Null cone membership for the left right action on tuples of matrices

Gabor Ivanyos ${ }^{1}$, Jimmy Qiao², K V Subrahmanyam ${ }^{3}$
${ }^{1}$ Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest
${ }^{2}$ Center for Quantum Computation and Intelligent Systems, Univ of Technology, Sydney
${ }^{3}$ Chennai Mathematical Institute, Chennai
Tel Aviv University, Feb 09, 2016

Outline

(1) Background and problem statement

- Problem statement
- Invariant theory

2 Using Gurvits algorithm
(3) Progress via Blow-ups

- Regularity
- Algorithmic and degree bounds
- Degree bounds
- Polynomial bound - degree of generation
- Main lemma and blow ups using division algebras
- Proof of the main lemma
- Matrix of maximum rank
- Division algebras

Outline

(1) Background and problem statement - Problem statement - Invariant theory algebras

- $\operatorname{Mat}(n, \mathbb{F})-n \times n$ matrices with entries in \mathbb{F}.
- Mat $(n, \mathbb{F})-n \times n$ matrices with entries in \mathbb{F}.
- $B_{1}, B_{2}, \ldots, B_{m} \in \operatorname{Mat}(n, \mathbb{F})$.
- Mat $(n, \mathbb{F})-n \times n$ matrices with entries in \mathbb{F}.
- $B_{1}, B_{2}, \ldots, B_{m} \in \operatorname{Mat}(n, \mathbb{F})$.
- $\mathcal{B}-\mathbb{F}$-linear span of the matrices $\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$.
- Mat $(n, \mathbb{F})-n \times n$ matrices with entries in \mathbb{F}.
- $B_{1}, B_{2}, \ldots, B_{m} \in \operatorname{Mat}(n, \mathbb{F})$.
- $\mathcal{B}-\mathbb{F}$-linear span of the matrices $\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$.

Shrunk subspaces

A subspace $U \leqslant \mathbb{F}^{n}$ is c-shrunk by \mathcal{B} if there is a subspace $W \subseteq \mathbb{F}^{n}$ such that $\operatorname{dim} \mathrm{W} \leqslant \operatorname{dim} U-c$, and for all matrices B in $\mathcal{B},\langle B U\rangle \subseteq W$.

- Mat $(n, \mathbb{F})-n \times n$ matrices with entries in \mathbb{F}.
- $B_{1}, B_{2}, \ldots, B_{m} \in \operatorname{Mat}(n, \mathbb{F})$.
- $\mathcal{B}-\mathbb{F}$-linear span of the matrices $\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$.

Shrunk subspaces

A subspace $U \leqslant \mathbb{F}^{n}$ is c-shrunk by \mathcal{B} if there is a subspace $W \subseteq \mathbb{F}^{n}$ such that $\operatorname{dim} W \leqslant \operatorname{dim} U-c$, and for all matrices B in $\mathcal{B},\langle B U\rangle \subseteq W$.

Non commutative rank

$n-\max (c \in\{0,1, \ldots, n\} \mid \exists$ subspace c-shrunk by $\mathcal{B})$ [FR04].

- Mat $(n, \mathbb{F})-n \times n$ matrices with entries in \mathbb{F}.
- $B_{1}, B_{2}, \ldots, B_{m} \in \operatorname{Mat}(n, \mathbb{F})$.
- $\mathcal{B}-\mathbb{F}$-linear span of the matrices $\left\langle B_{1}, B_{2}, \ldots, B_{m}\right\rangle$.

Shrunk subspaces

A subspace $U \leqslant \mathbb{F}^{n}$ is c-shrunk by \mathcal{B} if there is a subspace $W \subseteq \mathbb{F}^{n}$ such that $\operatorname{dim} W \leqslant \operatorname{dim} U-c$, and for all matrices B in $\mathcal{B},\langle B U\rangle \subseteq W$.

Non commutative rank

$n-\max (c \in\{0,1, \ldots, n\} \mid \exists$ subspace c-shrunk by $\mathcal{B})$ [FR04].
Problem NCrk: What is the noncommutative rank?

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?
Problem Rk: What is the commutative rank? [Edm67]

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?
Problem Rk: What is the commutative rank? [Edm67] - Rk \leqslant NCrk.

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?
Problem Rk: What is the commutative rank? [Edm67]

- Rk \leqslant NCrk.
- For the family of 3×3 skew symmetric matrices, $2=R k<$ NCrk=3.

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?
Problem Rk: What is the commutative rank? [Edm67]

- Rk \leqslant NCrk.
- For the family of 3×3 skew symmetric matrices, $2=R k<$ NCrk=3.

> Theorem - Gurvits
> Over \mathbb{Q}, given a matrix space $\langle\mathcal{B}\rangle$ there is a deterministic polynomial time algorithm which will output Rk=n, or NCrk $<n$, and its output is guaranteed to be correct when either $\operatorname{NCrk}(\mathcal{B})<n$ or $\operatorname{Rk}(\mathcal{B})=n$.

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?
Problem Rk: What is the commutative rank? [Edm67]

- Rk \leqslant NCrk.
- For the family of 3×3 skew symmetric matrices, $2=R k<$ NCrk=3.

> Theorem - Gurvits
> Over \mathbb{Q}, given a matrix space $\langle\mathcal{B}\rangle$ there is a deterministic polynomial time algorithm which will output Rk=n, or NCrk $<n$, and its output is guaranteed to be correct when either $\operatorname{NCrk}(\mathcal{B})<n$ or $\operatorname{Rk}(\mathcal{B})=n$.

The algorithm may give a wrong answer in the case when $n=$ NCrk $>$ Rk.

Left right action

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, X_{k}$, an $n \times n$ matrix with variable entries $x_{i j}^{k}$.

Left right action

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, X_{k}$, an $n \times n$ matrix with variable entries $x_{i j}^{k}$.
- $\mathrm{SL}_{n} \times \mathrm{SL}_{n} \frown \mathcal{X}$,

Left right action

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, X_{k}$, an $n \times n$ matrix with variable entries $x_{i j}^{k}$.
- $\mathrm{SL}_{n} \times \mathrm{SL}_{n} \frown \mathcal{X}$, $(A, B) \cdot\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}=\left\{A X_{1} B^{t}, A X_{2} B^{t}, \ldots, A X_{m} B^{t}\right\}$.

Left right action

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, X_{k}$, an $n \times n$ matrix with variable entries $x_{i j}^{k}$.
- $\mathrm{SL}_{n} \times \mathrm{SL}_{n} \frown \mathcal{X}$, $(A, B) \cdot\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}=\left\{A X_{1} B^{t}, A X_{2} B^{t}, \ldots, A X_{m} B^{t}\right\}$.

Classical invariant theory questions

- What are the polynomial functions invariant under the action? -
- The ring of invariants is known to be finitely generated bound on the degree in which this is generated?

Left right action

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, X_{k}$, an $n \times n$ matrix with variable entries $x_{i j}^{k}$.
- $\mathrm{SL}_{n} \times \mathrm{SL}_{n} \frown \mathcal{X}$, $(A, B) \cdot\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}=\left\{A X_{1} B^{t}, A X_{2} B^{t}, \ldots, A X_{m} B^{t}\right\}$.

Classical invariant theory questions

- What are the polynomial functions invariant under the action? - well understood characteristic zero fields,[Sch91, DZ01, ANS07], infinite fields [DZ01].
- The ring of invariants is known to be finitely generated bound on the degree in which this is generated?

Left right action

- $\mathcal{X}=\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}, X_{k}$, an $n \times n$ matrix with variable entries $x_{i j}^{k}$.
- $\mathrm{SL}_{n} \times \mathrm{SL}_{n} \frown \mathcal{X}$, $(A, B) \cdot\left\{X_{1}, X_{2}, \ldots, X_{m}\right\}=\left\{A X_{1} B^{t}, A X_{2} B^{t}, \ldots, A X_{m} B^{t}\right\}$.

Classical invariant theory questions

- What are the polynomial functions invariant under the action? - well understood characteristic zero fields,[Sch91, DZ01, ANS07], infinite fields [DZ01].
- The ring of invariants is known to be finitely generated bound on the degree in which this is generated? characteristic zero fields, $\exp \left(n^{2}\right)$, [Der01].

Membership in the null cone

Membership in the null cone

Null cone for the left right action

Is defined as the m-tuple of n by n matrices on which all all invariant polynomial functions vanish

Membership in the null cone

Null cone for the left right action

Is defined as the m-tuple of n by n matrices on which all all invariant polynomial functions vanish i.e $f\left(B_{1}, B_{2}, \ldots, B_{m}\right)=0$ for all invariant polynomial functions f.

Membership in the null cone

Null cone for the left right action

Is defined as the m-tuple of n by n matrices on which all all invariant polynomial functions vanish i.e $f\left(B_{1}, B_{2}, \ldots, B_{m}\right)=0$ for all invariant polynomial functions f.

- Over infinite fields - an alternate characterization -

Membership in the null cone

Null cone for the left right action

Is defined as the m-tuple of n by n matrices on which all all invariant polynomial functions vanish i.e $f\left(B_{1}, B_{2}, \ldots, B_{m}\right)=0$ for all invariant polynomial functions f.

- Over infinite fields - an alternate characterization $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ such that \mathcal{B} has a c-shrunk subspace for $c>0$ [BD06, DZ01, ANS07].

Membership in the null cone

Null cone for the left right action

Is defined as the m-tuple of n by n matrices on which all all invariant polynomial functions vanish i.e $f\left(B_{1}, B_{2}, \ldots, B_{m}\right)=0$ for all invariant polynomial functions f.

- Over infinite fields - an alternate characterization $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ such that \mathcal{B} has a c-shrunk subspace for $c>0$ [BD06, DZ01, ANS07].
- A description of the invariants:

Let $T_{1}, T_{2}, \ldots, T_{m}$ be matrices in $\operatorname{Mat}(d, \mathbb{F})$. Then $\operatorname{det}\left(T_{1} \otimes X_{1}+T_{2} \otimes X_{2}+\ldots+T_{m} \otimes X_{m}\right)$ is an invariant of degree $n d$.

Membership in the null cone

Null cone for the left right action

Is defined as the m-tuple of n by n matrices on which all all invariant polynomial functions vanish i.e $f\left(B_{1}, B_{2}, \ldots, B_{m}\right)=0$ for all invariant polynomial functions f.

- Over infinite fields - an alternate characterization $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ such that \mathcal{B} has a c-shrunk subspace for $c>0$ [BD06, DZ01, ANS07].
- A description of the invariants:

Let $T_{1}, T_{2}, \ldots, T_{m}$ be matrices in $\operatorname{Mat}(d, \mathbb{F})$. Then $\operatorname{det}\left(T_{1} \otimes X_{1}+T_{2} \otimes X_{2}+\ldots+T_{m} \otimes X_{m}\right)$ is an invariant of degree $n d$. Over infinite fields, all invariants are obtained this way.

Outline

(1) Background and problem statement

- Problem statement
- Invariant theory
(2) Using Gurvits algorithm
(3) Progress via Blow-ups
- Regularity
- Algorithmic and degree bounds
- Degree bounds
- Polynomial bound - degree of generation
- Main lemma and blow ups using division algebras
- Proof of the main lemma

Suggested algorithm

Suggested algorithm

Observation

If B_{1} shrinks a subspace $U \in \mathbb{F}^{n}$, and $T_{1} \in \operatorname{Mat}(d, \mathbb{F})$ then $T_{1} \otimes B_{1}$ shrinks the subspace $U \otimes \mathbb{F}^{d}$.

Suggested algorithm

Observation

If B_{1} shrinks a subspace $U \in \mathbb{F}^{n}$, and $T_{1} \in \operatorname{Mat}(d, \mathbb{F})$ then $T_{1} \otimes B_{1}$ shrinks the subspace $U \otimes \mathbb{F}^{d}$.

If \mathcal{B} shrinks U, then so will its d-th blow-up

Suggested algorithm

Observation

If B_{1} shrinks a subspace $U \in \mathbb{F}^{n}$, and $T_{1} \in \operatorname{Mat}(d, \mathbb{F})$ then $T_{1} \otimes B_{1}$ shrinks the subspace $U \otimes \mathbb{F}^{d}$.

If \mathcal{B} shrinks U, then so will its d-th blow-up
$\mathcal{B}^{\{d, d\}}:=\left\langle T_{1} \otimes B_{1}, T_{2} \otimes B_{2}, \ldots, T_{m} \otimes B_{m}\right\rangle, T_{i} \in \operatorname{Mat}(d, \mathbb{F})$.

Suggested algorithm

Observation

If B_{1} shrinks a subspace $U \in \mathbb{F}^{n}$, and $T_{1} \in \operatorname{Mat}(d, \mathbb{F})$ then $T_{1} \otimes B_{1}$ shrinks the subspace $U \otimes \mathbb{F}^{d}$.

If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d, d\}}:=\left\langle T_{1} \otimes B_{1}, T_{2} \otimes B_{2}, \ldots, T_{m} \otimes B_{m}\right\rangle, T_{i} \in \operatorname{Mat}(d, \mathbb{F})$.

- for $i=1,2, \ldots$, compute (a basis of) $\mathcal{B}^{\{i, i\}}$.

Suggested algorithm

Observation

If B_{1} shrinks a subspace $U \in \mathbb{F}^{n}$, and $T_{1} \in \operatorname{Mat}(d, \mathbb{F})$ then $T_{1} \otimes B_{1}$ shrinks the subspace $U \otimes \mathbb{F}^{d}$.

If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d, d\}}:=\left\langle T_{1} \otimes B_{1}, T_{2} \otimes B_{2}, \ldots, T_{m} \otimes B_{m}\right\rangle, T_{i} \in \operatorname{Mat}(d, \mathbb{F})$.

- for $i=1,2, \ldots$, compute (a basis of) $\mathcal{B}^{\{i, i\}}$.
- determine if there is a nonsingular matrix in the blow-up.

Suggested algorithm

Observation

If B_{1} shrinks a subspace $U \in \mathbb{F}^{n}$, and $T_{1} \in \operatorname{Mat}(d, \mathbb{F})$ then $T_{1} \otimes B_{1}$ shrinks the subspace $U \otimes \mathbb{F}^{d}$.

If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d, d\}}:=\left\langle T_{1} \otimes B_{1}, T_{2} \otimes B_{2}, \ldots, T_{m} \otimes B_{m}\right\rangle, T_{i} \in \operatorname{Mat}(d, \mathbb{F})$.

- for $i=1,2, \ldots$, compute (a basis of) $\mathcal{B}^{\{i, i\}}$.
- determine if there is a nonsingular matrix in the blow-up.

Question How long do we go on?

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.
- Else, for some $d \leqslant \sigma, \exists T_{i} \in \operatorname{Mat}(d, \mathbb{F}), i=1, \ldots, m$, $\operatorname{det}\left(T_{1} \otimes B_{1}+T_{2} \otimes B_{2}+\ldots+T_{m} \otimes B_{m}\right) \neq 0$

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.
- Else, for some $d \leqslant \sigma, \exists T_{i} \in \operatorname{Mat}(d, \mathbb{F}), i=1, \ldots, m$, $\operatorname{det}\left(T_{1} \otimes B_{1}+T_{2} \otimes B_{2}+\ldots+T_{m} \otimes B_{m}\right) \neq 0$ i.e. $\mathcal{B}^{\{d, d\}}$ contains a nonsingular matrix.

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.
- Else, for some $d \leqslant \sigma, \exists T_{i} \in \operatorname{Mat}(d, \mathbb{F}), i=1, \ldots, m$, $\operatorname{det}\left(T_{1} \otimes B_{1}+T_{2} \otimes B_{2}+\ldots+T_{m} \otimes B_{m}\right) \neq 0$ i.e. $\mathcal{B}^{\{d, d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage d.

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.
- Else, for some $d \leqslant \sigma, \exists T_{i} \in \operatorname{Mat}(d, \mathbb{F}), i=1, \ldots, m$, $\operatorname{det}\left(T_{1} \otimes B_{1}+T_{2} \otimes B_{2}+\ldots+T_{m} \otimes B_{m}\right) \neq 0$ i.e. $\mathcal{B}^{\{d, d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage d.
- For $i=1: \sigma$ run Gurvits' algorithm on $\mathcal{B}^{i, i}$:

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.
- Else, for some $d \leqslant \sigma, \exists T_{i} \in \operatorname{Mat}(d, \mathbb{F}), i=1, \ldots, m$, $\operatorname{det}\left(T_{1} \otimes B_{1}+T_{2} \otimes B_{2}+\ldots+T_{m} \otimes B_{m}\right) \neq 0$ i.e. $\mathcal{B}^{\{d, d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage d.
- For $i=1: \sigma$ run Gurvits' algorithm on $\mathcal{B}^{i, i}$:
- If Gurvits says $\operatorname{Rk}\left(\mathcal{B}^{i, i}\right)=i * n$, output $\operatorname{Rk}(\mathcal{B})=n$; exit.

Implications of degree bound σ

Theorem

[IQS15a] Over \mathbb{Q}, if the nullcone is defined by elements of degree $\leqslant \sigma=\sigma(n, m)$,there exists a deterministic $\operatorname{poly}(n, m, \sigma)$ algorithm deciding if $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$ is in the null cone.

- If $\left(B_{1}, \ldots, B_{m}\right)$ is in the null cone all blow-ups $\mathcal{B}^{\{d, d\}}$ shrink a subspace.
- Else, for some $d \leqslant \sigma, \exists T_{i} \in \operatorname{Mat}(d, \mathbb{F}), i=1, \ldots, m$, $\operatorname{det}\left(T_{1} \otimes B_{1}+T_{2} \otimes B_{2}+\ldots+T_{m} \otimes B_{m}\right) \neq 0$ i.e. $\mathcal{B}^{\{d, d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage d.
- For $i=1: \sigma$ run Gurvits' algorithm on $\mathcal{B}^{i, i}$:
- If Gurvits says $\operatorname{Rk}\left(\mathcal{B}^{i, i}\right)=i * n$, output $\operatorname{Rk}(\mathcal{B})=n$; exit.
- Output $\operatorname{NCrk}(\mathcal{B})<n$.

Suggested algorithm

Suggested algorithm

Can we modify the suggested algorithm suitably?

Suggested algorithm

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its d-th blow-up.

Suggested algorithm

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its d-th blow-up.

- for $i=1,2, \ldots$, compute (a basis of) $\left\langle\mathcal{B}^{\{i, i\}}\right\rangle$,

Suggested algorithm

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its d-th blow-up.

- for $i=1,2, \ldots$, compute (a basis of) $\left\langle\mathcal{B}^{\{i, i\}}\right\rangle$,
- determine if there is a nonsingular matrix in the blow-up.

Suggested algorithm

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its d-th blow-up.

- for $i=1,2, \ldots$, compute (a basis of) $\left\langle\mathcal{B}^{\{i, i\}}\right\rangle$,
- determine if there is a nonsingular matrix in the blow-up.

However...finding a nonsingular matrix in the span will be difficult.

Suggested algorithm

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its d-th blow-up.

- for $i=1,2, \ldots$, compute (a basis of) $\left\langle\mathcal{B}^{\{i, i\}}\right\rangle$,and a matrix M_{i-1}.
- determine if there is a nonsingular matrix in the blow-up.

Suggested algorithm

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its d-th blow-up.

- for $i=1,2, \ldots$, compute (a basis of) $\left\langle\mathcal{B}^{\{i, i\}}\right\rangle$,and a matrix M_{i-1}.
- determine if there is a nonsingular matrix in the blow-up.
- Using M_{i-1}, update and get M_{i}, achieving some measurable progress.

Outline

Background and problem statement

- Problem statement
- Invariant theory
(2) Using Gurvits algorithm
(3) Progress via Blow-ups
- Regularity
- Algorithmic and degree bounds
- Degree bounds
- Polynomial bound - degree of generation
- Main lemma and blow ups using division algebras
- Proof of the main lemma

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{A}=\mathcal{B}^{\{d, d\}}$, assume that $|\mathbb{F}|>2 r d$. Given a matrix $A \in \mathcal{A}$ with $\operatorname{rk} A>(r-1) d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank $r d$). This algorithm uses $\operatorname{poly}(n d)$ operations and, over \mathbb{Q}, the algorithm runs in polynomial time.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{A}=\mathcal{B}^{\{d, d\}}$, assume that $|\mathbb{F}|>2 r d$.
Given a matrix $A \in \mathcal{A}$ with $\mathrm{rk} A>(r-1) d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank $r d$). This algorithm uses $\operatorname{poly}(n d)$ operations and, over \mathbb{Q}, the algorithm runs in polynomial time.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{A}=\mathcal{B}^{\{d, d\}}$, assume that $|\mathbb{F}|>2 r d$. Given a matrix $A \in \mathcal{A}$ with $\operatorname{rk} A>(r-1) d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses $\operatorname{poly}(n d)$ operations and, over \mathbb{Q}, the algorithm runs in polynomial time.

The matrix with maximum rank in the d-th blow-up has rank a multiple of d.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{A}=\mathcal{B}^{\{d, d\}}$, assume that $|\mathbb{F}|>2 r d$. Given a matrix $A \in \mathcal{A}$ with $\mathrm{rk} A>(r-1) d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank r d). This algorithm uses $\operatorname{poly}(n d)$ operations and, over \mathbb{Q}, the algorithm runs in polynomial time.

The matrix with maximum rank in the d-th blow-up has rank a multiple of d.

Starting with a matrix of rank $(r-1) d+1$ in \mathcal{A}, we construct a matrix of rank $r d$ in \mathcal{A} - a constructive proof.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{A}=\mathcal{B}^{\{d, d\}}$, assume that $|\mathbb{F}|>2 r d$. Given a matrix $A \in \mathcal{A}$ with $\operatorname{rk} A>(r-1) d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank $r d$). This algorithm uses $\operatorname{poly}(n d)$ operations and, over \mathbb{Q}, the algorithm runs in polynomial time.

The matrix with maximum rank in the d-th blow-up has rank a multiple of d.

Starting with a matrix of rank $(r-1) d+1$ in \mathcal{A}, we construct a matrix of rank $r d$ in \mathcal{A} - a constructive proof.

Central division algebras almost do our job.

Suggested algorithm

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.
2 Determine if this is the matrix with largest rank in the family.

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.
2 Determine if this is the matrix with largest rank in the family.
3 If not, consider the $r+1$-th blow blow up $\mathcal{A}=\mathcal{B}^{r+1, r+1}$.

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.
2 Determine if this is the matrix with largest rank in the family.
3 If not, consider the $r+1$-th blow blow up $\mathcal{A}=\mathcal{B}^{r+1, r+1}$.
4 Starting with a rank r matrix in this blow up, find a matrix of rank at least $r(r+1)+1$.

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.
2 Determine if this is the matrix with largest rank in the family.
3 If not, consider the $r+1$-th blow blow up $\mathcal{A}=\mathcal{B}^{r+1, r+1}$.
4 Starting with a rank r matrix in this blow up, find a matrix of rank at least $r(r+1)+1$.
5 Use regularity of blow-ups to get a matrix of rank $(r+1) *(r+1)$ in the blow up.

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.
2 Determine if this is the matrix with largest rank in the family.
3 If not, consider the $r+1$-th blow blow up $\mathcal{A}=\mathcal{B}^{r+1, r+1}$.
4 Starting with a rank r matrix in this blow up, find a matrix of rank at least $r(r+1)+1$.
5 Use regularity of blow-ups to get a matrix of rank $(r+1) *(r+1)$ in the blow up.
6 Loop back to step 2 with $\mathcal{B}=\mathcal{A}$ and $r=r+1$.

Regularity

Realizing the algorithm

Realizing the algorithm

Issues to be addressed:

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.
- Blowing down matrices to keep matrix size polynomial.

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.
- Blowing down matrices to keep matrix size polynomial.
- Knowing when to stop.

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.
- Blowing down matrices to keep matrix size polynomial.
- Identifying the shrunk subspace, if any.
- Knowing when to stop.

Algorithmic and degree bounds

Upper bounds

Upper bounds

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma=O\left(n^{2} 4^{n^{2}}\right)$. The invariant ring is generated in degree $\beta=O\left(n^{2} \sigma^{2}\right)$.

Upper bounds

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma=O\left(n^{2} 4^{n^{2}}\right)$. The invariant ring is generated in degree $\beta=O\left(n^{2} \sigma^{2}\right)$.
- [IQS15a] When \mathbb{F} is large, a poly ($n+1$!) algorithm for computing $\operatorname{Rk}(\mathcal{B})$ so $\sigma \leqslant n+1$!. Over algebraically closed fields of char $0, \beta=O\left(n^{4}(n+1!)^{2}\right)$.

Algorithmic and degree bounds

Upper bounds

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma=O\left(n^{2} 4^{n^{2}}\right)$. The invariant ring is generated in degree $\beta=O\left(n^{2} \sigma^{2}\right)$.
- [IQS15a] When \mathbb{F} is large, a poly $(n+1!)$ algorithm for computing $\operatorname{Rk}(\mathcal{B})$ so $\sigma \leqslant n+1$!. Over algebraically closed fields of char $0, \beta=O\left(n^{4}(n+1!)^{2}\right)$.
- [GGOW15] used the degree bound from [IQS15a] - give a polynomial time algorithm for the nullcone membership over fields of characteristic zero.

Upper bounds

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma=O\left(n^{2} 4^{n^{2}}\right)$. The invariant ring is generated in degree $\beta=O\left(n^{2} \sigma^{2}\right)$.
- [IQS15a] When \mathbb{F} is large, a poly $(n+1$!) algorithm for computing $\operatorname{Rk}(\mathcal{B})$ so $\sigma \leqslant n+1$!. Over algebraically closed fields of char $0, \beta=O\left(n^{4}(n+1!)^{2}\right)$.
- [GGOW15] used the degree bound from [IQS15a] - give a polynomial time algorithm for the nullcone membership over fields of characteristic zero.
- [DM15] use the regularity under blow-up lemma of [IQS15a], and a convexity argument $-\sigma \leqslant O\left(n^{2}\right)$, over algebraically closed fields, $\beta=O\left(n^{6}\right)$.

Upper bounds

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma=O\left(n^{2} 4^{n^{2}}\right)$. The invariant ring is generated in degree $\beta=O\left(n^{2} \sigma^{2}\right)$.
- [IQS15a] When \mathbb{F} is large, a poly $(n+1!)$ algorithm for computing $\operatorname{Rk}(\mathcal{B})$ so $\sigma \leqslant n+1$!. Over algebraically closed fields of char $0, \beta=O\left(n^{4}(n+1!)^{2}\right)$.
- [GGOW15] used the degree bound from [IQS15a] - give a polynomial time algorithm for the nullcone membership over fields of characteristic zero.
- [DM15] use the regularity under blow-up lemma of [IQS15a], and a convexity argument $-\sigma \leqslant O\left(n^{2}\right)$, over algebraically closed fields, $\beta=O\left(n^{6}\right)$.
- [IQS15b] Show $\sigma \leqslant O\left(n^{2}\right)$ over all large fields. Two proofs - a constructive version of [DM15] and a simple proof based on regularity under blow-up. Get the above results.

Polynomial bound - degree of generation

Blow-up upper bound of $n+1$

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Proof [IQS15b]

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$.
Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O\left(n^{6}\right)$.
Proof [IQS15b]

- Take $d=n+2$.

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Proof [IQS15b]

- Take $d=n+2$.
- So the largest ranked matrix in a $n+1 \times n+1$ window is $(n+1) *(n-1)=n^{2}-1$.

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$.
Over \mathbb{Q} the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Proof [IQS15b]

- Take $d=n+2$.
- So the largest ranked matrix in a $n+1 \times n+1$ window is $(n+1) *(n-1)=n^{2}-1$.
- But we add to such a matrix at most $2 n$ linearly independent rows and columns.

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$.
Over \mathbb{Q} the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Proof [IQS15b]

- Take $d=n+2$.
- So the largest ranked matrix in a $n+1 \times n+1$ window is $(n+1) *(n-1)=n^{2}-1$.
- But we add to such a matrix at most $2 n$ linearly independent rows and columns.
- So rank is upper bounded by $n^{2}-1+2 n$,

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$.
Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Proof [IQS15b]

- Take $d=n+2$.
- So the largest ranked matrix in a $n+1 \times n+1$ window is $(n+1) *(n-1)=n^{2}-1$.
- But we add to such a matrix at most $2 n$ linearly independent rows and columns.
- So rank is upper bounded by $n^{2}-1+2 n$, cannot be $(n+2) * n$.

Blow-up upper bound of $n+1$

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1, n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d, d}$, for all $d \geqslant n+1$. Over infinite fields the null cone is cut by invariants of degree $O\left(n^{2}\right)$.
Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O\left(n^{6}\right)$.

Proof [IQS15b]

- Take $d=n+2$.
- So the largest ranked matrix in a $n+1 \times n+1$ window is $(n+1) *(n-1)=n^{2}-1$.
- But we add to such a matrix at most $2 n$ linearly independent rows and columns.
- So rank is upper bounded by $n^{2}-1+2 n$, cannot be $(n+2) * n$. Regularity says rank is at most

$$
(n+2) *(n-1)=n^{2}+n-2 \text { QED }
$$

Blowing-up using a division algebra.

Blowing-up using a division algebra.

Claim

Let \mathbb{F}^{\prime} be an extension field of \mathbb{F}, and Let D be a central division algebra over \mathbb{F}^{\prime} of dimension d^{2} over \mathbb{F}^{\prime}, and let \mathbb{K} be a maximal field in D with extension degree d over \mathbb{F}^{\prime}. Let
$\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$ be a representation of D over \mathbb{K}. Then every matrix in $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ has rank divisible by d over \mathbb{K}.

Blowing-up using a division algebra.

Claim

Let \mathbb{F}^{\prime} be an extension field of \mathbb{F}, and Let D be a central division algebra over \mathbb{F}^{\prime} of dimension d^{2} over \mathbb{F}^{\prime}, and let \mathbb{K} be a maximal field in D with extension degree d over \mathbb{F}^{\prime}. Let
$\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$ be a representation of D over \mathbb{K}. Then every matrix in $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ has rank divisible by d over \mathbb{K}.

- $D \otimes \mathbb{K} \cong \operatorname{Mat}(\mathbb{K})$. Explicit matrices describing the \mathbb{F}^{\prime}-algebra $D \cong D \otimes 1$ can be written down easily.

Blowing-up using a division algebra.

Claim

Let \mathbb{F}^{\prime} be an extension field of \mathbb{F}, and Let D be a central division algebra over \mathbb{F}^{\prime} of dimension d^{2} over \mathbb{F}^{\prime}, and let \mathbb{K} be a maximal field in D with extension degree d over \mathbb{F}^{\prime}. Let
$\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$ be a representation of D over \mathbb{K}. Then every matrix in $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ has rank divisible by d over \mathbb{K}.

- $D \otimes \mathbb{K} \cong \operatorname{Mat}(\mathbb{K})$. Explicit matrices describing the \mathbb{F}^{\prime}-algebra $D \cong D \otimes 1$ can be written down easily.
- Regard $\mathbb{K}^{d n} \cong \mathbb{F}^{\prime d^{2} n}$ as a module over $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$.

Blowing-up using a division algebra.

Claim

Let \mathbb{F}^{\prime} be an extension field of \mathbb{F}, and Let D be a central division algebra over \mathbb{F}^{\prime} of dimension d^{2} over \mathbb{F}^{\prime}, and let \mathbb{K} be a maximal field in D with extension degree d over \mathbb{F}^{\prime}. Let
$\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$ be a representation of D over \mathbb{K}. Then every matrix in $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ has rank divisible by d over \mathbb{K}.

- $D \otimes \mathbb{K} \cong \operatorname{Mat}(\mathbb{K})$. Explicit matrices describing the \mathbb{F}^{\prime}-algebra $D \cong D \otimes 1$ can be written down easily.
- Regard $\mathbb{K}^{d n} \cong \mathbb{F}^{\prime d^{2} n}$ as a module over $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$.
- Since $D \otimes D^{o p} \cong \operatorname{Mat}\left(d, \mathbb{F}^{\prime}\right) \subset \operatorname{Mat}(\mathbb{K})$, the centralizer of the action of $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ is id $\otimes D^{o p} \cong D^{\circ D}$.

Blowing-up using a division algebra.

Claim

Let \mathbb{F}^{\prime} be an extension field of \mathbb{F}, and Let D be a central division algebra over \mathbb{F}^{\prime} of dimension d^{2} over \mathbb{F}^{\prime}, and let \mathbb{K} be a maximal field in D with extension degree d over \mathbb{F}^{\prime}. Let
$\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$ be a representation of D over \mathbb{K}. Then every matrix in $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ has rank divisible by d over \mathbb{K}.

- $D \otimes \mathbb{K} \cong \operatorname{Mat}(\mathbb{K})$. Explicit matrices describing the \mathbb{F}^{\prime}-algebra $D \cong D \otimes 1$ can be written down easily.
- Regard $\mathbb{K}^{d n} \cong \mathbb{F}^{\prime d^{2} n}$ as a module over $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$.
- Since $D \otimes D^{o p} \cong \operatorname{Mat}\left(d, \mathbb{F}^{\prime}\right) \subset \operatorname{Mat}(\mathbb{K})$, the centralizer of the action of $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ is id $\otimes D^{o p} \cong D^{o p}$.
- For all A in $\operatorname{Mat}(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D), A \mathbb{F}^{\prime d^{2} n}$ is a $D^{o p}$-submodule, and so its dimension over \mathbb{F}^{\prime} is divisible by d^{2}, so dimension over \mathbb{K} is divisible by d. But this is the rank of A^{\prime}.

Recap

Main Lemma

For $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{A}=\mathcal{B}^{\{d, d\}}$, assume that $|\mathbb{F}|>2 r d$. Given a matrix $A \in \mathcal{A}$ with $\operatorname{rk} A>(r-1) d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank $r d$). This algorithm uses $\operatorname{poly}(n d)$ operations and, over \mathbb{Q}, the algorithm runs in polynomial time.

Proof of the main lemma

Proof

Proof

- Assuming we have a division algebra and a representation of it.

Proof

- Assuming we have a division algebra and a representation of it.
- Induction on r : Base case: $r=1$ - there is at least one nonzero matrix B in $\mathcal{B} ;(i, j)$-th entry is nonzero then we have a $d \times d$ block in $B \otimes /$ which is non zero, of rank d.

Proof

- Assuming we have a division algebra and a representation of it.
- Induction on r : Base case: $r=1$ - there is at least one nonzero matrix B in $\mathcal{B} ;(i, j)$-th entry is nonzero then we have a $d \times d$ block in $B \otimes /$ which is non zero, of rank d.
- By induction, the principal $(r-1)$ window of $A^{\prime} \in \mathcal{A}=\mathcal{B}^{\{d, d\}}$ has non-zero determinant.

Proof

- Assuming we have a division algebra and a representation of it.
- Induction on r : Base case: $r=1$ - there is at least one nonzero matrix B in $\mathcal{B} ;(i, j)$-th entry is nonzero then we have a $d \times d$ block in $B \otimes /$ which is non zero, of rank d.
- By induction, the principal $(r-1)$ window of $A^{\prime} \in \mathcal{A}=\mathcal{B}^{\{d, d\}}$ has non-zero determinant. $\exists \lambda, \mu$, with the principal $r-1$ window of $\lambda * A+\mu A^{\prime}$ having non-zero determinant and the principal r-window having rank at least $(r-1) d+1$.

Proof

- Assuming we have a division algebra and a representation of it.
- Induction on r : Base case: $r=1$ - there is at least one nonzero matrix B in $\mathcal{B} ;(i, j)$-th entry is nonzero then we have a $d \times d$ block in $B \otimes /$ which is non zero, of rank d.
- By induction, the principal $(r-1)$ window of $A^{\prime} \in \mathcal{A}=\mathcal{B}^{\{d, d\}}$ has non-zero determinant. $\exists \lambda$, μ, with the principal $r-1$ window of $\lambda * A+\mu A^{\prime}$ having non-zero determinant and the principal r-window having rank at least $(r-1) d+1$.
- Wlog we have matrix of rank at least $(n-1) d+1$ with the principal $n-1$ window having a nonsingular matrix.

Proof of main lemma

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.
- $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{Mat}(d, \mathbb{K})$. Then $\mathcal{A}^{\prime}=\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ is a \mathbb{K}-linear subspace of $\operatorname{Mat}(n, \mathbb{K}) \otimes \operatorname{Mat}(d, \mathbb{K})$.

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.
- $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{Mat}(d, \mathbb{K})$. Then $\mathcal{A}^{\prime}=\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ is a \mathbb{K}-linear subspace of $\operatorname{Mat}(n, \mathbb{K}) \otimes \operatorname{Mat}(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}^{\prime} linear space. Its \mathbb{K} linear span is \mathcal{A}^{\prime}.

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.
- $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{Mat}(d, \mathbb{K})$. Then $\mathcal{A}^{\prime}=\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ is a \mathbb{K}-linear subspace of $\operatorname{Mat}(n, \mathbb{K}) \otimes \operatorname{Mat}(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}^{\prime} linear space. Its \mathbb{K} linear span is \mathcal{A}^{\prime}.
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least $(n-1) d+1$.

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.
- $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{Mat}(d, \mathbb{K})$. Then $\mathcal{A}^{\prime}=\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ is a \mathbb{K}-linear subspace of $\operatorname{Mat}(n, \mathbb{K}) \otimes \operatorname{Mat}(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}^{\prime} linear space. Its \mathbb{K} linear span is \mathcal{A}^{\prime}.
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least $(n-1) d+1$.
- All matrices in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ have rank nd (over \mathbb{K}) so \tilde{A} has rank nd

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.
- $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{Mat}(d, \mathbb{K})$. Then $\mathcal{A}^{\prime}=\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ is a \mathbb{K}-linear subspace of $\operatorname{Mat}(n, \mathbb{K}) \otimes \operatorname{Mat}(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}^{\prime} linear space. Its \mathbb{K} linear span is \mathcal{A}^{\prime}.
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least $(n-1) d+1$.
- All matrices in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ have rank nd (over \mathbb{K}) so \tilde{A} has rank nd
- Because $\mathbb{F} \geqslant 2 n d$, we can find a matrix in \mathcal{A} of rank nd using ideas from [dGIR96].

Proof of main lemma

- Let $\rho: D \rightarrow \operatorname{Mat}(d, \mathbb{K})$, be a representation of D.
- $\mathcal{A}^{\prime}:=\mathcal{A} \otimes \operatorname{Mat}(d, \mathbb{K})$. Then $\mathcal{A}^{\prime}=\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ is a \mathbb{K}-linear subspace of $\operatorname{Mat}(n, \mathbb{K}) \otimes \operatorname{Mat}(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}^{\prime} linear space. Its \mathbb{K} linear span is \mathcal{A}^{\prime}.
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least $(n-1) d+1$.
- All matrices in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ have rank nd (over \mathbb{K}) so \tilde{A} has rank nd
- Because $\mathbb{F} \geqslant 2 n d$, we can find a matrix in \mathcal{A} of rank nd using ideas from [dGIR96].
- We need to construct division algebras, and be able to compute with them, at each stage

Proof of the main lemma

Using extension fields [dGIR96].

Using extension fields [dGIR96].

- Assume \mathbb{K} is an extension of \mathbb{F} and you have a matrix in $\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ of rank r. Let $S \subset \mathbb{F}$ of size at least r.

Using extension fields [dGIR96].

- Assume \mathbb{K} is an extension of \mathbb{F} and you have a matrix in $\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ of rank r. Let $S \subset \mathbb{F}$ of size at least r.
- Let B_{1}, \ldots, B_{l} be a \mathbb{F} basis of \mathcal{B}. Then $A=a_{1}^{\prime} B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{l}^{\prime} B_{l}$, and there is a $r \times r$ window in A with nonzero determinant, say the principal r window.

Using extension fields [dGIR96].

- Assume \mathbb{K} is an extension of \mathbb{F} and you have a matrix in $\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ of rank r. Let $S \subset \mathbb{F}$ of size at least r.
- Let B_{1}, \ldots, B_{1} be a \mathbb{F} basis of \mathcal{B}. Then $A=a_{1}^{\prime} B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{1}^{\prime} B_{1}$, and there is a $r \times r$ window in A with nonzero determinant, say the principal r window.
- As a polynomial in x, the determinant of the principal r window $x B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{1}^{\prime} B_{1}$ is non zero. This is of degree r. Since S has more than r elements there is an $a_{1} \in S \subset \mathbb{F}$ such that the determinant $a_{1} B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{1}^{\prime} B_{1}$ is non zero.

Using extension fields [dGIR96].

- Assume \mathbb{K} is an extension of \mathbb{F} and you have a matrix in $\mathcal{B} \otimes \operatorname{Mat}(d, \mathbb{K})$ of rank r. Let $S \subset \mathbb{F}$ of size at least r.
- Let B_{1}, \ldots, B_{1} be a \mathbb{F} basis of \mathcal{B}. Then $A=a_{1}^{\prime} B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{1}^{\prime} B_{1}$, and there is a $r \times r$ window in A with nonzero determinant, say the principal r window.
- As a polynomial in x, the determinant of the principal r window $x B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{1}^{\prime} B_{1}$ is non zero. This is of degree r. Since S has more than r elements there is an $a_{1} \in S \subset \mathbb{F}$ such that the determinant $a_{1} B_{1}+a_{2}^{\prime} B_{2}+\ldots+a_{1}^{\prime} B_{1}$ is non zero.
- Complete the proof by recursion, substituting values for $a_{2}^{\prime}, a_{3}^{\prime}, \ldots, a_{l}^{\prime}$.

Second Wong sequence [IKQS14]

Second Wong sequence [IKQS14]

Definition

Given $(A, \mathcal{B}), A \in \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in $\mathbb{F}^{n}: W_{0}=0, W_{1}=\mathcal{B}\left(A^{-1}\left(W_{0}\right)\right), \ldots$, $W_{i}=\mathcal{B}\left(A^{-1}\left(W_{i-1}\right)\right), \ldots$

Second Wong sequence [IKQS14]

Definition

Given $(A, \mathcal{B}), A \in \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in $\mathbb{F}^{n}: W_{0}=0, W_{1}=\mathcal{B}\left(A^{-1}\left(W_{0}\right)\right), \ldots$, $W_{i}=\mathcal{B}\left(A^{-1}\left(W_{i-1}\right)\right), \ldots$

- $W_{0}<W_{1}<W_{2}<\cdots<W_{\ell}=W_{\ell+1}=\ldots$ for some $\ell \in\{0,1, \ldots, n\} . W_{\ell}$ is then called the limit of this sequence, denoted as W^{*}.

Matrix of maximum rank

Second Wong sequence [IKQS14]

Definition

Given $(A, \mathcal{B}), A \in \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in $\mathbb{F}^{n}: W_{0}=0, W_{1}=\mathcal{B}\left(A^{-1}\left(W_{0}\right)\right), \ldots$, $W_{i}=\mathcal{B}\left(A^{-1}\left(W_{i-1}\right)\right), \ldots$

- $W_{0}<W_{1}<W_{2}<\cdots<W_{\ell}=W_{\ell+1}=\ldots$ for some $\ell \in\{0,1, \ldots, n\} . W_{\ell}$ is then called the limit of this sequence, denoted as W^{*}.
- When $A \in \mathcal{B}, W^{*} \leqslant \operatorname{im}(A)$ if and only if there exists a corank (A)-shrunk subspace

Matrix of maximum rank

Second Wong sequence [IKQS14]

Definition

Given $(A, \mathcal{B}), A \in \operatorname{Mat}(n, \mathbb{F})$ and $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in \mathbb{F}^{n} : $W_{0}=0, W_{1}=\mathcal{B}\left(A^{-1}\left(W_{0}\right)\right), \ldots$, $W_{i}=\mathcal{B}\left(A^{-1}\left(W_{i-1}\right)\right), \ldots$

- $W_{0}<W_{1}<W_{2}<\cdots<W_{\ell}=W_{\ell+1}=\ldots$ for some $\ell \in\{0,1, \ldots, n\} . W_{\ell}$ is then called the limit of this sequence, denoted as W^{*}.
- When $A \in \mathcal{B}, W^{*} \leqslant \operatorname{im}(A)$ if and only if there exists a corank (A)-shrunk subspace
- A is of maximum rank and $A^{-1}\left(W^{*}\right)$ is a corank (A)-shrunk subspace.

Matrix of maximum rank

Using the second Wong sequence

Using the second Wong sequence

- What if A is not of maximum rank in $\mathcal{B}^{\{d, d\}}$?

Using the second Wong sequence

- What if A is not of maximum rank in $\mathcal{B}^{\{d, d\}}$?

Incrementing rank

Let $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$ and let $\mathcal{A}=\mathcal{B}^{\{d, d\}}$. Assume that we are given a matrix $A \in \mathcal{A}$ with $\operatorname{rk}(A)=r d$, and $|\mathbb{F}|$ is $\Omega\left(n d d^{\prime}\right)$, where $d^{\prime}>r$ is any positive integer. There exists a deterministic algorithm that returns either an $(n-r) d$-shrunk subspace for \mathcal{A} (equivalently, an $(n-r)$-shrunk subspace for \mathcal{B}), or a matrix $B \in \mathcal{A} \otimes \operatorname{Mat}\left(d^{\prime}, \mathbb{F}\right)$ of rank at least $(r+1) d d^{\prime}$.

Cyclic algebras and the construction of Dickson

- Let \mathbb{K} / \mathbb{F} be a Galois extension with cyclic Galois group. Let σ be a generator of the Galois group and $s=\operatorname{dim}_{\mathbb{F}}(\mathbb{K})$.
- Take $f \in \mathbb{F}$ and a symbol x, and consider $D=\mathbb{K} \oplus \mathbb{K} \cdot x \oplus \mathbb{K} \cdot x^{2}+\ldots \mathbb{K} \cdot x^{s-1}$.
- Multiply elements in D using the distributive law and using $x^{s}=f$ and $x \cdot b=\sigma(b) x$ for all $b \in K$.
- $\mathbb{F} i$ in the center of D and so D is an \mathbb{F}-algebra. Dimension over \mathbb{F} is s^{2}.
- Wedderburn - if $f, f^{2}, \ldots, f^{s-1}$ are not in Norm(\mathbb{K}), then D is a division algebra, and in this case $D \otimes_{\mathbb{F}} \mathbb{K} \cong \operatorname{Mat}(\mathbb{K})$.

Blowing-down a shrunk subspace

Blowing-down a shrunk subspace

Shrinking by a factor of d

If $\mathcal{A}=\mathcal{B}^{\{d, d\}}$ has an s-shrunk subspace, then \mathcal{A} has an s^{\prime}-shrunk subspace with $s^{\prime} \geqslant s$ and s.t. d divides s^{\prime}. \mathcal{B} has an s^{\prime} / d-shrunk subspace.

Blowing-down a shrunk subspace

Shrinking by a factor of d

If $\mathcal{A}=\mathcal{B}^{\{d, d\}}$ has an s-shrunk subspace, then \mathcal{A} has an s^{\prime}-shrunk subspace with $s^{\prime} \geqslant s$ and s.t. d divides s^{\prime}. \mathcal{B} has an s^{\prime} / d-shrunk subspace.

Idea Maximal shrunk subspaces are of the form $U_{0} \otimes \mathbb{F}^{d}$ and their image under \mathcal{A} is of the form $W_{o} \otimes \mathbb{F}^{d}$.

Blowing-down

Blowing-down

Reducing the size of blow-ups

Let $\mathcal{B} \leqslant \operatorname{Mat}(n, \mathbb{F})$, and $d>n+1$. Assume we are given a matrix $A \in \mathcal{B}^{\{d, d\}}$ of rank $d n$. Then there exists a deterministic polynomial-time procedure that constructs $A^{\prime} \in \mathcal{B}^{\{d-1, d-1\}}$ of rank $(d-1) n$.

Construction of division algebras

Let L be a cyclic extension of degree d of a field K^{\prime}. Let σ be a generator of the Galois group. Consider the transcendental extension $L(Z)$ of L. Then σ extends to an automorphism (denoted again by σ) of $L(Z)$ such that the fixed field of σ is $K^{\prime}(Z)$. Thus $L(Z)$ is a cyclic extension of $K^{\prime}(Z)$. Consider the $K^{\prime}(Z)$-algebra D generated by (a basis for) L and by an element U with relations $U^{d}=Z$ and $U a=a^{\sigma} U(\forall a \in L(Z)$, or, equivalently $\forall a \in$ the basis for L). Then D is a central division algebra of index d over $K^{\prime}(Z)$.

Open problems

Open problems

- Get a combinatorial algorithm in characteristic zero.

Open problems

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?

Open problems

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?
- For the GCT programme, desingularizing the null cone may be important - this may help isolate points which are in the border.

Open problems

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?
- For the GCT programme, desingularizing the null cone may be important - this may help isolate points which are in the border.
- Orbit closure problem for the left right action

Open problems

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?
- For the GCT programme, desingularizing the null cone may be important - this may help isolate points which are in the border.
- Orbit closure problem for the left right action .. NNL for this invariant ring.

References I

囲 B. Adsul, S. Nayak, and K. V. Subrahmanyam.
A geometric approach to the Kronecker problem II: rectangular shapes, invariants of matrices and the Artin-Procesi theorem.
preprint, 2007.
囯 M. Bürgin and J. Draisma.
The Hilbert null-cone on tuples of matrices and bilinear forms.
Mathematische Zeitschrift, 254(4):785-809, 2006.
Harm Derksen.
Polynomial bounds for rings of invariants.
Proceedings of the American Mathematical Society,
129(4):955-964, 2001.

References II

雷 Willem A．de Graaf，Gábor Ivanyos，and Lajos Rónyai． Computing Cartan subalgebras of Lie algebras． Applicable Algebra in Engineering，Communication and Computing，7（5）：339－349， 1996.

雷 Harm Derksen and Visu Makam．
Polynomial degree bounds for matrix semi－invariants． preprint， 2015.

國 M．Domokos and A．N．Zubkov．
Semi－invariants of quivers as determinants．
Transformation groups，6（1）：9－24， 2001.
Jack Edmonds．
Systems of distinct representatives and linear algebra．
J．Res．Nat．Bur．Standards Sect．B，71：241－245， 1967.

References III

B
M. Fortin and C. Reutenauer.

Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire, 52:B52f, 2004.

R Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson.
A deterministic polynomial time algorithm for non-commutative rational identity testing.
preprint ArXiv:1511.03730, 2015.

References IV

击 Gábor Ivanyos，Marek Karpinski，Youming Qiao，and Miklos Santha．
Generalized Wong sequences and their applications to Edmonds＇problems． In STACS，pages 397－408， 2014.

围 Gábor Ivanyos，Youming Qiao，and K．V．Subrahmanyam． Non－commutative Edmonds＇problem and matrix semi－invariants．
preprint arXiv：1508．00690， 2015.
䍰 Gábor Ivanyos，Youming Qiao，and K．V．Subrahmanyam． On generating the ring of matrix semi－invariants． preprint， 2015.

References V

E Aidan Schofield.
Semi-invariants of quivers.
Journal of the London Mathematical Society, 2(3):385-395, 1991.

