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ABSTRACT 

Motivation: Dozens of studies in recent years have demonstrated 

that codon usage encodes various aspects related to all stages of 

gene expression regulation. When relevant high quality large scale 

gene expression data is available it is possible to statistically infer 

and model these signals, enabling analysing and engineering gene 

expression. However, when these data are not available it is impos-

sible to infer and validate such models. 

Results: In the current study we suggest Chimera - an unsuper-

vised computationally efficient approach for exploiting hidden high 

dimensional information related to the way gene expression is en-

coded in the ORF, based solely on the genome of the analysed 

organism.  

One version of the approach, named Chimera Average Repetitive 

Substring (ChimeraARS), estimates the adaptability of an ORF to 

the intracellular gene expression machinery of a genome (host), by 

computing its tendency to include long substrings that appear in its 

coding sequences; the second version, named ChimeraMap, engi-

neers the codons of a protein such that it will include long substrings 

of codons that appear in the host coding sequences, improving its 

adaptation to a new host’s gene expression machinery. 

We demonstrate the applicability of the new approach for analyzing 

and engineering heterologous genes and for analyzing endogenous 

genes. Specifically, focusing on E. coli, we show that it can exploit 

information that cannot be detected by conventional approaches 

(e.g. the CAI - Codon Adaptation Index), which only consider single 

codon distributions; for example, we report correlations of up to 0.67 

for the ChimeraARS measure with heterologous gene expression, 

when the CAI yielded no correlation. 

Contact: tamirtul@post.tau.ac.il (TT) 

Availability: For non-commercial purposes, the code of the Chime-

ra approach can be downloaded from 

http://www.cs.tau.ac.il/~tamirtul/Chimera/download.htm 

1 INTRODUCTION  

The inherent redundancy of the genetic code, where 61 codons 

encode only 20 amino acids, is a widely studied phenomenon 

  
*To whom correspondence should be addressed.  

(Chamary, Parmley et al. 2006; Plotkin and Kudla 2010; Sauna and 

Kimchi-Sarfaty 2013). In recent years it has been shown that vari-

ous gene expression regulatory aspects are interleaved in this re-

dundancy. Specifically, during its lifetime the mRNA sequence 

interacts with various intracellular molecules and complexes such 

as the spliceosome (Cartegni, Chew et al. 2002), pre-initiation 

complex (Kozak 1986; Zur and Tuller 2013), ribosomes 

(Ramakrishnan 2002) and ribosomal RNA composing it (Li, Oh et 

al. 2012), tRNAs (Alberts, Johnson et al. 2002), miRNAs (Forman 

and Coller 2010), other mRNAs (Zur and Tuller 2012), proteins 

(Hogan, Riordan et al. 2008) (including transcription factors 

(Stergachis, Haugen et al. 2013)), and the mRNA sequence itself 

via its folding (Gu, Zhou et al. 2010; Tuller, Veksler-Lublinsky et 

al. 2011 ) (see Figure 1). The affinity of these interactions is af-

fected by the nucleotide composition in various parts of the tran-

script (see for example (Kozak 1986; Alberts, Johnson et al. 2002; 

Chamary, Parmley et al. 2006; Hogan, Riordan et al. 2008; Kudla, 

Murray et al. 2009; Cannarozzi, Schraudolph et al. 2010; Forman 

and Coller 2010; Gu, Zhou et al. 2010; Plotkin and Kudla 2010; 

Schnall-Levin, Zhao et al. 2010; Tuller, Carmi et al. 2010; Li, Oh 

et al. 2012; Zur and Tuller 2012; Stergachis, Haugen et al. 2013; 

Zur and Tuller 2013)), and can usually be described by Markovian 

models and/or position specific scoring matrices (PSSMs) (Pevsner 

2009). However, there are debates regarding the nature and the 

efficien-

cy of 

some of 

these 

interac-

tions (see 

for ex-

ample 

(Plotkin 

and 

Kudla 

2010)). 
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Fig. 1.  Illustration of the various macro-molecules that interact with the 

ORF and the regulatory signals interleaved in the genetic code (see expla-

nation in the main text). 

 

The studies mentioned above support the conjecture that it is 

possible to accurately predict gene expression aspects based solely 

on the coding sequence, and that by manipulating synonymous 

aspects of the coding sequence itself it is possible to affect all gene 

expression stages. There are three major drawbacks to the current 

measures for inferring gene expression based on the coding se-

quence (Open Reading Frame; ORF):  

First, most of the conventional methods for estimating the 

adaptiveness of a transcript to the gene expression regulatory ma-

chinery are based on the independent distribution of single codons 

in the coding sequence (i.e. single codon usage bias). While there 

are dozens of measures based on single codon distributions (Sharp 

and Li 1987; dos Reis, Savva et al. 2004), these methods often fail 

to exhibit meaningful relations with the (usually heterologous) 

expression levels of genes (see, for example, (Kudla, Murray et al. 

2009; Goodman, Church et al. 2013)).  

 It is clear that such indexes cannot fully capture all the gene ex-

pression information encoded in the ORF as some of it is not di-

rectly related to codon decoding. For example, the binding site of 

micro-RNAs is around 22 nt, information not fully described by 

the independent distribution of single codons. Thus, a simple ap-

proach that can capture various aspects of gene expression regula-

tion (see Figure 1) is needed; we term this type of statistical infor-

mation ‘high dimensional information’ as it is related to substrings 

of nucleotides longer than codons. This type of statistic has the 

potential to encapsulate all known and unknown intracellular inter-

actions. 

Second, currently most of the models related to the biophysical 

nature of the various interactions of macro-molecules with the 

ORF are based on the analyses of gene expression measurements 

(e.g. mRNA levels, protein levels, ribosomal densities, etc) (dos 

Reis, Savva et al. 2004; Vogel, Abreu Rde et al. 2010; Lee, Topper 

et al. 2011; Reuveni, Meilijson et al. 2011; Schwanhausser, Busse 

et al. 2011; Zur and Tuller 2013); specifically, this information can 

be used for inferring the parameters of the simulative and/or pre-

dictive gene expression models. However, today there are around 

26,000 genomes of different organisms 

(http://www.ncbi.nlm.nih.gov/genome), but large scale gene ex-

pression information (e.g. protein abundance measurements (PA)) 

is available for only a few dozen (Wang, Weiss et al. 2012). Thus, 

we aim to develop an unsupervised measure that is based solely on 

the genome of the analyzed organism, without the necessity of 

additional gene expression measurements. 

Third, there is a growing surge of new studies reporting novel 

rules related to the way aspects of gene expression are encoded in 

the transcript. One relatively simple rule suggests that the distribu-

tion of codon-pairs affects gene expression and the fitness of or-

ganisms and viruses (see, for example, (Irwin, Heck et al. 1995; 

Coleman, Papamichail et al. 2008; Tats, Tenson et al. 2008)); how-

ever, many of these rules are more complicated and complex 

(Plotkin and Kudla 2010; Li, Oh et al. 2012; Stergachis, Haugen et 

al. 2013; Zur and Tuller 2013) (see also Supplementary Note 1.1). 

Thus, it is apparent that numerous additional rules are yet to be 

deciphered. Moreover, many of the established rules are organism 

specific and/or condition/tissue specific, and may not hold in dif-

ferent organisms/conditions than the ones used for their inference. 

Thus, we aim at developing a measure that can exploit “hidden” 

(i.e. unexplored) gene expression information encoded in the ORF, 

which may be related to yet unknown gene expression rules.  

In the following sections we describe an approach which encap-

sulates all the three points mentioned above. Additionally, we de-

vise a novel approach for engineering genes for heterologous gene 

expression (see, for example, (Vervoort, Ravestein et al. 2000; 

Gustafsson, Govindarajan et al. 2004; Plotkin and Kudla 2010; 

Goodman, Church et al. 2013)) based on the aforementioned con-

cepts. In the Methods (and Supplementary Methods) we will de-

scribe our new computationally efficient approach for exploiting 

hidden high dimensional information interleaved in the redundancy 

of the genetic code without prior knowledge. Since our Method is 

based on engineering new genes, or analyzing genes based on pat-

terns that appear in different endogenous genes, we named it Chi-

mera, which is a mythological creature composed of three different 

animals.   

 

In the Results section, we will show that indeed such high di-

mensional information appears in the coding regions of the ana-

lysed organisms, and that we can at least partially infer it with our 

approach. As a model organism we analyse E. coli which is the 

only organism with large scale measurements of heterologous gene 

expression. 

2 METHODS 

Inspired by universal approaches for data compression without any prior 

knowledge of its statistical characteristics (Ziv and Lempel 1977; Ulitsky, 

Burstein et al. 2006); we suggest the Chimera approach. Generally, the 

approach is based on the idea that various aspects of gene expression (men-

tioned above) are encoded in the ORF; thus, these “codes” (information) 

are frequently repeated in the coding sequences of the organism; in addition 

we expect to see more of these “codes” in genes (both heterologous and 

endogenous) that are highly expressed and/or more tightly regulated. Fur-

thermore, based on this idea we can optimize the expression levels of a 

heterologous gene by engineering its codons (substrings of codons and not 

only single ones) such that they will be similar to the ones that appear in 

the endogenous genes of the host. This approach can be extrapolated to 

many variants, two of which we will consider in the current study: 1) A 

new measure for the adaptation of the coding sequence to the intracellular 

gene expression regulatory machinery named Chimera Average Repetitive 

Substring or ChimeraARS. 2) A new algorithm for engineering heterolo-

gous genes without prior knowledge and based only on the genome of the 

host named ChimeraMap. In this subsection we briefly describe 

ChimeraARS and ChimeraMap.  

The ChimeraARS is depicted in Figure 2A. A given gene which codes a 

protein, P, can be described as a sequence of codons, S; thus, the new 

measure is based on the tendency of substrings in S to appear in other 

genes, i.e. in a reference set G; it is important to mention that various defi-

nitions of G are possible, including considering only highly expressed 

genes; for simplicity and demonstrating the unsupervised advantage of our 

approach, we assume that G includes the entire genome. The measure is 

based on the assumption that evolution shapes the organismal coding se-

quences to improve their interaction with the intra-cellular gene expression 

machinery. Thus, if longer substrings of S tend to appear in the organism’s 

ORFs, it suggests that P is more optimized to the intra-cellular gene ex-

pression machinery, and thus it is probably more highly expressed. In addi-

tion, as we explain in the following subsection, our measure also has im-

portant statistical and information theoretic properties. Computing the 
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ChimeraARS score, ChimeraARS(G,S), of a coding sequence (S) given a 

reference genome (G) includes the following steps (Figure 2A; further 

details in the following subsections):  

1) For each position i in the coding sequence S find the longest sub-

string
j

iS that starts in that position, and also appears in at least one of the 

coding sequences of the genome G.  

2) Let S denote the length of a sequence S; the ChimeraARS of S is the 

mean length of all the substrings 
j

iS : SS j

i / . 

As we demonstrate in the ensuing subsections, the ChimeraARS exploits 

information that does not appear in single codon distributions. Thus, among 

others, it can be used for estimating the adaptation of the composite codon 

content of a gene to the cellular gene expression machinery; since highly 

expressed genes are expected to be more adapted, it can specifically be 

used for predicting the protein levels of a gene from its codon distribution, 

while considering the high dimensional distribution of codons.  

The objective of the ChimeraMap algorithm is described in Figure 2B 

(further details in the following subsections). Given a target protein, P, 

whose coding sequence is S, and a host genome (G), ChimeraMap finds a 

new coding sequence (S*) that codes the protein P but is composed of a 

minimal number of (non-overlapping) ‘codon blocks’ that appear in the 

host genome (Figure 2B). If several blocks of the same length exist, we 

select the most frequent one, thus further improving the adaptability of S* 

to G. 

 

Fig. 2.  An illustration of the ChimeraARS measure: To compute the Chi-

meraARS measure for a certain ORF we find for each codon (or nt) position 

in the ORF the longest substring that starts in this position, but also appears 

in one of the ORFs of the genome. The score is based on the average over 

the lengths of all these substrings. B. An illustration of the ChimeraMap 

measure. The objective function of this algorithm is covering the coding 

sequence of the target gene with a minimal number of most frequent codon 

blocks that appear in the host genome, such that the protein encoded in the 

resulting coding sequence is identical to the protein encoded in the target 

gene. Under this construction, the boundaries between blocks are the only 

regions with codon sequences that may not appear in the host genome; the 

ChimeraMap minimizes these regions by minimizing the number of blocks. 

We believe that the ChimeraMap can be used for optimizing the coding 

sequences of heterologous genes for expressing them in a new host. It is 

easy to see that under this construction, the boundaries between blocks are 

the only regions with codon sequences that may not appear in the host 

genome; the ChimeraMap minimizes these regions by minimizing the 

number of ‘codon blocks’. Since the ‘codon blocks’ already appear in the 

host genome they are expected to be compatible with the host gene expres-

sion machinery; the boundaries between blocks, on the other hand, corre-

spond to substrings that do not appear in the host genome, thus they may 

not be compatible with the host gene expression machinery and Chi-

meraMap minimizes them. 

2.1 Properties of the ChimeraMap and the 

ChimeraARS approaches 

All the details regarding the algorithms for the computation of the Chi-

meraARS score and the ChimeraMap output appear in the following sub-

sections. Here we only briefly outline the algorithmic approach and men-

tion the general properties of these algorithms.   

ChimeraARS is based on a pre-processing step of generating a suffix tree 

(or array) of all the coding sequences of the reference genome (G); based 

on this suffix tree all the longest substrings of the target P can be computed 

in an efficient manner, resulting in a total running time complexity of 

 PG  ). The ChimeraMap is also based on the same pre-processing 

step in addition to a dynamic programming algorithm that finds the optimal 

solution with total running time complexity of  PG  . 

ChimeraARS (and thus the ChimeraMap objective) is inspired by infor-

mation theoretic approaches for universal compression of Markovian se-

quences, and estimating the number of bits required for describing one 

sequence (S) given a second one (G) (Ziv and Lempel 1977; Wyner 1993; 

Farach, Noordewier et al. 1995; Wyner and Wyner 1995; Ulitsky, Burstein 

et al. 2006). More specifically and formally, let
nx denote a codon se-

quence of length n. Specifically, if the codon distribution in G and S are 

generated by Markovian processes with probability distributions MS and MG 

(    n

G

n

S xMxM /  is the probability of emitting 
nx  based on the Mark-

ovian model MS /MG respectively), the ChimeraARS(G,S) estimates the 

following measure (see proofs and/or explanations in (Wyner 1993; 

Ulitsky, Burstein et al. 2006): 

    
G

S
M

M
G loglog   (1) 

   )log()(limlog )(/1 n

GG
S

xM
x

xM
n

M
M n

n

S



   (2) 

If the distribution of S and G are similar, S can be better compressed by 

G. If Ms = MG the ChimeraARS(G,S) (equation (1)) converges to 

)(/)log( SMHG  where H(MS) is the entropy of MS and it is known that  

H(MS) is smaller than   
G

S
M

M
log  (equation (2)) for Ms ≠MG. 

Finally, by definition, genes designed according to the ChimeraMap al-

gorithm should have higher ChimeraARS scores: ChimeraMap engineers 

the coding sequence of the target gene such that it will include long sub-

strings that appear in a reference genome, while the ChimeraARS measure 

detects the tendency of a coding sequence to include long substrings that 

appear in a reference genome, and thus its adaptability to the genome’s 

gene expression machinery.  

2.2 The Chimera Algorithms 

1. The algorithm of the first version, ChimeraARS: The preprocessing step 

of the algorithm is based on building a suffix tree (or suffix array) (Manber 

and Myers 1993; Gusfield 1997) for the coding sequences of the host ge-

nome. This can be done in O(|G|) where |G| is the length of the proteo-

me/coding sequences of the host (Manber and Myers 1993; Farach 1997). 

We will discuss the complexity of a suffix tree implementation, though due 

to the genomes’ size in practice sometimes a suffix array implementation is 

advisable if space considerations are more critical than time.   

Then, the length of the longest substring starting at each position in the 

target gene that appears in the host genome can be found in an efficient 

manner in O(|P|)) (Gusfield 1997) (matching statistics algorithm, pp 132-

134, this is achieved by building the suffix tree for G maintaining the suffix 

links (shortcuts between internal nodes related to substrings and their suf-

fixes), which are then utilized together with the skip/count trick to shorten 

traversal time). Thus, the total time complexity of the algorithm is O(|G| + 

|P|)).  

2. The algorithm of the second version, ChimeraMap: This is a dynamic 

programming (DP) algorithm that builds an optimized representation of a 

given protein P, maintaining the encoded protein, to that of a specified 

reference (host) genome G, by minimizing the number of (most frequent) 
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substrings from the reference genome required to cover it. This problem 

naively solved is essentially exponential. ChimeraMap reduces this to 

polynomial time based on the observation that the optimal solution can be 

greedily extended in each DP step. Similarly to the ChimeraARS, the pre-

processing step of the algorithm is based on building a suffix tree (Gusfield 

1997) for the coding sequences of the reference genome in time O(|G|).  

The premise of the algorithm is that all that is necessary is to consider only 

the previous step in the DP optimal solution space. Thus utilizing dynamic 

programming, at each step i (in which the length i of the substring of P we 

are looking at grows by 1 from the previous step, with i being from 1 to |P|) 

we look at the previous step’s (i-1) optimal solution and determine based 

on it what the optimal solution for step i is. The manner in which 

ChimeraMap tries to elongate the previous optimal solution to length i is as 

follows. Each optimal solution is represented by a list of pairs of numbers, 

symbolizing the start and end positions of the substrings (blocks) covering 

P up to that point (Figure 2B). ChimeraMap looks at the last such block 

([start end]) and tries to find a match in the suffix tree of G for P(start:i), 

and if that fails for P(end+1:i). If we maintain a pointer to the end of solu-

tion i-1 in the suffix tree, then we can check in O(1) if there is a match for 

P(start:i), by simply continuing the down traversal on the current edge to 

the next character. If a match is found we are done, otherwise a pointer is 

kept to the root of the tree and we can begin the search for P(end+1:i) in 

constant time. Thus, we get a total time complexity of O(|G| + |P|). One 

interesting observation regarding the properties of the ChimeraMap is that 

there exists a maximal length for a ‘covering’ substring from a reference 

genome. Let lcsMAX denote the length of the longest substring that is 

common to P and G. lcsMAX can be calculated using the common suffix 

tree of P that is found in G and all its prefixes. If the sequences G and P are 

generated by a Markov process O(lcsMAX) is expected to be of the order of 

O(log|G|) (see equation (1)); in the analyzed organism |G| equals 

3,958,573, the log of which is 15.2, while the mean lcsMAX is 15.3 with an 

STD of 38. 

2.3 The Optimality of the ChimeraMap  

Here we prove the dynamic programming algorithm for the second version 

of the Chimera approach, the ChimeraMap, indeed finds an optimal solu-

tion with induction, n=|P|. 

The base case: i=1:   

The algorithm initiates with the first character of P. The first solution is 

therefore the block [1,1], and it is trivially optimal. 

Inductive step: assume optimality for i=n-1:  

We assume we have optimal solutions for all the algorithm steps up to n-1. 

Prove optimality for i=n:  

The algorithm at each step looks back at the previous solution, and elon-

gates it according to the following rule: look at the last mapped block 

([start end]) of the solution and try to find a match in the suffix tree for 

P(start:i), and if that fails for P(end+1:i). If a match is found, merge to the 

current previous solution in the appropriate manner. For each solution, we 

either elongate its last block, thus not increasing the number of substrings 

covering P, and since that solution was optimal, so is our solution for i. If 

we cannot elongate an existing block, we will open a new one: [end+1 i], 

thus increasing the previous optimal solution by one. If an existing block 

could have been elongated, this solution is chosen as the optimal for step i. 

If not, the optimal solution grows by no more than one. Now assume that 

the optimal solution of step i=n includes l blocks. We assume that the algo-

rithm found all the optimal solutions for i < n and show that it will find the 

optimal solution for i=n.  

Since the optimal solution of i=n includes l blocks, the optimal solution for 

i=n-1 includes either l-1 or l blocks. If it is of length l-1, then no extension 

of the last block exists, and the algorithm adds a new block to the ith solu-

tion. If it is of length l blocks, this means that an extension exists. Let us 

assume by negation that the last block of the solution i=n-1 is of length w 

and represents the string α, and cannot be extended. Thus, since according 

to our assumption the optimal solution for the ith step includes l blocks 

there must be a block representing the string β of length > w that can be 

extended. But α is a suffix of β and therefore can also be extended, contra-

dicting our negation assumption.  

2.4 Additional information   

Due to lack of space additional information related to the Chimera ap-

proach, datasets analysed, statistical analysis, and the CAI (Sharp and Li 

1987) appear in the Supplementary Methods. 

3 RESULTS 

The following analysis further demonstrates the relation described 

above between the ChimeraMap algorithm and the ChimeraARS 

scores. We uniformly selected 100 E. coli genes according to their 

PA levels, and created the following variations of them: 1. Per-

forming 100 randomizations of these genes while maintaining the 

encoded protein, the amino acid bias, and the codon usage bias per 

gene (Supplementary Methods). 2. We optimized them according 

to the CAI rationale, replacing every synonymous codon with its 

most abundant version, which we termed MFSC (Most Frequent 

Synonymous Codon), a variation representing the encapsulation of 

single codon distribution. 3. We engineered them according to the 

ChimeraMap. The results of this analysis can be seen in Figure 3, 

where clearly and significantly the ChimeraMap engineered genes 

obtain the highest ChimeraARS scores compared to both the ran-

domized and MFSC versions. 

 

Fig. 3.  A. The ChimeraMap engineered genes’ ChimeraARS scores, as 

compared to those of the averaged 100 randomizations, of the E. coli subset 

of genes (14.2 vs. 10.9; performing a Wilcoxon signed rank test we re-

ceived a p-value < 10-19). B. The ChimeraMap engineered genes’ Chi-

meraARS scores, as compared to those of the MFSC version (14.2 vs. 11.8; 

performing a Wilcoxon signed rank test we received a p-value < 10-15). 

3.1 High dimensional information is encoded in the 

codon usage bias and can be exploited by the 

Chimera approach 

In the current section we show that high dimensional information 

appears in the coding sequences of organisms via several tests. 

This was achieved by comparing the ChimeraARS scores of en-

dogenous E. coli genes to the ones obtained for randomized ge-

nomes that maintain the protein content and frequencies of single 

codons. If indeed patterns of substrings of codons (longer than 
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one) tend to repeat in the endogenous genome more than expected 

by chance, the ChimeraARS scores will tend to be higher in the 

real genome in comparison to the randomized genome.  

Specifically, in order to compute the ChimeraARS measure for 

endogenous genes, for each gene instead of using the entire ge-

nome, we considered all the genes excluding the current as the 

reference genome. First, we computed the ChimeraARS measure 

for the real and randomized E. coli genome; the randomized ge-

nome encoded the same protein and single codon frequencies in 

each gene as in the original E. coli genome; however, it did not 

include the same higher dimensional distributions (further details 

in the Supplementary Methods). For each gene, we calculated its 

ChimeraARS score, which is the mean over the maximum sub-

string length of each of its codon/nucleotide positions, that can be 

found in all the other genome genes. The distributions of the Chi-

meraARS scores in the real vs. the randomized genome appear in 

Figure 4A, after removing paralogs in order to demonstrate that the 

relation can’t be attributed to sequence similarity among paralogs 

(see Supplementary Figure S1 for an analysis including all the 

genes). As can be seen, the ChimerARS scores are significantly 

higher in the real genome (16.7 vs. 11.1; p = 10-454). This result 

supports the conjecture that long substrings of codons/nucleotides 

tend to appear in the coding sequences of the analysed organism 

more than expected by chance; thus, this result supports the hy-

pothesis that at least some of the repetitive codon substrings affect 

the fitness of E. coli. The analyses performed in the next subsec-

tions support the conjecture that this high dimensional information 

is probably related at least partially to gene expression regulation, 

as ChimeraARS scores correlate with the expression levels of en-

dogenous and heterologous genes. 
 

 
Fig. 4.  A. ChimeraARS scores for the real and randomized E. coli ge-

nome. The mean ChimeraARS score for the real genome was significantly 
higher than the random (16.7 vs. 11.1). Performing a Wilcoxon signed rank 

test we received a p-value < 10-454. B. ChimeraARS scores for the E. coli 

real and random genome, as engineered by the ChimeraMap algorithm. The 
mean ChimeraARS score for the ChimeraMap engineered real genome was 

significantly higher than that of the engineered random genome (18.2 vs. 

16.8; performing a Wilcoxon signed rank test we received a p-value < 10-

173); the increase in the ChimeraARS scores relatively to A. is due to the 

fact that by definition, ChimeraMap genes that are engineered based on this 

algorithm tend to include longer repetitive substrings that appear in the host 
genomic coding sequences, and thus result in higher ChimeraARS scores; 

this phenomenon can be seen in the random genome as well, further dem-

onstrating ChimeraMap’s ability to engineer genes. In both analyses 

paralogs were removed in-order to show that the reported signal can’t be 

attributed to sequence similarity among paralogs. C. ChimeraARS scores 
for the real and randomized E. coli genome which maintains the codon 

pairs distribution, in addition to the single codon distribution and encoded 

protein (additional details appear in the Supplementary Methods). The 
mean ChimeraARS score for the real genome was significantly higher than 

the random (16.7 vs. 12). Performing a Wilcoxon signed rank test we re-

ceived a p-value < 10-97.    

 

     We performed an additional validation where we wanted to 

verify that the engineered genes which the ChimeraMap algorithm 

produces maintain the noted higher length distribution, and that it 

is higher than the one obtained for randomized genomes also in 

this case. To this end, taking each gene as a target, we built its 

ChimeraMap version, which encodes the same protein, but is com-

posed of the maximal most frequent substrings in all the other 

genes of the genome (excluding the current gene). We performed 

this for the real and randomized E. coli genome respectively. As 

can be seen in Figure 4B, indeed the ChimeraMap engineered 

genes have higher ChimeraARS scores in the real genome (18.2 vs. 

16.8; p = 10-173). This result further substantiates the conjecture 

that long substrings of codons do tend to appear in the coding se-

quences of the analysed organism more than expected by chance, 

and that the ChimeraMap algorithm can exploit this information.  

3.2 Measures based on the Chimera approach corre-

late with various aspects of gene expression and 

include information that does not appear in con-

ventional codon usage bias measures 

In the previous section we showed that long substrings of 

codons/nucleotides tend to repeat in the coding sequences of E. 

coli more than expected by chance. In the current section we will 

show that the repeated substrings, and thus the ChimeraARS score, 

are related to the expression levels of endogenous genes. To this 

end, we compared the correlation obtained between the CAI (Sharp 

and Li 1987) (a measure based on the independent distribution of 

single codons; see details in the Supplementary Methods), and 

measurements related to various gene expression aspects/stages 

(mRNA levels, ribosomal density, and protein levels), to the one 

obtained based on a regressor of both the CAI and ChimeraARS 

(the analysis was based on cross validation and control for the 

number of features in the regressor/predictor; more details in the 

Supplementary Methods). As can be seen in Figure 5, the correla-

tion with gene expression indeed increases when adding the Chi-

meraARS feature relatively to regression based on the CAI alone, 

also when controlling for the number of features by computing 

adjusted correlations (Supplementary Methods, see Figure S2 for 

the correlations achieved for each measure separately); the result 

supports the conjecture that the ChimeraARS infers information 

related to expression levels which cannot be detected by conven-

tional approaches such as the CAI; thus, information related to 

gene expression regulation is encoded in high-dimensional distri-

butions of codons and nucleotides in the coding sequence. 

3.3 Analyses of heterologous gene expression by the 

Chimera approach demonstrate its advantages 

over conventional codon usage bias measures 
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Goodman et al.(Goodman, Church et al. 2013) recently designed a 

heterologous gene library utilizing the first 11 amino acids includ-

ing the initiating methionine from 137 essential genes in E. coli. 

They generated 13 variants of each gene, where they changed the  
 

 
Fig. 5.  Dot plots (A. – C.) and Adjusted Spearman correlations (D. – F., 

Supplementary Methods) of the prediction of  (1) a regression model which 

is based only on the CAI (gray) and (2) a model which is based on the CAI 

and ChimeraARS (pale blue), vs. measured protein abundance (A,D), 

mRNA levels (B,E), and ribosomal density (C,F), respectively. 
 

 
Fig. 6.  The Spearman correlation between the ChimeraARS score and the 

CAI respectively with the Goodman et al. translation rates, according to 
their promoter (High/Low), and RBS (ribosomal binding site; 

Strong/Weak/Mid/WT) gene groups. The figures include linear regression 

lines, though the relations are monotone but clearly not linear.  

 

synonymous codons used to encode the peptide, always keeping 

the start codon as ATG. Using two promoters, and four RBSs (Ri-

bosome Binding Site) they generated 14,234 heterologous gene 

sequences, and measured their translation rates. In their paper 

Goodman et al. show that there is no correlation between the CAI 

(Sharp and Li 1987) and the translation rate. Here we show that the 

ChimeraARS actually correlates with the translation rates of the 

Goodman et al. (Goodman, Church et al. 2013) experiment. 

Analyzing the heterologous E. coli data of Goodman et al. 

(Goodman, Church et al. 2013) using as a reference genome the 

first 11 codons of each endogenous E. coli gene (such that it will 

correspond to the first 11 codons that were modified in the het-

erologous gene library), we calculate the ChimeraARS score for 

each of the heterologous 11 codon long coding sequences. We 

calculated the correlation of the Goodman et al. translation rates 

with the ChimeraARS score, and compared these to the ones 

achieved for the CAI. As can be seen in Figure 6, while the CAI 

does not correlate with the translation rates of the heterologous 

gene library (correlation between -0.34 and 0.09; and mostly not 

significant; where the negative correlation is in the wrong direc-

tion), the ChimeraARS does (correlation mostly between 0.3 and 

0.67; all p < 0.02,). This result demonstrates that the ChimeraARS 

can detect the expression of genes also in heterologous systems; in 

addition, it supports the conjecture that the relation between the 

ChimeraARS score and expression levels reported in the previous 

section is at least partially causal/direct – higher ChimeraARS 

scores contribute to higher expression levels (since these are het-

erologous and not endogenous genes). Finally, since by definition 

(as explained above) genes designed by the ChimeraMap algo-

rithm have higher ChimeraARS scores, these results support the 

conjecture that the ChimeraMap algorithm should be able to opti-

mize expression levels of genes at least in the analysed organism. 

4 DISCUSSION 

We describe a novel computational approach named Chimera for 

exploiting high dimensional information related to gene expression 

that is interleaved in the redundancy of the genetic code, and for 

engineering coding regions of heterologous genes without prior 

knowledge. Our approach is inspired by an information theoretic 

technique for data compression, and is very efficient in terms of 

computational running time.  

One version of the approach, ChimeraARS, can be used for esti-

mating the amount of information related to gene expression en-

coded in a coding sequence, and thereby its adaptability to the 

cellular gene expression machinery; as we demonstrate here, this 

estimation is expected to correlate with the expression levels 

and/or gene expression regulation levels of a gene. In addition we 

show that the ChimeraARS exploits high dimensional information 

that is not included in indexes, such as the CAI, that are based on 

the distribution of single codons.  

Furthermore, we suggest a version of the Chimera approach, Chi-

meraMap, that can be used for engineering new genes for their 

efficient expression in a new host. The ChimeraMap optimizes the 

coding sequence encoding a protein such that it will include as few 

as possible substrings of the host genome (i.e. longer substrings). 

We show that the output of the ChimeraMap correlates with the 

ChimeraARS score; in addition, we show that the ChimeraARS 

score predicts the expression levels of heterologous genes in E. 

coli well; thus, the ChimeraMap is expected to be a useful ap-

proach for heterologous coding sequence optimization.     

More generally, the analyses reported in this study suggest that 

codon bias, if defined accurately, is useful in detecting highly ex-

pressed genes in cases where conventional approaches do not 

work, such as heterologous gene expression (Goodman, Church et 

al. 2013). In addition, we show that the protein levels of endoge-

nous and heterologous genes can be defined by their codon and 

amino acid content based only on genomic information.  

Naturally, our approach can be generalized in various ways. For 

example, here for simplicity (and demonstrating the unsupervised 
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advantage of our approach) the reference set of genes used for the 

Chimera approach included the entire genome; we can readily 

think of other relevant reference sets such as highly expressed 

genes, tissue specific genes, or genes with a certain function or 

property. Another variation is related to the objective function of 

the ChimeraMap algorithm; there are many relevant objective 

functions, such as functions that penalize shorter codon blocks 

non-uniformly along the ORF (if we have prior knowledge that 

certain regions in the ORF contribute less to its regulation), func-

tion(s) that trade-off frequency vs. substring length in a different 

manner than the one reported here, or weighted functions accord-

ing to the frequency of the substrings. Thus, we can extrapolate 

many variants of the approach, and in that manner calibrate it to 

suit specific problems. The last example is related to the alphabet 

used; here for simplicity we worked with nucleotides (Supplemen-

tary Methods); however it may make sense to work with codons, 

codon pairs, or divide the codons to sub-sets of codons assumed to 

be “identical”.    

Moreover, a version of the Chimera approach may also be used for 

engineering and estimating the information related to gene expres-

sion encoded in other parts of the gene such as UTRs and introns, 

known to also include signals related to gene expression regulation 

(Wang and Cooper 2007; Goodarzi, Najafabadi et al. 2012).  

The ChimeraARS algorithm may also be modified to consider both 

substrings’ lengths and their frequencies. In such a case, the major 

challenge is to model the trade off between length and frequency. 

We believe that the trade-off is organismal specific and should be 

inferred for each organism separately, possibly based on gene ex-

pression (adding additional layers of complexity to such a meas-

ure).   

Finally, in this study we analysed E. coli since this is the only or-

ganism with large scale measurements of both heterologous and 

endogenous gene expression data. However, we believe that the 

results reported here will be even more significant for eukaryotes, 

and specifically multi-cellular organisms such as plants; there are 

different stages of gene expression, including many types of inter-

actions with the mRNA molecules that occur only in these groups 

of organisms; for example, splicing, interaction with the nuclear 

pores, and regulation by miRNA (see, Figure 1), occur only in 

eukaryotes; all these examples include interactions between the 

intracellular machinery and the mRNA molecule, and are at least 

partially encoded in the ORF via the high dimensional distribution 

of codons. These signals are expected to be detected by the Chi-

mera approach, but not by single codon measures of codon usage 

bias. 
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