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Abstract 
Motivation: Regulation of the amount of protein that is synthesized from genes has proved to be a 

serious challenge in terms of analysis and prediction, and in terms of engineering and optimization, 

due to the large diversity in expression machinery across species. 

Results: To address this challenge, we developed a methodology and a software tool 

(ChimeraUGEM) for predicting gene expression as well as adapting the coding sequence of a target 

gene to any host organism. We demonstrate these methods by predicting protein levels in 7 organ-

isms, in 7 human tissues, and by increasing in vivo the expression of a synthetic gene up to 26-fold in 

the single-cell green alga C. reinhardtii. The underlying model is designed to capture sequence pat-

terns and regulatory signals with minimal prior knowledge on the host organism and can be applied to 

a multitude of species and applications. 

Availability: Source code (MATLAB, C) and binaries are freely available for download for non-

commercial use at http://www.cs.tau.ac.il/~tamirtul/ChimeraUGEM, and supported on macOS, Linux, 

and Windows. 
Contact: tamirtul@.tauex.tau.ac.il (TT) Orcid: 0000-0003-4194-7068 and iftachy@tauex.tau.ac.il 

(IY) Orcid: 0000-0003-0177-0624 

Supplementary information: Supplementary methods and figures are available at Bioinformatics 

online. Additional documentation is available online at 

http://www.cs.tau.ac.il/~tamirtul/ChimeraUGEM. 

 

1 Introduction 

Analysis and engineering of gene expression is at the core of the understat-

ing of various biomedical topics (Alberts et al., 2005), and the development 

and synthesis of many biomedical and biotechnological products, such as 

chemicals, metabolites, drugs and vaccines (Wurm, 2004; Terpe, 2006; Ferrer-

Miralles et al., 2009; Demain and Vaishnav, 2009; Frenzel et al., 2013). A 

number of tools for modeling expression based on codon usage measures, 

such as the Codon Adaptation Index (CAI) (Sharp and Li, 1987), have been 

developed in recent years (Peden, 2000; Wu et al., 2005; Puigbò et al., 2008; 

Gaspar et al., 2012). 

However, this approach neglects many additional coding sequence-related 

factors that may affect gene expression regulation, such as tRNA availability 

(Reis et al., 2004; Welch et al., 2009; Tuller et al., 2011; Dana and Tuller, 

2014b), mRNA structure (Kudla et al., 2009; Tuller, Waldman, et al., 2010; 

Goodman et al., 2013), translation initiation (Kozak, 1999; Zur and Tuller, 

2013; Chu et al., 2014; Tuller and Zur, 2015), ribosomal traffic (Tuller, Car-

mi, et al., 2010), co-translational folding (Kimchi-Sarfaty et al., 2007; Kramer 

et al., 2009; Zhang et al., 2009), transcription factor binding sites (Stergachis 

et al., 2013), transcription elongation speed (Churchman and Weissman, 

2011; Xia, 1996; Cohen et al., 2018), splicing signals (Barash et al., 2010; 

Zafrir and Tuller, 2015; Weiner et al., 2018), and ribosome stalling motifs 

(Stadler and Fire, 2011; Li et al., 2012; Sabi and Tuller, 2015, 2017), to name 

http://www.cs.tau.ac.il/~tamirtul/ChimeraUGEM
mailto:tamirtul@.tauex.tau.ac.il
https://orcid.org/0000-0003-4194-7068
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a few. Typically, the 'codes' of these different mechanisms are not reflected in 

a modular manner and codes of various different mechanisms may appear in 

the same region (see, for example, (Tuller and Zur, 2015)); in addition, these 

gene expression codes are organism-specific and novel mechanisms of genes 

expression regulation are frequently discovered even in well-studied model 

organisms (Yordanova et al., 2018). Thus, a generic model-based approach 

that captures the biophysics of all these aspects does not exist and developing 

a unified model for all currently engineered organisms is currently far from 

being feasible. 

Recently, an unsupervised, high-dimensional and model-free approach for 

analyzing the coding sequence has been proposed and named Chimera (Zur 

and Tuller, 2015). Chimera has been successfully applied to gene expression 

prediction based on the average repetitive substring statistic (ChimeraARS) 

(Zur and Tuller, 2015; Ben-Yehezkel et al., 2015; Zafrir and Tuller, 2017), 

and to engineering (ChimeraMap) (Weiner et al., 2018). Here, we significant-

ly extend the two algorithms for analysis and design, provide an efficient and 

accessible software tool based on this approach – ChimeraUGEM (unsuper-

vised gene expression modeling) – and experimentally demonstrate its ap-

plicability. 

2 Methods 

2.1 Chimera algorithms 

2.1.1 ChimeraARS 

The ChimeraARS (cARS) model measures the average repetitive substring 

(ARS) length in a given sequence. That is, for each position in the sequence it 

detects the longest substring that starts at that position and also appears in a 

set of reference sequences and returns the average substring length across all 

positions (Algorithm S1). The measure assumes that if longer repetitive sub-

strings tend to appear in the sequence, this suggests that it is has evolved to 

become more optimized to the organism’s gene expression machinery, and 

thus it is probably more highly expressed (Zur and Tuller, 2015). Hence, the 

Chimera approach is aimed at dealing with all the challenges mentioned above 

by analyzing the distribution of sub-sequences (and consequently the various 

codes) that appear in the host coding regions in an unsupervised manner and 

without prior biophysical models. 

Specifically, the implementation here is based on suffix arrays, so that the 

longest substrings can be searched for all positions in the target in 

O(|T|2log|R|) time (|T| being the length of the target protein, and |R| being the 

total length of the reference sequences). The algorithm is alphabet-agnostic, 

however for the purpose of analyzing coding sequences, three alphabets are 

commonly used: nucleotides, amino acids, and codons (64 nucleotide triplets). 

2.1.2 ChimeraMap 

The ChimeraMap (cMap) algorithm adapts a target gene to a host according 

to the same principles, by encoding its amino acids using synonymous codon 

blocks that appear in endogenous host genes. Moreover, the algorithm mini-

mizes the number of blocks that are required to construct the sequence (Zur 

and Tuller, 2015). This strategy can be applied to any sequenced host genome, 

omitting the need for any additional information other than gene annotations. 

The ChimeraMap algorithm searches for the largest common prefix be-

tween the amino acid sequence of the target protein and all proteins in the 

reference sequence. Then, the corresponding nucleotide sequence (encoding 

the same amino acid substring) is copied from the reference to encode a block 

in the target protein. The search is repeated for the suffix beginning at the end 

of the last found block of the target amino acid sequence, until the complete 

target protein is encoded. When a substring appears multiple times in the 

reference, the most frequent nucleotide substring is used (Algorithm S2). Zur 

and Tuller have shown that the ChimeraMap algorithm can be computed in 

linear time using suffix trees (Zur and Tuller, 2015). Specifically, the imple-

mentation here is based on suffix arrays, which can be searched in O(|T|log|R|) 

time. 

2.2 Position-specific Chimera algorithms 

Some regulatory signals are expected to appear in specific regions of the 

gene. For example, initiation-related signals will tend to appear in its 5’-end, 

as well as codes that may relate to ribosome traffic regulation, mRNA 

transport and early stages of protein folding (Tuller and Zur, 2015); termina-

tion-related codes will tend to appear in the 3’-end of the gene, signals related 

to splicing or co-translational folding may also appear at certain distances 

from the ends, etc. We therefore propose the Position-Specific ChimeraARS 

(PScARS) and Position-Specific ChimeraMap (PScMap), that consider both 

the size of the detected substring and its location within host genes. 

The algorithm parameters include a search window that defines the maxi-

mal allowed distance between the position in the analyzed gene, and the posi-

tion of the substring in the host (measured from the 5’- and 3’-ends). The 

selected substring is the longest that meets these constraints. Figure 1 demon-

strates the procedure for the PScMap algorithm, however the depicted sub-

string search method is common to both PScMap and PScARS. 

Note, that the longest found substrings must begin within the search win-

dow, but may extend outside of the window bounds. A bounded variant of the 

algorithm is given in Algorithm S3. 

 
Fig. 1: Position-Specific ChimeraMap. (A) Codon blocks (colored squares) from the host genome are selected to encode the target. In this example, the selected blocks are the largest 

ones that are within a search window of 3 codons around the location of insertion into the target protein (distance from position denoted next to each arrow). For example, the first block 

is selected from the 5’-end of gene 2 although a longer block exists downstream the same gene and outside of the search window. (B) Backward search diagram, where the search win-

dow is positioned in relation to the 3’-end. The diagram depicts the completion of the optimization from panel (A), where forward search may select sub-optimal (smaller) blocks.
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2.2.1 Position-Specific ChimeraARS 

The PScARS algorithm (Algorithm 1) operates similarly to the cARS algo-

rithm described in the section 2.1.1, with the exception that in each iteration 

the complete suffix array is first reduced to suffixes that start within the search 

window in their respective genes. The search window is defined based on the 

current position in the target protein and can be computed in relation to the 

beginning of the sequence (Figure 1A) and / or the ending of the sequence 

(Figure 1B). Reduction of the suffix array is calculated in O(log|R|) using an 

array denoting the order of sorted suffix positions in relation to the beginning 

of their respective genes (and an additional array, where positions were calcu-

lated in relation to the ending of respective genes). Positions in relation to 

gene start are defined by the series             where 1 denotes the first 

position, while positions in relation to gene end are defined by the series 

                   where –1 denotes the last position in the gene. 
 

Algorithm 1: Position-Specific ChimeraARS 

Procedure: PScARS 

Input:  target # target sequence (any alphabet)  

  suf_arr # suffix array for the reference sequences 

  pos_arr_s # suffix position array, relative to gene start 

  pos_arr_e # suffix position array, relative to gene end 

  ref # reference sequences (same alphabet as target) 

  window # search window definition 

Output: ARS 

n  size(target) 

subs_lens  array[n] 

for pos from 1 to n: 

 suf_arr_slice  SelectWindow(suf_arr, pos_arr_s, pos_arr_e, window, 

    pos, pos-n-1) 

 block  LongestPrefix(target[pos:n], suf_arr_slice, ref) 

 subs_lens[pos]  size(block) 

 

ARS  mean(subs_lens) 

 

Procedure: SelectWindow 

Input:  suf_arr, pos_arr_s, pos_arr_e, win 

  s,e   # current position in relation to target protein start/end 

Output:  suf_arr_slice 

valid  empty set 

win_coo  [0, 0]  # window coordinates 

if win.from_start 

 # update window coordinates relative to gene start 

 win_coo[1]  ceil(s + win.center - win.size/2) 

 win_coo[2]  ceil(s + win.center + win.size/2 – 1) 

 L  BinarySearch(win_coo[1], pos_arr_s, suf_arr) 

 R  BinarySearch(win_coo[2], pos_arr_s, suf_arr) - 1 

 add pos_arr_s[L:R] to valid 

if win.from_end 

 # update window coordinates relative to gene end 

 win_coo[1]  ceil(e + win.center – win.size/2) 

 win_coo[2]  ceil(e + win.center + win.size/2 – 1) 

 L  BinarySearch(win_coo[1], pos_arr_e, suf_arr) 

 R  BinarySearch(win_coo[2], pos_arr_e, suf_arr) - 1 

 add pos_arr_e[L:R] to valid 

 

suf_arr_slice  suf_arr[valid] 

 

Procedure: LongestPrefix 

Input:  key, suf_arr, ref 

Output:  block_aa 

idx  BinarySearch(key, suf_arr, ref)  # first position in the array that is 

greater than the key 

block_aa  the largest string among  

 CommonPrefix(key, suf_arr[idx-1], ref)  

 and CommonPrefix(key, suf_arr[idx], ref) 

 

2.2.2 Position-Specific ChimeraMap 

The PScMap algorithm (Algorithm 2, Figure 1A-B) operates similarly to 

the cMap algorithm described in section 2.1.2 and has been modified to select 

a search window as described for PScARS. 

2.3 Implementation in ChimeraUGEM 

The ChimeraUGEM software includes implementations of all aforemen-

tioned Chimera algorithms, and the widely-used CAI model. The software 

was written in MATLAB, with some parts implemented in C for efficiency. 

Binaries are provided for macOS, Linux, and Windows. 
 

Algorithm 2: Position-Specific ChimeraMap 

Procedure: PScMap 

Input: target, pos_arr_s, pos_arr_e, window 

  ref_aa # reference amino acid sequences 

  ref_nt # reference nucleotide sequences 

  suf_arr # suffix array for the amino acids reference 

Output:  opt_seq 

n  size(target) 

pos  1 

opt_seq  empty string 

while pos <= n 

 suf_arr_slice  SelectWindow(suf_arr, pos_arr_s, pos_arr_e, window, 

   pos, pos-n-1) 

 block_aa  LongestPrefix(target[pos:n], suf_arr_slice, ref_aa) 

 block_nt  MostFreqPrefix(block_aa, suf_arr_slice, ref_aa, ref_nt) 

 append block_nt to opt_seq 

 pos  pos + block_size 

 

Procedure: MostFreqPrefix 

Input:  suf_arr, ref_aa, ref_nt, block_aa 

Output:  block_nt 

L  BinarySearch(block_aa, suf_arr, ref_aa) 

key  block_aa + ‘~’   # ordered last of strings with the prefix in block_aa 

R  BinarySearch(key, suf_arr, ref_aa) 

n  3*size(key)-1 

count  empty hash table 

for i from L to R-1 

 pos  3*(suf_arr[i]-1) + 1  # position in nucleotide sequence 

 key  ref_nt[pos:pos+n] 

 increment count[key] 

 

block_nt  argmax(count)  # tie-break: first in lexicographic order 

 

2.4 Reference filtering based on sequence similarity 

When the reference set contains sequences that are very similar to the target 

sequence, this may result in biased Chimera output. For example, if the most 

similar reference and the target are identical, cARS will be           and 

thus provide little information on the underlying regulatory signals. If the 

reference set contains close homologs the cARS score will be biased, however 

to a lesser extent. To alleviate this, we employed 3 heuristics in our analyses 

and in ChimeraUGEM. In the first step, identical sequences may be discarded 

either from the reference set (for a particular target while it is analyzed) or 
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from the list of targets. Next, the maximal size for a shared sequence block 

between the target and some reference can be used to filter out the reference 

(max_len). When the program encounters a block that is larger than max_len, 

the block is discarded, and the reference will be flagged as non-relevant to that 

particular target for all future searches. Third, the fraction of positions in the 

target protein that were associated with the same reference sequence can be 

limited (max_pos). When the program detects that some reference exceeded 

the allowed fraction, the reference will be flagged as non-relevant to that 

particular target and these positions will be re-calculated (i.e., new sequence 

blocks will be assigned to them). 

The parameters utilized in all analyses here were 40 codons for max_len 

and 50% for max_pos. However, the sensitivity of these filters should be 

context-dependent and can be user-defined in ChimeraUGEM. For example, 

including orthologous sequences of the target protein, that may exist in the 

host organism, as reference for designing a plasmid could have a desirable 

effect for some purposes. 

2.5 Codon Adaptation Index 

The Codon Adaptation Index (CAI) (Sharp and Li, 1987) is one of the most 

widely used models for measuring codon usage bias and optimizing the cod-

ing sequence. First, given a reference set of coding sequences, the frequencies 

of all codons are computed        
   (we included in our analyses stop codons 

and amino acids with no degeneracy, that were originally excluded in Sharp 

and Li). Next, for each amino acid, the most frequent synonymous codon is 

regarded as the most optimal and its weight is set to 1, while the rest of the 

synonymous codons are scaled with respect to the optimal codon. Finally, 

given a target sequence, its CAI score is the geometric mean of codon weights 

across all its positions. This may be formulated as         
   
    

     
, 

where |T| is the length of the target sequence, and                so that 

       , i.e. the set of synonymous codons that encode the same amino acid 

as the  -th codon. In ChimeraUGEM, CAI is calculated by default when an 

analysis of a sequence (in NT alphabet) is performed. The user may also pro-

vide alternative codon weights (e.g., weights derived from a tRNA Adaptation 

Index model (Reis et al., 2004; Sabi et al., 2017), or Typical Decoding Rates 

(Dana and Tuller, 2014a)) that will be used to compute the geometric mean of 

the target sequence. Codon optimization, according to this model, consists of 

selecting the synonymous codon with the highest weight (i.e., highest fre-

quency, in the case of CAI) at every position within user-specified regions. 

2.6 Sequences and gene expression data 

We analyzed genome-wide expression levels in 7 organisms (A. thaliana, 

C. elegans, C. reinhardtii, D. melanogaster, E. coli, H. sapiens, S. cerevisiae) 

using the models described in the previous sections. Gene sequences were 

obtained from Ensembl (Zerbino et al., 2018) (CDS fasta files from Ensembl 

release 93 and Ensembl Genomes 40). Protein abundance datasets were down-

loaded from PaxDB (Wang et al., 2015) (GPM datasets, accessed in August 

2018) and (Leufken et al., 2017) (for C. reinhardtii, see also Table S1). In 

addition, integrated tissue-specific human datasets were downloaded from 

PaxDB. In order to reduce noise that might originate from similarity between 

sequences in the reference set when calculating cARS scores, we kept the 

sequence of the longest isoform from each set of alternative splice variants. 

2.7 Heterologous gene expression 

We designed a synthetic gene using PScMap and expressed it in 

Chlamydomonas reinhardtii while comparing the results to cMap- and CAI-

optimized variants of the same gene (Supplementary Methods). DNA se-

quences of engineered variants of a Ferredoxin-Hydrogenase (fd-hyd) fusion 

protein (Yacoby et al., 2011) were synthesized and cloned into the pSL18 

vector, under the control of the endogenous psaD promoter (Fischer and 

Rochaix, 2001), followed by recombination-based cloning. Algal strains were 

initially screened twice: first, with hygromycin; then, strains were overlaid 

with engineered H2-sensing R. capsulatus, and scanned for hydrogen produc-

tion which is catalyzed by fd-hyd (Eilenberg et al., 2016). Following anaero-

bic induction of the algal cells (Meuser et al., 2012), the amount of fd-hyd 

was quantified by measuring the concentration of produced H2 using Methyl-

Viologen (Eilenberg et al., 2016). A representative subgroup of clones was 

selected from the low, medium, and top quantiles of expression. RNA levels 

were measured using real-time quantitative PCR (Supplementary Methods). 

3 Results 

3.1 PScARS improves expression prediction upon CAI and cARS 

We first tested the ability of our proposed extension to cARS, the position-

specific cARS (PScARS), to predict protein levels in an unsupervised setting, 

where expression levels are unknown prior to prediction. In this scenario, the 

input to PScARS is only the complete set of coding sequences of the organ-

ism. We considered 7 organisms where protein abundance data was available 

(Table S1). 

PScARS predictions explained a higher percentage of the variance in ex-

pression as measured by Spearman correlation than cARS in all of the studied 

species and improved upon the traditional CAI in all species but E. coli (Fig-

ure 2A). Particularly, considerable improvement was observed in species 

where CAI performs poorly (human, A. thaliana, C. elegans, in agreement 

with previous studies that analyzed CAI in these organisms (Vogel et al., 

2010; Zhang et al., 2012)). This may imply that signals that are longer than 

single codons have a significant effect on gene regulation in these organisms. 

It is possible to represent coding sequences by their amino acid, codon (NT 

triplets), or nucleotide sequences; the latter alphabet may also apply to analy-

sis of non-coding sequences. Figure 2 reports the results for the codon alpha-

bet, which showed the best prediction performance in our tests (Figure S1 

reports the results for the other alphabets). 

We calibrated the window size parameter of PScARS based on gene ex-

pression prediction in E. coli and S. cerevisiae and observed a peak at 40 

codons in both organisms when the input sequences were represented in the 

codon alphabet (Figure 2B). A similar peak was observed at 120nt in both 

species when the input sequences were represented in nucleotides (Figure 

S1). It is worth noting that the results were not highly sensitive to the selection 

of window size. 

3.2 PScARS detects information-rich regions in the 5’- and 3’-

ends of the coding region 

Next, we computed meta-gene profiles of the average detected substring 

length by PScARS at each position in the transcript (Figure 2C). We found 

that all organisms tend to contain longer Chimera blocks at the 5’-end of the 

gene. These results are compatible with the large number of regulatory signals 

that are interleaved in the 5’-end of genes, and have been discussed in the 

literature (Tuller and Zur, 2015). We also found that human and C. reinhardtii 

tend to contain longer Chimera blocks towards the 3’-end of the gene, peaking 

around the position -30 codons. Furthermore, the correlation between PA and 

substring length at each position tends to modestly increase towards the 3’-

end of the gene in most of the studied organisms. These results are in agree-

ment with previous studies on termination signaling (Bertram et al., 2001; 

Beznosková et al., 2015), and may imply that this region is more signal-rich 

than previously thought. 



 
Fig. 2: Unsupervised prediction. (A) Unsupervised prediction of protein abundance (PA) based on CAI, cARS, and PScARS given an all-organism reference set for 7 species (A. 

thaliana, C. elegans, C. reinhardtii, D. melanogaster, E. coli, H. sapiens, and S. cerevisiae) (see also Figure S1). (B) The algorithm is not highly sensitive to the window size parameter, 

but shows modest improvement in predictions, and a clear maximum, for a size of 40 codons (see also Figure S1). (C-D) Meta-gene profiles of PScARS (based on the codon alphabet) 

in 7 species, positioned relatively to the START / STOP codons. Average PScARS shown in (C). Correlation between PScARS and PA for each position shown in (D). 

 

3.3 PScARS predicts tissue-specific expression 

In addition, Chimera algorithms can be used in a supervised manner by se-

lecting a reference set of highly expressed genes. This additional information 

– 1,000 highly-expressed genes – led to a considerable increase in prediction 

performance (Figure S2), and demonstrates that PScARS can capture relevant 

regulatory signals that are present in highly expressed genes. The largest in-

crease in correlation for PScARS was observed in human (from 0.08 to 0.25) 

and in the Arabidopsis plant (from 0.16 to 0.47). 

We further tested the algorithm’s ability to predict tissue-specific protein 

abundance (PA) in 7 human tissues. To this end, we generated PScARS and 

CAI predictions based on reference sets of 1,000 highly expressed genes in 

each of 8 tissues (inter-tissue correlations between PA datasets appear in 

Figure S2). We then selected one tissue (colon) as a reference tissue, and 

tested how well differential expression is captured by the fold-change in pre-

diction scores. Strikingly, in all cases differential expression in tissue X are 

most correlated with differential predictions in the same tissue (the diagonal in 

Figure 3A, where P<10-8), while the rest of the tissues are considerably less 

correlated. Thus, PScARS can capture tissue-specific signals well. In contrast, 

supervised CAI predictions were less specific to the correct tissue (Figure 

S2). 

3.4 PScMap-optimized genes show significantly increased expres-

sion 

PScMap was tested experimentally by designing a synthetic gene and ex-

pressing it in the single-cell green alga C. reinhardtii (Supplementary Meth-

ods). The gene that was designed is a fusion of Ferredoxin and Hydrogenase 

(fd-hyd), which has been suggested to have potential biotechnological applica-

tions (Yacoby et al., 2011). The expression of the PScMap-optimized gene 

was compared to that of cMap- and CAI-optimized genes (Weiner et al., 

2018). We observed an increase of up to 26-fold in protein abundance in the 

PScMap-optimized gene compared to cMap, and 15-fold compared to CAI 

(Figure 3B, Figure S3, Table S2). Interestingly, the increase in gene expres-

sion was also related to an increase in transcription levels, demonstrating the 

model’s ability to capture diverse regulatory signals. 

 

3.5 ChimeraUGEM is an easy-to-use tool for modeling and engi-

neering gene expression 

We developed the ChimeraUGEM (unsupervised gene expression model-

ing) software (Figure 3C), which provides tools for the analysis of gene se-

quences (coding and non-coding), as well as the design of protein coding 

sequences for optimized expression based on the Chimera algorithms and 

codon usage optimization. It accepts standard fasta files as input and output, 

generates summary tables in CSV format, and enables batch-processing of 

genes for analysis and design. All algorithm parameters can be user-defined 

via a graphical interface. 

The program enables the user to analyze and engineer selected regions 

within genes (e.g., the first 50 codons), or to perform a complete analysis of 

the sequence. The implementation of cARS and PScARS supports the AA, 

codon, and NT alphabets. Furthermore, the program generates positional 

substring length profiles for each gene that can be used, e.g., for meta-gene 

analysis. 

We tested the run-time of ChimeraUGEM by calculating PScARS for one 

half of E. coli’s proteins (2,154 genes) using the other half as reference se-

quences, which required 36min (1 gene/sec) on a modern laptop, including the 

pre-processing of the reference set. PScMap on the same gene set required 

19min (1.9 gene/sec). 

4 Conclusions 

We presented a methodology and a software tool for model-free analysis 

and engineering of gene expression. The reported results may suggest that 

signals of higher dimensions than single codons – which are captured by the 

position-specific Chimera algorithms – play a central role in the regulation of 

expression in the studied organisms. The unsupervised prediction results in 

section 3.1 demonstrate that the method may be applied to a multitude of 

organisms where gene expression measurements and models are missing, 

given only the set of coding sequences. 



 
Fig. 3: Semi-supervised prediction and design. (A) Tissue-specific prediction of expression in human cells. Each tile reports Spearman’s rho between fold-change in PA in one tissue 

and fold-change in PScARS in a second tissue. Colors are proportional to the explained variance and scaled by the maximal value in each row. P<10-8 for all values on the diagonal 

(results for CAI appear in Figure S2). (B) Experimental validation of PScMap in C. reinhardtii. One-tailed rank-sum p-values reported above, and the number of clones below (see also 

Figure S3). (C) ChimeraUGEM interface. In this example, the first 10 codons are provided by the user; codons 11-70 and 514-583 are optimized using PScMap, and codons 71-513 are 

selected based on their frequency. 

The analysis reported here demonstrate that the Chimera approach can be 

used as an exploration tool: for example, our results suggest that our approach 

is important in organisms such as A. thaliana, C. elegans, and D. melano-

gaster where it is able to significantly predict expression levels much better 

than codon based measured such as CAI. It will be interesting to perform 

experiments and modeling in the future to understand the nature of these 

longer codes in these organisms. Similarly, some organisms (e.g., human and 

C. reinhardtii) tend to contain longer Chimera blocks towards the 3’-end of 

the gene, suggesting that these organisms include specific codes in these re-

gions that should be further explored in the future. A study of such codes may, 

for example, enable a better understanding of mechanisms that regulate trans-

lation termination and post-termination processes (stop codon readthrough, re-

initiation, and others). 

The tissue-specific prediction of expression in section 3.3 suggests that 

PScARS has high sensitivity to regulatory signals. This result also suggests 

that tissue specific gene expression regulation is partially encoded in the cod-

ing region and not exclusively in promoters and enhancers. 

Our experimental results in section 3.4 may imply that PScMap can be used 

to optimize gene expression very efficiently. Specifically, it can be used for 

non-model organisms when gene expression models are currently partial.  

Furthermore, this approach can naturally be integrated with other approach-

es and models for gene expression analysis and optimization, including mod-

el-based optimization (Weiner et al., 2018). The above results, and particular-

ly the effect our coding sequence optimization on RNA levels, also emphasize 

the complexity of the coding region in terms of overlapping regulatory codes. 

Acknowledgements 

We would like to thank Prof. Matthew Posewitz for the hydA1,2 double 

hydrogenase knockout mutant, and Prof. Matt Wecker and Prof. Maria 

Ghirardi for the H2 sensing R. capsulatus. 

Funding 

A.D. is grateful to the Azrieli Foundation for the award of an Azrieli Fel-

lowship. This study was supported in part by a fellowship from the Edmond J. 

Safra Center for Bioinformatics at Tel-Aviv University. This study was sup-

ported by the Israeli Ministry of Science, Technology and Space. This study 

was supported by a fellowship from the Manna Center for Plant Biosciences. 

Conflict of Interest: none declared.  

References 

Alberts,B. et al. (2005) Molecular Biology of the Cell 4th ed. Garland Science. 

Barash,Y. et al. (2010) Deciphering the splicing code. Nature, 465, 53–59. 

Ben-Yehezkel,T. et al. (2015) Rationally designed, heterologous S. cerevisiae transcripts 

expose novel expression determinants. RNA Biology, 12, 972–984. 

Bertram,G. et al. (2001) Endless possibilities: translation termination and stop codon 

recognition. Microbiology, 147, 255–269. 

Beznosková,P. et al. (2015) Translation initiation factor eIF3 promotes programmed stop 

codon readthrough. Nucleic Acids Res, 43, 5099–5111. 

Chu,D. et al. (2014) Translation elongation can control translation initiation on eukaryot-

ic mRNAs. EMBO J., 33, 21–34. 

Churchman,L.S. and Weissman,J.S. (2011) Nascent transcript sequencing visualizes 

transcription at nucleotide resolution. Nature, 469, 368–373. 

Cohen,E. et al. (2018) A code for transcription elongation speed. RNA Biology, 15, 81–

94. 

Dana,A. and Tuller,T. (2014a) Mean of the typical decoding rates: a new translation 

efficiency index based on the analysis of ribosome profiling data. G3 (Be-

thesda), 5, 73–80. 

Dana,A. and Tuller,T. (2014b) The effect of tRNA levels on decoding times of mRNA 

codons. Nucl. Acids Res., 42, 9171–9181. 

Demain,A.L. and Vaishnav,P. (2009) Production of recombinant proteins by microbes 

and higher organisms. Biotechnology Advances, 27, 297–306. 

Eilenberg,H. et al. (2016) The dual effect of a ferredoxin-hydrogenase fusion protein in 

vivo: successful divergence of the photosynthetic electron flux towards hy-

drogen production and elevated oxygen tolerance. Biotechnology for Biofu-

els, 9, 182. 

Ferrer-Miralles,N. et al. (2009) Microbial factories for recombinant pharmaceuticals. 

Microbial Cell Factories, 8, 17. 

Fischer,N. and Rochaix,J.D. (2001) The flanking regions of PsaD drive efficient gene 

expression in the nucleus of the green alga Chlamydomonas reinhardtii. Mo-

lecular Genetics and Genomics, 265, 888–894. 

Frenzel,A. et al. (2013) Expression of Recombinant Antibodies. Front. Immunol., 4. 



ChimeraUGEM: unsupervised gene expression modeling 

Gaspar,P. et al. (2012) EuGene: maximizing synthetic gene design for heterologous 

expression. Bioinformatics, 28, 2683–2684. 

Goodman,D.B. et al. (2013) Causes and Effects of N-Terminal Codon Bias in Bacterial 

Genes. Science, 342, 475–479. 

Kimchi-Sarfaty,C. et al. (2007) A ‘silent’ polymorphism in the MDR1 gene changes 

substrate specificity. Science, 315, 525–528. 

Kozak,M. (1999) Initiation of translation in prokaryotes and eukaryotes. Gene, 234, 187–

208. 

Kramer,G. et al. (2009) The ribosome as a platform for co-translational processing, 

folding and targeting of newly synthesized proteins. Nat Struct Mol Biol, 16, 

589–597. 

Kudla,G. et al. (2009) Coding-Sequence Determinants of Gene Expression in Escherichia 

coli. Science, 324, 255–258. 

Leufken,J. et al. (2017) pyQms enables universal and accurate quantification of mass 

spectrometry data. Molecular & Cellular Proteomics, 16, 1736–1745. 

Li,G.-W. et al. (2012) The anti-Shine-Dalgarno sequence drives translational pausing and 

codon choice in bacteria. Nature, 484, 538–541. 

Meuser,J.E. et al. (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-

hydrogenases: Insight into the role of HYDA2 in H₂ production. Biochemi-

cal and biophysical research communications, 417, 704–9. 

Peden,J.F. (2000) Analysis of codon usage. 

Puigbò,P. et al. (2008) E-CAI: a novel server to estimate an expected value of Codon 

Adaptation Index (eCAI). BMC Bioinformatics, 9, 65. 

Reis,M. dos et al. (2004) Solving the riddle of codon usage preferences: a test for transla-

tional selection. Nucleic Acids Res, 32, 5036–5044. 

Sabi,R. et al. (2017) stAIcalc: tRNA adaptation index calculator based on species-

specific weights. Bioinformatics, 33, 589–591. 

Sabi,R. and Tuller,T. (2015) A comparative genomics study on the effect of individual 

amino acids on ribosome stalling. BMC Genomics, 16, S5. 

Sabi,R. and Tuller,T. (2017) Computational analysis of nascent peptides that induce 

ribosome stalling and their proteomic distribution in Saccharomyces 

cerevisiae. RNA, 23, 983–994. 

Sharp,P.M. and Li,W.-H. (1987) The codon adaptation index-a measure of directional 

synonymous codon usage bias, and its potential applications. Nucl. Acids 

Res., 15, 1281–1295. 

Stadler,M. and Fire,A. (2011) Wobble base-pairing slows in vivo translation elongation 

in metazoans. RNA, 17, 2063–2073. 

Stergachis,A.B. et al. (2013) Exonic Transcription Factor Binding Directs Codon Choice 

and Affects Protein Evolution. Science, 342, 1367–1372. 

Terpe,K. (2006) Overview of bacterial expression systems for heterologous protein 

production: from molecular and biochemical fundamentals to commercial 

systems. Appl Microbiol Biotechnol, 72, 211. 

Tuller,T., Carmi,A., et al. (2010) An Evolutionarily Conserved Mechanism for Control-

ling the Efficiency of Protein Translation. Cell, 141, 344–354. 

Tuller,T. et al. (2011) Composite effects of gene determinants on the translation speed 

and density of ribosomes. Genome Biology, 12, R110. 

Tuller,T., Waldman,Y.Y., et al. (2010) Translation efficiency is determined by both 

codon bias and folding energy. PNAS, 200909910. 

Tuller,T. and Zur,H. (2015) Multiple roles of the coding sequence 5′ end in gene expres-

sion regulation. Nucl. Acids Res., 43, 13–28. 

Vogel,C. et al. (2010) Sequence signatures and mRNA concentration can explain two-

thirds of protein abundance variation in a human cell line. Mol. Syst. Biol., 6, 

400. 

Wang,M. et al. (2015) Version 4.0 of PaxDb: Protein abundance data, integrated across 

model organisms, tissues, and cell-lines. Proteomics, 15, 3163–3168. 

Weiner,I. et al. (2018) Enhancing heterologous expression in Chlamydomonas reinhardtii 

by transcript sequence optimization. The Plant Journal, 94, 22–31. 

Welch,M. et al. (2009) Design Parameters to Control Synthetic Gene Expression in 

Escherichia coli. PLOS ONE, 4, e7002. 

Wu,G. et al. (2005) Predicted highly expressed genes in the genomes of Streptomyces 

coelicolor and Streptomyces avermitilis and the implications for their me-

tabolism. Microbiology, 151, 2175–2187. 

Wurm,F.M. (2004) Production of recombinant protein therapeutics in cultivated mamma-

lian cells. Nature Biotechnology, 22, 1393–1398. 

Xia,X. (1996) Maximizing Transcription Efficiency Causes Codon Usage Bias. Genetics, 

144, 1309–1320. 

Yacoby,I. et al. (2011) Photosynthetic electron partitioning between [FeFe]-hydrogenase 

and ferredoxin:NADP+-oxidoreductase (FNR) enzymes in vitro. PNAS, 108, 

9396–9401. 

Yordanova,M.M. et al. (2018) AMD1 mRNA employs ribosome stalling as a mechanism 

for molecular memory formation. Nature, 553, 356–360. 

Zafrir,Z. and Tuller,T. (2015) Nucleotide sequence composition adjacent to intronic 

splice sites improves splicing efficiency via its effect on pre-mRNA local 

folding in fungi. RNA, 21, 1704–1718. 

Zafrir,Z. and Tuller,T. (2017) Unsupervised detection of regulatory gene expression 

information in different genomic regions enables gene expression ranking. 

BMC Bioinformatics, 18, 77. 

Zerbino,D.R. et al. (2018) Ensembl 2018. Nucleic Acids Res, 46, D754–D761. 

Zhang,G. et al. (2009) Transient ribosomal attenuation coordinates protein synthesis and 

co-translational folding. Nat. Struct. Mol. Biol., 16, 274–280. 

Zhang,Z. et al. (2012) Codon Deviation Coefficient: a novel measure for estimating 

codon usage bias and its statistical significance. BMC Bioinformatics, 13, 

43. 

Zur,H. and Tuller,T. (2015) Exploiting hidden information interleaved in the redundancy 

of the genetic code without prior knowledge. Bioinformatics, 31, 1161–

1168. 

Zur,H. and Tuller,T. (2013) New Universal Rules of Eukaryotic Translation Initiation 

Fidelity. PLOS Computational Biology, 9, e1003136. 

 

 

 


