features and a third of the top ranked 10 features
(chosen from hundreds of thousands of features), when averaged
across cancer types (Fig. 4c). However, the ranking of silent
features varied substantially between cancer types (Supplemen-
tary Tables 2,3); while there were only non-silent features in the
top 10 features of Lung Adenocarcinoma (LUAD), silent features
constituted eight out of the top 10 features of Cervical Squamous
Cell Carcinoma (CESC). Altogether, 18 out of the 19 cancer types
had at least one silent feature in their top 10 features list,
demonstrating their high significance. The analysis was repeated
with balanced datasets and the results were similar (Supplemen-
tary Fig. 4).
When evaluating the influence of the polymorphism type

(whether a mutation is an insertion, a deletion, or an SNP) on the
importance ranking, it was seen that the presence of deletions in
the highly ranked features was notably higher than their presence
in the initial datasets (Supplementary Figure 5). In fact, their
prevalence in the top 10 features was 2.9–6.8 folds higher than

their prevalence in the initial datasets (varying between the
different models). The presence of SNPs and insertions in the
highly ranked features was lower than their presence in the initial
datasets, with the exception of the UTR dataset, for which the
insertions were 1.3 folds more common in the top 10 features lists
than in the initial datasets, on average across cancer types.

A gene’s predictive power for cancer type classification varies
drastically when mutated by different types of mutations
Table 1 lists the 10 most predictive features of three of the 19
cancer types, as chosen by the all features models (Supplementary
Data 1 holds the full feature importance rankings for classifying all
cancer types). As seen in Table 1, some genes appeared in the top
10 ranked genes for multiple cancer types. MUC4 was in the top 10
list for 16 out of the 19 cancer types and TP53 was on 11 lists,
suggesting these genes could play an essential role in cancer
mechanisms. Interestingly, MUC4 was predictive of many cancer
types when it had either non-silent mutations or synonymous
mutations. This last finding raises the following fundamental
question: is the mutation type a determining factor in a gene’s
ability to predict a cancer type? Or perhaps different kinds of
alterations in various regions of the same gene would cause a
similar loss or gain of function, leading to the same outcomes on
cancer development?
To try and answer this question, the top 10 features list from

every single-mutation-type OVA model was examined (all features
models were excluded from this analysis). For each cancer, a top
10 genes list was derived from the top 10 features list (see
Methods). Figure 5 depicts a heatmap, presenting the number of
top 10 genes lists a gene has appeared in (19 meaning the gene
appeared in the top 10 genes lists of all cancer types, and zero
meaning it had appeared in none). As seen in Fig. 5, the number of
appearances a gene has in the top 10 lists changes dramatically
when it is mutated by mutations of different types. For example,
the aforementioned MUC4 gene appears in all 19 lists when it is
mutated by non-silent mutations or synonymous mutations, but
when it is mutated in the UTR, introns or flanks it loses its
predictive significance and does not appear in any of the lists. In
fact, it is evident that most genes are highly predictive of multiple
cancer types only when mutated by a specific mutation type. For
example, MUC16 is highly predictive of 15 cancer types, but only if
its mutations are synonymous. Altogether, it is evident that the
mutation type does influence the predicative power a gene has on
cancer diagnosis. Nonetheless, it can also be seen that for some
genes, such as AK2 or KTM2C, more than a single-mutation type
leads to high predictivity of multiple cancers. So, even though it

Fig. 3 A simplified illustration of the feature extraction process. a A representation of the initial genomic information. The X’s denote
mutations that two patients have in the same gene. The red rectangular frames represent the 50-nucleotide-long segments used for the
medium-resolution features. b An example of the features that would have been extracted for the intron dataset and the UTR dataset
according to the initial information shown in a.
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has been established that not all mutations cause the same effect,
perhaps some lead to more similar consequences than others.

Synonymous, non-silent and intronic mutations affect a
gene’s predictive power on cancer type classification in a
positively correlated manner
To assess whether some mutation types lead to similar
consequences, every cancer type was separately examined. It
was assumed that if two different mutation types have similar
effects on a gene, then the predictive power of that gene for a
specific cancer type would be similar when mutated by either one
of them. Therefore, the gene’s importance in both models should
be similar as well. Inferring to all genes, the gene importance
ranking of both models should be correlated.
For every cancer type, a Spearman correlation was performed

between every pair of gene ranking lists obtained from the five
single-mutation-type models (see “Methods”). The correlation
coefficients were then averaged across all cancer types (Supple-
mentary Fig. 6 depicts the correlations obtained for each cancer
type). The results (Fig. 6) indicate a significant 0.4 correlation
between the gene ranking lists of the non-silent and synonymous
models, a 0.32 correlation between the lists of the non-silent and

intron models and a correlation of 0.3 between the lists of the
synonymous and intron models. These three correlations obtained
a p-value smaller than 8.5×10−9. Correlations between all other
pairs of models were neither high nor significant. A possible
reason for these results is a common mechanism shared by the
different mutation types. For example, both synonymous and non-
silent mutations may affect co-translational folding, and both
synonymous and intronic mutations may influence splicing. Thus,
it is conceivable that these mutations could have similar
consequences over the gene’s expression or functionality.

Combining both silent and non-silent features enables the
detection of Gene Ontology terms that are not detected by
non-silent features alone
Enrichment analysis was performed in order to examine whether
genes that were considered important by the models are related
to specific biological functions and processes. The affiliation of
these genes to biological pathways could illuminate their
contribution to the development and progression of the disease.
The GOrilla44,45 and REVIGO46 tools were used to find non-
redundant Gene Ontology terms (GO terms) that are enriched for
any of the 19 cancer types. To find the terms, a gene ranking list

Fig. 4 Classification task results. a The F1 scores achieved in the cancer type classification task when using only high-resolution features,
high and medium-resolution features and all resolutions combined. The scores shown are the average F1 scores achieved by all features
models across all cancer types. b The F1 scores achieved by the OVA models per cancer type, using features from all levels of resolution. The x-
axis depicts the cancer types, the y-axis depicts the F1 scores achieved by the models. Each bar color denotes a different dataset. Cancer types
for which the all features model outperformed the non-silent model are denoted in red. See Fig. 1e for the unabbreviated names of the cancer
types. c Feature-type distribution of the all features dataset and of the top ranked features chosen in the classification task. Feature-type
distribution of the all features dataset* (top row), top ranked 100 features (middle row) and top ranked 10 features (bottom row). The feature
rankings were obtained from all features models classifying the 19 cancer types and were averaged across them. The legend (below the
image) indicates the enrichment in the amount of each feature-type in the top 10 features compared to its original amount in the all features
dataset (ratio between bottom and top row). *Note: The distribution depicted in the top row is the distribution of the all features dataset after
it underwent preprocessing relevant for the classification task.
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was used as input for the GOrilla tool (see Methods). As
demonstrated in Figs. 5, 6, different mutation types dramatically
change the predictive power of genes and thus inputting gene
rankings of the different models could illuminate different
biological pathways.
Figure 7 lists the GO terms that were enriched for the 19 cancer

types when using the gene rankings from all features models.
Examining these results, it can be seen that most GO terms that
are repeatedly enriched across cancer types are related to DNA-
protein bindings, to protein–protein bindings and to phosphor-
ylation. As expected, these terms are associated with various
regulation mechanisms of the gene expression process, such as
transcription (interactions between transcription factors and RNA
Polymerase, histone phosphorylation) or translation (attachment
of ribosomes to the DNA sequence).
As most research today encompasses mainly non-silent

mutations, it is interesting to test whether the GO terms that
were detected with the all features gene rankings are also
detected with gene rankings obtained from non-silent models.
Figure 8 depicts the number of cancer types for which a GO term
was found significantly enriched when using the gene rankings
from both models. It can be seen that most GO terms detected by
the all features models across various cancer types are consider-
ably less detected by the non-silent models. That is to say, adding

silent features to non-silent features caused the gene ranking to
encompass a broader biological significance and thus led to a
more comprehensive detection of GO terms. Nonetheless,
widening our prism involves a trade-off; 10 GO terms that were
found significant by the non-silent model were missed by the all
features model (in fact, eight of them were missed by all other
models, making them unique to the non-silent model. See
Supplementary Data 2). Among these terms are “endothelial cell
migration” which is related to angiogenesis47 (a known cancer
hallmark48), “negative regulation of morphogenesis of an epithe-
lium” which is indeed effected in carcinoma development49 and
“regulation of canonical Wnt signaling pathway” which is known
to be profoundly related to cell tumorigenesis50. These terms were
found significant only by the non-silent model and neither they
nor semantically similar terms were detected by any other model.
Even though the all features model missed these 10 terms, it did
detect the other 21 terms that were found significant by the non-
silent model, meaning that the majority of the information was
preserved. Additionally, it detected 90 other significant GO terms
that were not detected by the non-silent model. These include
terms related to histone modifications (“histone binding”, “histone
methyltransferase activity”, “histone acetyltransferase activity”),
terms related to phosphorylation (“transmembrane receptor
protein phosphatase activity”, “transmembrane receptor protein

Table 1. Examples of the top 10 ranked features for classifying various cancer types.

Cancer Type Rank Feature Feature Type Importance Gene

CESC 0 MUC4 Non_Silent Non-Silent 0.16 MUC4

1 TP53 Non_Silent Non-Silent 0.06 TP53

2 PABPC1 UTR UTR 0.04 PABPC1

3 BCR UTR UTR 0.03 BCR

4 NF1 5602.0 UTR UTR 0.01 NF1

5 RGPD3 0.0 Flank Flank 0.01 RGPD3

6 CSF1 UTR UTR 0.01 CSF1

7 MUC4 Synonymous Synonymous 0.01 MUC4

8 SRGAP3 UTR UTR 0.01 SRGAP3

9 CARD11 793.0 Intron Intron 0.01 CARD11

LIHC 0 MUC4 Non_Silent Non-Silent 0.25 MUC4

1 SET 210.0 Intron Intron 0.08 SET

2 PIK3CA Non_Silent Non-Silent 0.03 PIK3CA

3 ALB Intron Intron 0.02 ALB

4 240343-240343-chr5-Intron-DEL-T-T– Intron 0.02 SDHA

5 APC Non_Silent Non-Silent 0.01 APC

6 FAM46C UTR UTR 0.01 FAM46C

7 SRGAP3 UTR UTR 0.01 SRGAP3

8 MUC4 Synonymous Synonymous 0.01 MUC4

9 SEPT9 3283.0 Intron Intron 0.01 SEPT1

THCA 0 140753336-140753336-chr7-Missense_Mutation-SNP-A-A-T Non-Silent 0.18 BRAF

1 BRAF 378.0 Non_Silent Non-Silent 0.13 BRAF

2 TP53 Non_Silent Non-Silent 0.07 TP53

3 MUC4 Non_Silent Non-Silent 0.06 MUC4

4 NRAS 189.0 Non_Silent Non-Silent 0.02 NRAS

5 MUC4 Silent Synonymous 0.02 MUC4

6 533874-533874-chr11-Missense_Mutation-SNP-T-T-C Non-Silent 0.01 HRAS

7 BRAF Non_Silent Non-Silent 0.01 BRAF

8 TP53 26.0 Non_Silent Non-Silent 0.01 TP53

9 LRP1B Intron Intron 0.01 LRP1B

The top 10 feature rankings for CESC, LIHC, and THCA are shown. For each feature, the table holds its name, mutation type, its importance for classifying the
specific cancer type and the gene to which it is related. The rankings were obtained from all features models.
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kinase activity”) and terms related to the binding of nucleic acids
(“ATP binding”, “GDP binding”, “GTPase activator activity”). These
biological functions and processes are known to have implications
on tumorigenesis in various ways51–54 and none of them (or terms

with similar semantic meanings) were detected by the non-silent
model. We also performed pathway enrichment analysis using
REACTOME55 (see Methods) and the results indicate that all
features highly ranked genes are associated with multiple
pathways related to the regulation of DNA damage. Pathways
such as “Cell cycle checkpoints” (and specifically “G1/S DNA
Damage Checkpoints”, “G2/M DNA damage checkpoint” and “p53-
Dependent G1 DNA Damage Response”), “DNA double-strand
break repair”, “SUMOylation of DNA damage response and repair
proteins” and “TP53 Regulates Transcription of DNA Repair Genes”
were enriched. These pathways, or any semantically similar
pathways were not found enriched in the highly ranked genes
of the non-silent models and are known to be profoundly related
to tumorigenesis56,57. This further demonstrates the contribution
of silent mutations to tumorigenesis and highlights the need to
combine them in cancer research.
Examining the single-feature-type silent models (Supplemen-

tary Data 2), we can detect more GO terms that were unique to a
specific model. For example, the term “poly(A) binding” was found
significant only by the UTR model. This may suggest that poly(A)
binding genes tend to undergo regulation and thus also cancer
evolution through mutations in their 3’UTR which affect regulation
via the changes in the poly(A) tail. The poly(A) tail is related to
mRNA stability and translation regulation58 and alternative
polyadenylation processes are known to be related to tumorigen-
esis59. Another example for a term that is unique for a specific
model only is “O-glycan processing” which was found significant
only by the synonymous model. The O-glycans are oligosacchar-
ides that are a major component of mucins. The mucins function
as a protective layer of the epithelium and changes in their
O-glycans are related to tumorigenesis60,61.

Fig. 5 The number of top 10 ranked genes lists a gene had appeared in when it was mutated by a specific mutation type. The figure is
constructed of four panels for readability purposes and is equivalent to a single long panel. Each row in a panel refers to a gene and every
column in a panel refers to a mutation type. The results depicted in this figure were obtained from the five single-mutation-type models. Every
gene in TCGA that is ranked in the top 10 genes list for at least one cancer type is presented in the figure (the figure includes a total of 216
genes). A lighter shade indicates that the gene was in the top 10 lists of a few cancer types and a darker shade indicates that the gene was in the
top 10 lists of many cancer types. The minimum value possible is zero (the gene is not included in the top 10 genes list of any cancer type for
that particular model) and the maximum is 19 (the gene is included in the top 10 genes lists for all examined cancers for that particular model).

Fig. 6 The average Spearman correlation of every pair of gene
ranking lists of two models. For every cancer type, the correlation
between the gene ranking lists of every pair of models was
calculated. The average value across cancer types is shown. The
respective average p-values are denoted in parentheses. The colors
represent the correlation coefficient. A darker color indicates a
higher correlation.
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The intron model also detected many significant GO terms for
the various cancer types (80), only three of which (“cell adhesion”,
“biological adhesion” and “integral component of plasma mem-
brane”) are common with the non-silent model. Exactly half of the
terms (40) were also detected by the all features model. To
conclude, there is a trade-off in examining gene rankings obtained
from single-feature-type models and models that combine several
feature types. The all features model allows for a broader view of
biological pathways but also misses terms that are highly specific
of a certain mutation type. However, this analysis strongly
indicates that searching for biological significance by only
analyzing non-silent mutations is insufficient.
When examining the results depicted in Fig. 8, one must

consider the uneven number of features in both models; all
features models have almost seven times as many features as the
non-silent models. Because the gene ranking is derived from the
feature ranking it is bound to have some effect over the
enrichment results. However, it is not the only determinant; if
the silent features were unimportant for the model, adding them
(even many of them) would not cause such a difference in the
enrichment results. As the rank of a gene is derived from the rank
of its most important feature (see Methods), unimportant silent
features would have made a small impact on the gene ranking,
leading to similar gene rankings of all features and non-silent
models and thus to similar enrichment results. The fact that many
more GO terms were found enriched by all features models
demonstrates once again the importance of the silent features
and the importance of examining the whole picture.

All silent features models outperformed the null model in
predicting survival probabilities for more than 10 years after
an initial cancer diagnosis
The purpose of this analysis was to assess whether the survival
probabilities of patients could be estimated solely based on their
silent mutations, and to compare the estimations of the silent
features models to the estimations of the non-silent and all
features models. Similarly to the cancer type classification task, no
additional information, such as patient’s age, sex, race, or
treatment history was used. In this analysis, patients across all
33 cancer types were included and a Random Survival Forest
(RSF)62 algorithm was utilized (see Methods). Due to the high
computational requirements of the algorithm, only a subset of the
features was chosen from each of the six initial datasets. The
models were trained to predict patients’ survival probability at any
time after an initial cancer diagnosis. Then, the models were used
to estimate the survival probabilities of patients at 10 different
time points. The estimations were evaluated using the Area Under
the Curve (AUC)63 score and the results are presented in the
following section.
All the silent features models outperformed the null model for

more than 10 years after the initial diagnosis (Fig. 9a). Additionally,
the all features model achieved the highest AUC score for more
than nine years (3500 days) after the diagnosis. This demonstrates
that the addition of silent features to non-silent features is
superior to the use of non-silent features alone for survivability
prediction.

Fig. 7 GO terms enrichment for the 19 cancer types. Received by using the gene rankings of all features models. The figure is constructed of
two panels for readability purposes and is equivalent to a single long panel with 113 GO terms. Each row in a panel refers to a GO term and
every column in a panel refers to a cancer type. Yellow positions indicate non-redundant enriched GO terms with a p-value smaller than 0.001
and a q-value (FDR correction) smaller than 0.05. Blue positions indicate GO terms that are not enriched under these requirements.
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Silent features comprise 30% of the 10 most predictive
features for survival estimation
Reviewing the feature importance ranking produced by the all
features model for survival estimation, silent features comprised
more than half of the top ranked 100 features and a third of the
top ranked 10 features (Fig. 9a). Table 2 holds the 10 most
predictive features for survival estimation (and the full feature
importance list is available at Supplementary Data 3). Note that
due to technical reasons (see “Methods”) all patients are treated as
a single cohort for the survival estimation (the cancer type of each
patient is not considered by the model, only the patients’ genomic
features and vital status at the last examination). If we were to
perform a separate survival analysis for each cancer type as we did
in the classification task, it is probable that the number of highly
ranked silent mutations would vary significantly among the cancer
types as seen in the previous task (Supplementary Tables 2,3).
However, the fact that three of the 10 features that are most
predictive of the survivability of the entire cohort are silent (even
though thousands of non-silent features were available for the
model’s usage), is another indicator of the strong predictive ability
of silent mutations.

DISCUSSION
It has been suggested that silent mutations could affect
tumorigenesis and cancer cell fitness through changes in gene
expression regulation33,36–42. However, to the best of our knowl-
edge, this study provides the first quantitative assessment of the
predictive power of silent mutations over cancer classification and
prognosis in comparison to non-silent mutations.
The results demonstrate the predictive ability of silent muta-

tions to perform both the classification and survival estimation
tasks; we specifically show that for some cancer types, it is
comparable to the performances of non-silent mutations. More-
over, combining both non-silent and silent mutations achieved
the best classification results for 68% of the cancer types. When
using the same number of features, a combination of silent and
non-silent features was still superior to using only non-silent
features for 63% of cancer types. Even though the survival
estimation was not as comprehensive and precise as the
classification task (as the patients were treated as a single cohort),
the same conclusions are drawn from it; all silent feature models
surpassed the null model for over ten years after an initial
diagnosis and combining both silent and non-silent features led to
the best survival estimations for more than 9 years. Additionally,

Fig. 8 The number of cancer types for which a GO term was enriched using gene rankings from the non-silent models and all features
models. The figure is constructed of two panels for readability purposes and is equivalent to a single long panel with 123 GO terms. Each row
in a panel refers to a GO term and every column in a panel refers to a model from which the gene ranking list was used as input for the
GOrilla tool.
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silent features were highly ranked in both tasks, surpassing
thousands of non-silent features. In fact, considering that
numerous silent mutations (which affect gene expression regula-
tion) were found highly predictive by the models and since
protein functionality is quite robust to point mutations64, it is
probable that some of the highly predictive non-silent mutations
are such due to their impact on gene expression regulation rather
than their impact on protein functionality. A recent study that has
found similarities between the recurrency and distribution of
synonymous and missense mutations also supports this claim65.
As shown in Fig. 4b, the predictive power of silent mutations

varies significantly between cancer types. This could suggest that
some cancers are more affected by changes in genes’ functionality
caused mostly by non-silent mutations, while others are more
affected by changes in gene expression levels, caused by both
silent and non-silent mutations. The importance of different
mutation types also varies when examining specific genes and
pathways; the predictive power of a gene changes dramatically
when it is mutated by different types of mutations. This suggests
that a mutation that causes high predictivity changes the gene’s

functionality or regulation in a way that is optimal for the fitness of
the cancer.
Observing the feature rankings obtained by the different

models, it can be seen that low-resolution features are generally
ranked higher than high-resolution features (Supplementary Table
4), meaning that the number of mutations in an entire functional
region of a gene was usually a better predictor than a single
specific mutation. This phenomenon is noticed for both silent and
non-silent features. A comprehensive understanding of the
specific effect of all these mutations is a topic for future studies.
However, here we provide few initial clues (see “Methods” for
technical details regarding the analysis):
When examining the few silent high-resolution features that

were highly ranked, we did not find that they significantly impact
mRNA expression levels, splicing, or have other regulatory effects.
However, when examining the low-resolution silent features that
were highly ranked, we found that some contain genomic
positions that are assumed to cause a disruption of regulation if
mutated (Supplementary Table 5). For example, the amount of
intronic mutations in the TP53 gene was the second most

Fig. 9 Survival estimation results. a AUC scores achieved by the six RSF models for various times after the initial cancer diagnosis. The x-axis
depicts the days passed since the diagnosis and the y-axis depicts the AUC score achieved by the models. Each colored curve denotes a
different dataset. The horizontal line depicts the AUC score of a null model. b Feature-type distribution of the all features dataset and of the
top ranked features chosen in the survival probability estimation task. Feature-type distribution of the all features dataset* (top row), top
ranked 100 features (middle row) and top ranked 10 features (bottom row). The feature rankings were obtained from the all features model.
The legend indicates the enrichment in the amount of each feature-type in the top 10 features compared to its original amount in the all
features dataset (ratio between bottom and top row). *Note: The distribution depicted in the top row is the distribution of the all features
dataset after it underwent preprocessing relevant for the survival estimation task.

Table 2. The top 10 ranked features for estimating patients’ survival probability.

Rank Feature Feature type Importance Gene

0 TP53 Non_Silent Non_Silent 0.0142 TP53

1 MUC4 Non_Silent Non_Silent 0.0050 MUC4

2 57466291-57466292-chr12-Frame_Shift_Ins-INS—G Non_Silent 0.0049 GLI1

3 143147221-143147222-chr5-Intron-INS—C Intron 0.0035 ARHGAP26

4 140753336-140753336-chr7-Missense_Mutation-SNP-A-A-T Non_Silent 0.0032 BRAF

5 NKX2-1 Flank Flank 0.0031 NKX2-1

6 25743660-25743660-chr2-Missense_Mutation-SNP-T-T-G Non_Silent 0.0027 ASXL2

7 EGFR Non_Silent Non_Silent 0.0026 EGFR

8 92956452-92956452-chr15-Splice_Region-SNP-A-A-T Intron 0.0026 CHD2

9 35457937-35457938-chr6-Frame_Shift_Ins-INS—C Non_Silent 0.0026 FANCE

For each feature, the table holds its name, mutation type, its importance ranking, the gene to which it is related to and the gene’s product description. The
ranking was obtained from the all features model.

T. Gutman et al.

10

npj Genomic Medicine (2021)    67 Published in partnership with CEGMR, King Abdulaziz University



important feature in the all features model for detection of LUSC.
We found an SNP mutation in the intronic region, 17: 7673610: T
-> C, which annuls a splice site; this mutation was not highly
ranked by itself, possibly due to its infrequency (present in only
0.7% of LUSC patients). A recent study showed that possible driver
mutations could be missed if they are uncommon, even if they
have a significant effect35. The TP53 gene is maybe the most
known tumor suppressor66 and annulling of one of its splice sites
could affect tumorigenesis. The number of mutations in the 3′UTR
of the SRGAP3 gene was the fourth most important feature in the
all features model for diagnosing SARC. We found two deletions, 3:
8985094–8985095: AT and 3: 8985094–8985097: ATAT, that both
cause the formation of a new miRNA binding site. The first
mutation is considerably more common than the second (present
in 23.1% and 1.2% of SARC patients respectively) and was in fact
the most important mutation in the entire SRGAP3 gene
according to the model. The second mutation alone is ranked
appreciably lower, unsurprisingly given its low prevalence. The
SRGAP3 gene was also reported as a tumor suppressor gene67 and
an addition of a new miRNA binding site could be related to
tumorigenesis. The number of intronic mutations in the EGFR
gene was ranked the fourth most important feature by the all
features model diagnosing GBM. We found an insertion in the
intronic region, 7: 55020559–55020560: ACACACAC, which causes
a small but significant decrease of mRNA expression levels (0.7%).
This mutation is also uncommon as it is present in only 0.7% of
GBM patients. The mutations presented above affect different
aspects of the regulation process of known tumor suppressors
(TP53, SRGAP3) and oncogenes (EGFR), and could thus influence
tumorigenesis. Generally, it seems like there could be many
uncommon silent mutations with regulatory affects that are
missed for lack of statistical power. With the accumulation of
genomic data and improvement in computational methods, we
expect that more uncommon, silent mutations that affect
regulation and function will be identified. For the non-silent
highly ranked features, we also did not find high-resolution
features that directly affect gene expression regulation. We found
only two mutations in highly ranked low-resolution features that
form and revoke splice sites in the KRAS and the IDH1 genes
(Supplementary Table 6).
When examining the results of this study, one should keep in

mind some inherent biases of the data. For example, non-silent
mutations are naturally about 20 times more frequent than
synonymous mutations. Thus, even if the effect of a single
mutation is similar for both types, non-silent mutations are
expected to make a larger impact. Another bias originates from
the source of the data; the genomic data in this study is derived
using WES, which is highly biased towards exonic mutations. WES
sequences the genome’s coding regions, ignoring most non-
coding regions internal and external to genes68. In fact, an
astonishing 98% of the genome is overlooked when performing
WES, resulting in a narrow prism, heavily biased in favor of exonic
mutations. Great efforts are made these days in order to provide
data of whole genomes; The International Cancer Genome
Consortium (ICGC) and The Cancer Genome Atlas (TCGA) has
collaborated in the creation of the Pan-Cancer Analysis of Whole
Genomes (PCAWG) and offer the ability to perform meta-analyses
that includes silent mutations35,69–74. While it currently contains
significantly smaller amounts of data and therefore a weaker
statistical power compared to WES databases, it will undoubtably
become a significant milestone in deciphering the contribution of
silent mutations to cancer. An additional source of bias in our
analyses is the varying quantity of mutations in different genes:
The importance of a gene for the models is greatly influenced by
the number of mutations it has in TCGA. Specifically, there is an
average 0.72 Spearman correlation between the number of
mutations that genes have in TCGA and the gene rankings
obtained for the 19 cancer types (Supplementary Figure 7).

Nonetheless, even though this correlation is high and significant, it
also indicates that 52% of the variation in gene ranking could not
be explained by the amount of mutations per gene in TCGA. In
fact, some genes, such as HRAS, YOD1, VHL, and CEBPA, were
among the most important genes for several cancer types even
though their number of mutations in TCGA is very small compared
to other genes (ranging from the 4th to 16th percentile). We expect
that without these biases the significance of silent mutations in
cancer diagnosis and survival prediction will be even higher than
the results reported here.
Finally, this study provides a broad, statistical analysis of the

predictive abilities of silent and non-silent mutations of various
kinds. The results suggest that models based on silent mutations
could be very useful in practice. For example, for analyzing liquid
biopsy samples75,76 in order to perform cancer diagnosis or track
cancer prognosis. Nevertheless, extensive work is required in order
to expand and deepen our understanding of silent mutations and
their ramifications on cancer development. For example, specific
silent mutations that were chosen predictive by the models
should be further investigated in order to ascertain which
regulatory regions and mechanisms they impact. Novel databases
containing information of silent mutations such as PCAWG and
SynMICdb65 should be used to validate the conclusions of this
study. Driver silent mutations should be distinguished from
passenger silent mutations by assessing their impact on protein
expression and estimating their time of occurrence. Classification
should be performed on both healthy individuals and cancer
patients to understand the full diagnostic ability of silent
mutations. Classification should also be performed using genomic
information obtained from blood samples to see whether the
diagnostic ability is similar under these circumstances. Once
sufficient amounts of data are available, the survival analysis
should be performed again, separately for each cancer type. This is
expected to improve the survival estimations and to provide
greater comprehension of the silent and non-silent mutations that
affect survivability. Finally, it will make sense to validate some of
the mutations experimentally. All these research suggestions form
the tip of the iceberg in an understudied field, full of clinical
potential that is yet to be revealed.

METHODS
Data extraction
The genomic and clinical data of patients across 33 cancer types were
obtained from The Cancer Genome Atlas (TCGA)43. Patients with multiple
genomic samples and patients with no genomic samples or clinical records
were excluded, leaving a total of 9915 patients. The genomic data consists
of the patients’ mutation information. A genomic position is considered
mutated for a patient only if its nucleic acid content differs between the
patient’s cancerous and healthy tissue samples.

Feature engineering
Five categories of mutations were established:

1. Non-silent mutations (coding sequence mutations that cause a
change in the protein’s amino-acid sequence).

2. Synonymous mutations (coding sequence mutations that do not
cause a direct change in the protein’s amino-acid sequence).

3. Intronic mutations.
4. UTR mutations.
5. Flank mutations.

For each category, the genomic data obtained from TCGA was used to
create three kinds of features, representing three levels of resolution (Fig.
3): low-resolution features, medium-resolution features, and high-
resolution features. Low-resolution features count the number of mutations
that appear in an entire gene. Medium-resolution features count the
number of mutations that appear in a specific segment of a gene. Each
gene is assembled from the 5′UTR, introns, exons and the 3′UTR. The
flanking regions are adjacent to the gene from both ends. A gene is split to
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50-nucleotide long segments and the medium-resolution features count
the number of mutations in each segment. Two additional features count
the number of mutations in the 5′ flanking regions (upstream to the gene)
and in the 3′ flanking region (downstream to the gene). High-resolution
features indicate whether a specific mutation occurred in a specific location
in the gene (For example, an A to G SNP would be considered a different
mutation than an A to C SNP, even if it had occurred in the same position).
If the specific mutation occurred only for a single patient in the TCGA
database, its respective feature was discarded. The features of each
category were used as a separate dataset and they were also combined in
order to create the sixth dataset- the all features dataset.

One vs. all classifiers
One vs. all classifiers were chosen to perform the classification task. As our
aim was to conduct a broad, quantitative comparison between various
types of mutations, we chose a classic, robust, measurable, and
interpretable supervised model, to lay the grounds for a fair comparison.
Choosing multiple OVA classifiers, as opposed to a single multiclass
classifier, enables us to easily explore which features are more closely
related to which cancer type. Additionally, OVA classifiers are expected to
perform better than a single multiclass classifier (as predicting a positive or
negative verdict for a single cancer type is an easier task than predicting
one cancer type out of 19 possibilities). Thus, if a doctor already suspects a
certain cancer type, the suspicions could be validated by the relevant
model with greater certainty.
To ensure enough training examples, only cancer types with more than

200 patients were included in the analysis, resulting in 8,364 patients
spanning 19 cancer types. 114 OVA classifiers were generated and trained,
one for each possible combination of cancer type (19) and dataset (6). The
objective of each classifier was to distinguish a single cancer type from the
rest. Specifically, predicting a “Positive” or “Negative” label for a particular
cancer type. The OVA classifiers were constructed using the LightGBM77

python package. For each classifier, the patients were randomly split into
stratified training and testing sets (0.7/0.3 respectively) for 10 times. A null
classifier was also generated using scikit-learn’s Dummy Classifier78 for
each cancer type; the null classifier randomly assigned labels to the test-set
patients, only considering the label distribution of the training-set patients.
The classifiers’ performance was evaluated with Accuracy, Recall, Precision,
and F1 scores (Fig. 4b, Supplementary Table 7). Performances were
averaged across the 10 splits. Precision is the fraction of correctly identified
positive patients out of all patients that were identified as positive by the
model. The recall is the fraction of correctly identified positive patients out
of all the patients that are truly positive for the disease. The F1 score is a
harmonic mean of precision and recall, taking both measures into account:

F1 ¼ 2 � P � R
P þ R

(1)

where P is Precision and R is Recall. The F1 score ranges from zero to one,
one indicating perfect Precision and Recall scores and zero indicating that
either the Precision or Recall are also zero.

Gene ranking
Each classifier provides a feature ranking. First, features with zero
importance were discarded. Then, a gene ranking was obtained by
assigning the features (that can be mutations, segments, or entire genes)
to the gene they are related to while keeping the original order. Finally,
only the highest rank of each gene was kept. The most important gene is
ranked “0” and as the numbers increase the importance decreases.

Spearman correlation between gene rankings
Spearman correlations were conducted between gene rankings of pairs of
classifiers detecting the same cancer type (Fig. 6). For every cancer type:

1. The all features classifier was excluded.
2. For each of the single-mutation-type classifiers, a gene ranking list

was created as described above.
3. Every combination of two classifiers was examined; genes that were

not in the intersection of both gene ranking lists were discarded.
Spearman correlation was calculated between the revised gene
ranking lists.

The results were averaged across the 19 cancer types.

Gene Ontology enrichment
Enriched GO terms (molecular functions, biological processes and cellular
components) were detected for the 19 cancer types using the gene
rankings obtained from the different models. For every combination of
cancer type and model:

1. The gene ranking list was created as described above.
2. The gene ranking list was used as input to the GOrilla tool44,45. The

tool used maximum Hyper Geometric (mHG) statistics in order to
report GO terms that are enriched in the top of the list compared to
the rest of the list. The threshold for splitting the genes list to “top”
and “rest” is dynamic and was chosen for each GO term individually
by the tool.

3. The yielded terms are enriched with a p-value smaller than 0.001
and have passed an FDR correction of 0.05.

4. The yielded terms were used as input to the REVIGO46 tool, which
removed terms with a semantic similarity score higher than 0.7. The
similarity measure used was “SimRel”.

The enriched GO terms detected for the 19 cancer types when using the
all features gene ranking are detailed in Fig. 7. A comparison between the
GO terms that are detected when using the all features gene ranking or
the non-silent gene ranking is seen in Fig. 8.

Pathway enrichment
Enriched pathways were detected for the 19 cancer types using the gene
rankings obtained from the different models. For every combination of
cancer type and model:

1. The gene ranking list was created as described above.
2. The highest ranked 50 genes in the list were used as input to the

REACTOME pathway enrichment analysis tool55. The number of
genes was chosen considering both statistical power and the total
length of the gene list.

3. The REACTOME yielded enriched pathways. An enriched pathway is
a pathway for which the number of genes in the provided list that is
associated to it is larger than expected by chance, considering both
the total amount of genes known to be associated with the pathway
and the number of gene in our list. The yielded pathways obtained
an FDR value that is smaller than 0.01.

Mutational burden
The analysis presented in Supplementary Figure 2 was conducted to
evaluate whether the improvement in classification that was gained from
adding silent features to non-silent features was obtained because of the
additional mutational burden. For each cancer type:

1. The percent of improvement gained from adding silent features was
calculated as shown in Eq. (2):

F1improvement ¼ F1all�features � F1non�silent

F1non�silent
� 100 (2)

where F1all�features is the F1 score of the all features model of the
current cancer type.

2. The percent of mutational burden gained from adding silent
features (an average across patients) was calculated as shown in Eq.
(3):

MBincrease ¼
Pn

i¼1
MBi;all�features�MBi;non�silent

MBi;non�silent
� 100

� �

n
(3)

Where MBi;all�features is the mutational burden (number of mutations) that
the ith patient in the all features dataset has and n is the number of
patients of the current cancer type.
We then examined the correlation between F1improvement and MBincrease

among the cancer types.

Spearman correlation between Jaccard similarity scores and
misclassification rates
A Spearman correlation was conducted in order to evaluate the influence
of genetic profile similarity on misclassification rates among pairs of cancer
types. For this analysis binary versions of the features were used, meaning
that rather than indicating how many mutations occur in genes and
segments the features indicate whether any mutations had occurred or not
(high-resolution features were originally binary and thus do not change).
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Calculating the Jaccard similarity scores for every pair of cancer types was
performed in the following manner:

1. 100 patients were randomly selected from each type, forming two
equally sized groups of patients (groups A and B).

2. A Jaccard score was calculated for every patient in the group A with
every patient in group B. The average score was considered the
Jaccard score between the groups. The calculation was performed
as shown in Eq. (4):

JA;B ¼
P100

a¼1

P100
b¼1

Fa \F
bj j

Faj j þ Fbj j � Fa \F
bj j

100 � 100
(4)

Where Fa is the binary feature set of patient a from group A and Fb is
the binary feature set of patient b from group B. Faj j is the number
of features equal to “1” for patient a from group A (indicating all
positions, segments and entire genes that were mutated). JA;B is the
average Jaccard similarity score between group A and group B.

3. The random sampling process was repeated 5 times. The final
Jaccard score for a pair of cancer types was the average of the five
repetitions.

Calculating the mistake rate for every pair of cancer types was
performed in the following manner:

1. 250 patients were randomly selected from each type (groups A
and B).

2. The patients were stratified split to train and test sets (the training-
set contained 70% of patients from each cancer types).

3. An OVA model was fit on the training-set patients.
4. The model was used to classify the test-set patients to one of the

two cancer types.
5. The misclassification rate between the groups was calculated as

shown in Eq. (5):

MA;B ¼ ABj j þ BAj j
AAj j þ BBj j þ ABj j þ BAj j (5)

Where ABj j is the number of group-A-patients that were classified as
group-B-patients. MA,B is the misclassification rate between groups
A and B.

6. The random sampling process was repeated 10 times. The
misclassification rate between the pair of cancer types was the
average of the 10 repetitions.

Balanced datasets
To evaluate whether the results are significantly influenced by the
imbalance between the mutation categories, balanced datasets were
created for the two analyses depicted in Fig. 4b and c. To maintain the
balance, only high-resolution features were used in these datasets. Six
same-size datasets were needed for the balanced version of Fig. 4b. For
every cancer type:

1. The patients were split to two equally sized groups. The first for
feature selection and creation of the balanced datasets and the
second for training models on the balanced datasets and evaluating
the results.

2. For creating the balanced datasets six OVA models (one per dataset)
were trained using the first group of patients and all their features
were ranked. For every model, the highest ranked 8,296 features
were chosen as the new dataset. This step resulted in six balanced
datasets per cancer type, each containing 8,296 features. (The
number of features was derived from the number of features in the
smallest category, the flanking region mutations).

3. The six OVA models (one per dataset) were trained using the second
group of patients and the balanced datasets. The models were
trained for 10 rounds, whereby on each round a stratified random
0.7/0.3 split was performed. The performance was evaluated using
the same measures as the imbalanced version of this analysis.

For the balanced version of Fig. 4c an all features dataset with an
internal balance between mutation types was needed. For every cancer
type, the 8,296 features that were chosen from each of the five mutation
categories were combined in order to create the internally balanced all
features dataset. Then, an OVA model was trained using the balanced
dataset and the second group of patients. The model was trained for 10
rounds, whereby on each round a stratified random 0.7/0.3 split was

performed. The mutation-types distribution among the top 10 and top 100
features chosen by the classifiers were averaged across cancer types.

Random survival forest models
A random survival forest model is an adaptation of the random forest
model, modified to perform survival estimations62. Its performance is
comparable and sometimes better than classic survival models such as Cox
regression79–82. The RSF is a non-parametric data-driven approach that is
independent of model assumptions. It was chosen for our survival
estimation task because it is known to perform well specifically with high-
dimensional datasets, compared to traditional approaches (for example,
Cox regression relies on several assumptions that are usually violated in
high-dimensional datasets)83.
Patients spanning all 33 cancer types were included in this analysis (as

this is not a classification task and there was no need to remove small
cohorts). Patients with no available information after the date of diagnosis
and patients who passed away less than 20 days after their diagnosis were
not included. Overall, 9,551 patients were incorporated in the analysis. The
patients are treated as a single cohort and the model is oblivious of their
cancer type. Unlike the classification task, this analysis is not performed
separately for each cancer type because it requires more data (e.g. while
the OVA model that diagnose BRCA trains on both BRCA-positive and
BRCA-negative patients, the RSF model that estimates the survival of BRCA
patients only trains on BRCA-positive patients while aiming at estimating
an entire survival curve, and thus has a much smaller patient cohort to
train on). The vital status (alive or deceased) and appropriate time stamp
were extracted from the clinical data and used as labels. A subset of
features was chosen for each mutation category- all low-resolution
features and 5,000 high-resolution features. The high-resolution features
were selected based on mutation prevalence in TCGA; the features
corresponding to the 5,000 most prevalent mutations were selected.
A model was generated and trained for each one of the six datasets

(non-silent, UTR, intron, synonymous, flank and all features). The objective
of a model was to predict the probability of a patient to survive on a given
time after its initial cancer diagnosis. The models were constructed using
the Pysurvival84 Python package. 60 trees were grown with a maximal
depth of 32 splits. At each split, Kaplan–Meier estimators and the log-rank
test were used to find the feature that is the best separator. For each
model, the patients were randomly split into training and testing sets (0.7/
0.3 respectively). The model was trained using the training-set patients and
then tested on the patients of the test set, which the model has never
encountered before. To avoid biases introduced by a specific split, the
process was repeated five times and the survival probability estimation is
the average of the 5 repetitions.
The models’ performances on the test set patients were evaluated using

the Area Under the Curve (AUC) score for various times (100, 500, 1000,
1500, 2000, 2500, 3000, 3500, 4000, and 4500 days) after the initial cancer
diagnosis. After 4500 days the data is scarce, as most patients have
stopped attending follow-ups or have passed away. Thus, the analysis was
terminated at this point.

Predicting the regulatory effects of highly ranked features
Predictive models were used to assess the influence of mutations spanned
by the top ten ranked features of each cancer type (whether they are of
low, medium or high resolution) on splice sites (using SpliceAI85), miRNA
binding sites (using cnnMirTarget86), mRNA expression levels (using
Xpresso87), polyadenylation (using SANPolyA88), 3D folding (using Akita89)
and several protein-mRNA binding sites (using DeepCLIP90).

Approval for study of human subjects
The need for Institutional Review Board Approval at our institution (Tel
Aviv University) was waived for this study as all data used for this project
had previously been generated as part of The Cancer Genome Atlas Project
and none of the results reported in this manuscript can be used to identify
individual patients.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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