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Abstract 

In reply to Cherry’s comments in PMID: 25510862, we further explain here why 

Cherry’s claims were thoroughly addressed in the original manuscript, and that the 

methods and results were presented in a transparent manner. Most importantly, we 

reiterate that the relation between variables has been subject to stringent statistical tests, 

and that the observed signals are indeed strong with respect to expected and previously 

reported ones in large-scale genomic studies. In addition, we illustrate again that the 

reported correlations are comparable to the maximal correlation expected when 

comparing large scale noisy data after quantization. Finally, we show that the correlations 

reported in our study are similar to the correlations obtained between two Hi-C 

experiments; thus, if we follow Cherry’s line of thought, we actually should absurdly 

conclude that the Hi-C protocol in general is problematic. We discuss the generality of 

our conclusion to systems biology analysis of Next Generation Sequencing (NGS) data. 

When determining whether an observed correlation is high or low one should 

consider various aspects of the data such as biases and the number of points  

It is important to note that determining whether an observed correlation is high or low is a 

relative test, and may be related to various aspects such as the signal to noise ratio and 

discretization of the data. For this reason, our tests for the strength of correlation – and 

what our conclusions are ultimately based upon – were statistically significant and passed 

a series of stringent control tests. P-values were estimated by computing the binned 

correlation between variables for permuted models that preserve many of the dataset’s 

properties (a null model we termed Cyclic Chromosome Shift). It can be seen (Figure 3 in 

[1]) that it is not trivial at all to observe such high correlations as the ones reported 

between CUFS and 3DGD. Other controls included: controlling for the linear distances 

between genes on (unfolded) chromosomes; showing that the observed correlations are 

clearly related to the coding sequence (where CUFS is defined), and that they are missing 

from non-coding sequences that are adjacent to genes; controlling for GC content in 

coding and non-coding regions, for gene length, and for other sequence properties; 

controlling for experimental biases and resolution effects. All controls were performed 

for binned correlations in the same resolution and indicate that the correlations are not 

“inflated” but are rather strongly related to biological signals. In addition to these 

controls, we validated our results using other representations of the data, including 

distances between genes in 3D genome reconstructions, and depletion of CUFS between 



genes with highly enriched Hi-C contact frequencies (Figure S14 in [1]). However, 

Cherry took no notice of these reported results. 

Figure S5 in [ref 1] indeed presents a decrease in the correlation coefficient as the 

resolution (number of bins) increases, as expected. However, the ranking (compared with 

distance measures other than CUFS) and the significance of the correlations are 

invariant. Specifically, the t-test p-value estimated from Spearman's correlation on raw 

data is still p < 10
-323

, and most importantly our empirical p-value is unchanged 

(P3D<0.01 for almost all organisms). Thus, we showed that our conclusions are not 

dependent on the binning scheme, as suggested in the critical paper cited by Cherry [2]. 

Moreover, we selected the number of bins for each organism so that the level of 

averaging (number of pairs per bin) is roughly kept constant across organisms. In fact, the 

number of bins that we used in 3 out of 5 organisms is higher than the number of points 

in the raw data analyzed in the aforementioned paper [2]. 

A simulation of noisy data and quantization demonstrates how a perfect correlation 

between two variables decreases to be -0.08 

In addition, we performed a simulation of the possible effects of noise and data 

quantization and included it in Figure S5 (reproduced here in Figure 1). This synthetic 

example of correlation vs. resolution shows that the profiles in Figure S5 are typically 

seen in any case of binning noisy measurements. The panels show 10
7
 samples from two 

perfectly correlated variables (r=-1), that are severely corrupted by noise (additive 

uniform noise in [0, 3] for both variables x and y) and discretization of the data. The 

outcome of this process is a reduced – but still significant (two-tail t-test) – correlation of 

r=-0.08. The resultant curve of binned correlation vs. bin size / number of bins is similar 

to that observed in Figure S5 in [1]. The number of samples, number of bins, and 

correlation coefficients, are similar to those we observed in yeast. Binned correlation in 

this example indicates a true signal that is masked by noise. 



 

Figure 1: A synthetic example. Scatter plots: (a) Generated variables. (b) Noised variables. (c) Quantized 

variables. (d) Spearman’s correlation coefficient between the variables in (c) for varying bin sizes / number 

of bins. 

 

The number of points analyzed in the study is 4-6 orders of magnitude higher than 

in previous studies in the field  

The number of samples in our analysis, which stems from the fact that we analyze 

pairwise distances between genes, is extremely high, ranging from 13 to 369 million 

points, orders of magnitude higher than any other systems biology study that we are 

aware of. For example, a recent paper used 20 bins to compare the correlation between 

expression profiles of pairs of interchromosomal genes as a function of the number of 

contacts linking the two genes [3]. Another paper used eigenvalue decomposition of a 

1Mbp-binned Hi-C map to study the relation between Hi-C contact enrichment and GC 

content (approximately 3,000 points, and to compare human and mouse maps [4]). 

Naturally, various systems biology studies that dealt with a very large number of values 

and were published in top journals performed correlations (or, similarly, dot plots) 

between binned values [5–11]. 

The number of bins that we use ranges from 2,000 to 64,000 – still higher than typically 

seen in correlation analyses in the field (which usually include a few hundred points), and 



for which the presented correlations are highly non-trivial. Binning was utilized as it 

enables comparing the reported results to other results in the field. We chose the number 

of bins to be comparable to previous studies in the field, and indeed the reported 

correlations in our study are higher than previously reported for a similar number of 

points [6,12,13]. 

It was recently shown that CUFS can be used to improve 3D genomic 

reconstructions based on Hi-C data  

The conclusions of our paper have also been tested in a recent study [14], where we 

showed that 3D distances predicted by CUFS can be employed to reconstruct an 

improved 3D model of the yeast genome. In this study we utilized functional distances 

(CUFS) between gene pairs as constraints in the 3D reconstruction program (in addition 

to Hi-C constraints). The accuracy of the resultant models was determined by a series of 

15 previously reported signals that are related to yeast genomic organization, and how 

strongly these signals appeared in the generated reconstruction. Reconstructions that 

contained additional CUFS-constraints clearly led to significant improvement on these 

benchmarks in most cases (12 out of 15). These results support the conjecture that CUFS 

is strongly and directly related to the 3D genomic organization of genes. 

The correlation between 3D genomic distance and codon usage frequencies is 

comparable to the correlation between two different measurements of 3D genomic 

data 

Finally, in response to Cherry’s analysis
 
without binning, we note that his approach can 

be as misleading as any other, and may lead to absurd conclusions. We repeated his 

confusing analysis (Figure 2) for yeast distances (3DGD) computed based on two 

different genome-wide 3C-based experimental protocols – genome conformation capture 

(GCC) [15] and the 4C-based high-throughput method of Duan et al. [16] Computing the 

correlations between these datasets without bins resulted, naturally, in low correlations. 

The correlation between all pairwise distances in the two experiments is similar to the 

one observed between 3DGD and CUFS without bins (r=0.05, Spearman’s rho; even 

when we compared the contact frequencies of regions that were successfully monitored 

in both experiments, the correlation was only 0.44). Our conclusion is that this is due to 

the level of noise in such large-scale genomic data that is bound to distort signals related 

to raw pairwise distances. 



 

Figure 2: Comparison of Hi-C datasets using Cherry’s method. Distribution of 3DGD between genes in 

experiment 2 (4C method) given their distance in experiment 1 (GCC method), as denoted in the legend 

(Spearman’s rho between pairwise distances in the two datasets is r=0.05). 

The results suggest that according to Cherry’s method of using non-binned data, 

repeated experiments, and even similar variants of the Hi-C protocol, are loosely related, 

and therefore any attempt to study 3D genomic organization using Hi-C, including 

dozens of previous studies, is futile.  

More generally, this example demonstrates that analyzing complex biological phenomena 

and large scale NGS data with over-simplified analyses (like Cherry’s) is dangerous and 

misleading; to accurately understand and evaluate the results presented in our study the 

reader should read it carefully and thoroughly.   

It is our view that binning is a legitimate statistical method, as long as the employed 

methods are clearly explained in the paper and controlled for statistical significance. As 

with any other paper, abstracts and titles are limited in scope and should be interpreted in 

the context of the complete manuscript. We have argued here that the analyses in [1] are 

statistically sound and, given the current resolution and quality of data, support the 

conjecture that 3D genomic organization and gene function and expression are strongly 

related.  

A more general discussion  

In summary, we would like to conclude with a broader discussion. We believe that 

Cherry’s comment and our reply have a much broader scope, beyond the CUFS–3DGD 

relation discussed here. We believe that when evaluating the strength of the relation 

between variables, based on the output of a NGS experiment, the following points should 

be considered: 

1) The number of points should be accounted for, among others, via p-value(s) 

computation. Binning the data usually increases the correlation; however, on the other 

hand, a larger number of points usually decreases the correlation. A correlation of 0.9 

when there are 3 points is not significant while a correlation of 0.1 when there are 10
4
 



points (or bins) is most significant. Thus, reporting a correlation without considering the 

number of analyzed points is misleading. 

2) The biases and noise in the analyzed data. Recent NGS protocols introduce various 

types of non-trivial biases [4,17–19]. These usually cannot be dealt with based on 

traditional statistical approaches (e.g. a t-test). Often the strength of a correlation can’t be 

fully evaluated without tailoring specific filtering or signal processing methods related to 

the nature of the analyzed data. In addition, the strength of the correlation should be 

evaluated in light of the correlations obtained between two measurements of a certain 

relevant variable (which can serve as an upper bound on the possible obtained 

correlation). 

3) The number of significant variables believed to be involved in the analyzed system. 

When studying complex intracellular biological processes that include dozens of 

relevant/central variables it is naïve to expect that the variance of one variable can be 

fully explained by another. The number of expected relevant variables should be 

considered when evaluating the strength of a correlation. For example, in the case of a 

system with 50 variables a correlation of 0.15 may be considered high, relevant, and 

biologically interesting. 
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