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Related problem

Commutative rank
The maximum of the rank of matrices in B?

Problem Rk: What is the commutative rank? [Edm67]
Rk ď NCrk.
For the family of 3ˆ 3 skew symmetric matrices, 2=Rk <
NCrk=3.

Theorem - Gurvits
Over Q, given a matrix space xBy there is a deterministic
polynomial time algorithm which will output Rk=n, or NCrk ă n,
and its output is guaranteed to be correct when either
NCrkpBq ă n or RkpBq “ n.

The algorithm may give a wrong answer in the case when
n “ NCrk ą Rk .
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Membership in the null cone

Null cone for the left right action
Is defined as the m-tuple of n by n matrices on which all all
invariant polynomial functions vanish i.e f pB1,B2, . . . ,Bmq “ 0
for all invariant polynomial functions f .

Over infinite fields - an alternate characterization -
(B1,B2, . . . ,Bm) such that B has a c-shrunk subspace for
c ą 0 [BD06, DZ01, ANS07].
A description of the invariants:
Let T1,T2, . . . ,Tm be matrices in Matpd ,Fq. Then
detpT1 b X1 ` T2 b X2 ` . . .` Tm b Xmq is an invariant of
degree nd . Over infinite fields, all invariants are obtained
this way.
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Suggested algorithm

Observation
If B1 shrinks a subspace U P Fn, and T1 P Matpd ,Fq then
T1 b B1 shrinks the subspace U b Fd .

If B shrinks U, then so will its d-th blow-up
Btd ,du:=x T1 b B1,T2 b B2, . . . ,Tm b Bmy, Ti P Matpd ,Fq.

for i “ 1,2, . . . , compute (a basis of) Bti,iu.
determine if there is a nonsingular matrix in the blow-up.

Question How long do we go on?
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Suggested algorithm

Can we modify the suggested algorithm suitably?
Recall If B shrinks U, then so will its d-th blow-up.

for i “ 1,2, . . . , compute (a basis of) x Bti,iuy,and a matrix
Mi´1.
determine if there is a nonsingular matrix in the blow-up.
Using Mi´1, update and get Mi , achieving some
measurable progress.
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For B ď Matpn,Fq and A “ Btd ,du, assume that |F| ą 2rd .
Given a matrix A P A with rkA ą pr ´ 1qd , there exists a
deterministic algorithm that returns rA P A and an r ˆ r window
W in rA s.t. W is nonsingular (of rank rd). This algorithm uses
polypndq operations and, over Q, the algorithm runs in
polynomial time.

The matrix with maximum rank in the d-th blow-up has
rank a multiple of d .

Starting with a matrix of rank pr ´ 1qd ` 1 in A, we
construct a matrix of rank rd in A - a constructive proof.

Central division algebras almost do our job.
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2 Determine if this is the matrix with largest rank in the family.
3 If not, consider the r ` 1-th blow blow up A “ Br`1,r`1.
4 Starting with a rank r matrix in this blow up, find a matrix of

rank at least rpr ` 1q ` 1.
5 Use regularity of blow-ups to get a matrix of rank
pr ` 1q ˚ pr ` 1q in the blow up.

6 Loop back to step 2 with B “ A and r “ r ` 1.
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Regularity

Realizing the algorithm
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Finding if a matrix in a given family has the largest rank.
Incrementing rank otherwise.
Finding a matrix with rank a multiple of the blow-up factor.
Keeping the size of matrix entries polynomial.
Blowing down matrices to keep matrix size polynomial.
Identifying the shrunk subspace, if any.
Knowing when to stop.
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Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Algorithmic and degree bounds

Upper bounds

[Der01] Over algebraically closed fields of characteristic
zero, σ “ Opn24n2

q. The invariant ring is generated in
degree β “ Opn2σ2q.
[IQS15a] When F is large, a polypn ` 1!q algorithm for
computing RkpBq so σ ď n ` 1!. Over algebraically closed
fields of char 0, β “ Opn4pn ` 1!q2q.
[GGOW15] used the degree bound from [IQS15a] - give a
polynomial time algorithm for the nullcone membership
over fields of characteristic zero.
[DM15] use the regularity under blow-up lemma of
[IQS15a], and a convexity argument - σ ď Opn2q, over
algebraically closed fields, β “ Opn6q.
[IQS15b] Show σ ď Opn2q over all large fields. Two proofs
- a constructive version of [DM15] and a simple proof
based on regularity under blow-up. Get the above results.
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Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]

Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]
Take d “ n ` 2.

So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]
Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.

But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]
Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.

So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]
Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n,

cannot be
pn ` 2q ˚ n

.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]
Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n, cannot be
pn ` 2q ˚ n.

Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n ` 1

Generation of the invariant ring in poly(n)-degree

[DM15]. If there is no nonsingular matrix in Bn`1,n`1, then
there is no nonsingular matrix in Bd ,d , for all d ě n ` 1. Over
infinite fields the null cone is cut by invariants of degree Opn2q.
Over Q the ring of invariants is generated in degree Opn6q.

Proof [IQS15b]
Take d “ n ` 2.
So the largest ranked matrix in a n ` 1ˆ n ` 1 window is
pn ` 1q ˚ pn ´ 1q “ n2 ´ 1.
But we add to such a matrix at most 2n linearly
independent rows and columns.
So rank is upper bounded by n2 ´ 1` 2n, cannot be
pn ` 2q ˚ n. Regularity says rank is at most
pn ` 2q ˚ pn ´ 1q “ n2 ` n ´ 2. QED



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Main lemma and blow ups using division algebras

Blowing-up using a division algebra.

Claim
Let F1 be an extension field of F, and Let D be a central division
algebra over F1 of dimension d2 over F1, and let K be a maximal
field in D with extension degree d over F1. Let
ρ : D Ñ Matpd ,Kq be a representation of D over K. Then every
matrix in Matpn,Fq bF ρpDq has rank divisible by d over K.

D bK – MatpKq. Explicit matrices describing the
F1-algebra D – D b 1 can be written down easily.
Regard Kdn – F1d2n as a module over Matpn,Fq bF ρpDq.
Since D b Dop – Matpd ,F1q Ă MatpKq, the centralizer of
the action of Matpn,Fq bF ρpDq is id b Dop – Dop.
For all A in Matpn,Fq bF ρpDq, AF1d2n is a Dop-submodule,
and so its dimension over F1 is divisible by d2, so
dimension over K is divisible by d . But this is the rank of A1.
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Proof of the main lemma

Recap

Main Lemma

For B ď Matpn,Fq and A “ Btd ,du, assume that |F| ą 2rd .
Given a matrix A P A with rkA ą pr ´ 1qd , there exists a
deterministic algorithm that returns rA P A and an r ˆ r window
W in rA s.t. W is nonsingular (of rank rd). This algorithm uses
polypndq operations and, over Q, the algorithm runs in
polynomial time.
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Proof of the main lemma

Proof

Assuming we have a division algebra and a representation
of it.
Induction on r : Base case: r “ 1 - there is at least one
nonzero matrix B in B; pi , jq-th entry is nonzero then we
have a d ˆ d block in B b I which is non zero, of rank d .
By induction, the principal pr ´ 1q window of
A1 P A “ Btd ,du has non-zero determinant.

Dλ, µ, with the
principal r ´ 1 window of λ ˚ A` µA1 having non-zero
determinant and the principal r -window having rank at
least pr ´ 1qd ` 1.

Wlog we have matrix of rank at least pn ´ 1qd ` 1 with the
principal n ´ 1 window having a nonsingular matrix.
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Proof of main lemma .....

Let ρ : D Ñ Matpd ,Kq, be a representation of D.
A1 :“ AbMatpd ,Kq. Then A1 “ B bMatpd ,Kq is a
K-linear subspace of Matpn,Kq bMatpd ,Kq.
B bF ρpDq is an F1 linear space. Its K linear span is A1.
Starting with the matrix A, get a matrix Ã in B bF ρpDq of
the same rank, so rank is at least pn ´ 1qd ` 1.
All matrices in B bF ρpDq have rank nd (over K) so Ã has
rank nd
Because F ě 2nd , we can find a matrix in A of rank nd
using ideas from [dGIR96].
We need to construct division algebras, and be able to
compute with them, at each stage
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the same rank, so rank is at least pn ´ 1qd ` 1.
All matrices in B bF ρpDq have rank nd (over K) so Ã has
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Proof of the main lemma

Using extension fields [dGIR96].

Assume K is an extension of F and you have a matrix in
B bMatpd ,Kq of rank r . Let S Ă F of size at least r .
Let B1, . . . ,Bl be a F basis of B. Then
A “ a11B1 ` a12B2 ` . . .` a1lBl , and there is a r ˆ r window
in A with nonzero determinant, say the principal r window.
As a polynomial in x , the determinant of the principal r
window xB1 ` a12B2 ` . . .` a1lBl is non zero. This is of
degree r . Since S has more than r elements there is an
a1 P S Ă F such that the determinant
a1B1 ` a12B2 ` . . .` a1lBl is non zero.
Complete the proof by recursion, substituting values for
a12,a

1
3, . . . ,a

1
l .



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Proof of the main lemma

Using extension fields [dGIR96].

Assume K is an extension of F and you have a matrix in
B bMatpd ,Kq of rank r . Let S Ă F of size at least r .

Let B1, . . . ,Bl be a F basis of B. Then
A “ a11B1 ` a12B2 ` . . .` a1lBl , and there is a r ˆ r window
in A with nonzero determinant, say the principal r window.
As a polynomial in x , the determinant of the principal r
window xB1 ` a12B2 ` . . .` a1lBl is non zero. This is of
degree r . Since S has more than r elements there is an
a1 P S Ă F such that the determinant
a1B1 ` a12B2 ` . . .` a1lBl is non zero.
Complete the proof by recursion, substituting values for
a12,a

1
3, . . . ,a

1
l .



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Proof of the main lemma

Using extension fields [dGIR96].

Assume K is an extension of F and you have a matrix in
B bMatpd ,Kq of rank r . Let S Ă F of size at least r .
Let B1, . . . ,Bl be a F basis of B. Then
A “ a11B1 ` a12B2 ` . . .` a1lBl , and there is a r ˆ r window
in A with nonzero determinant, say the principal r window.

As a polynomial in x , the determinant of the principal r
window xB1 ` a12B2 ` . . .` a1lBl is non zero. This is of
degree r . Since S has more than r elements there is an
a1 P S Ă F such that the determinant
a1B1 ` a12B2 ` . . .` a1lBl is non zero.
Complete the proof by recursion, substituting values for
a12,a

1
3, . . . ,a

1
l .



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Proof of the main lemma

Using extension fields [dGIR96].

Assume K is an extension of F and you have a matrix in
B bMatpd ,Kq of rank r . Let S Ă F of size at least r .
Let B1, . . . ,Bl be a F basis of B. Then
A “ a11B1 ` a12B2 ` . . .` a1lBl , and there is a r ˆ r window
in A with nonzero determinant, say the principal r window.
As a polynomial in x , the determinant of the principal r
window xB1 ` a12B2 ` . . .` a1lBl is non zero. This is of
degree r . Since S has more than r elements there is an
a1 P S Ă F such that the determinant
a1B1 ` a12B2 ` . . .` a1lBl is non zero.

Complete the proof by recursion, substituting values for
a12,a

1
3, . . . ,a

1
l .



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Proof of the main lemma

Using extension fields [dGIR96].

Assume K is an extension of F and you have a matrix in
B bMatpd ,Kq of rank r . Let S Ă F of size at least r .
Let B1, . . . ,Bl be a F basis of B. Then
A “ a11B1 ` a12B2 ` . . .` a1lBl , and there is a r ˆ r window
in A with nonzero determinant, say the principal r window.
As a polynomial in x , the determinant of the principal r
window xB1 ` a12B2 ` . . .` a1lBl is non zero. This is of
degree r . Since S has more than r elements there is an
a1 P S Ă F such that the determinant
a1B1 ` a12B2 ` . . .` a1lBl is non zero.
Complete the proof by recursion, substituting values for
a12,a

1
3, . . . ,a

1
l .



Background and problem statement Using Gurvits algorithm Progress via Blow-ups

Matrix of maximum rank

Second Wong sequence [IKQS14]

W0 ă W1 ă W2 ă ¨ ¨ ¨ ă W` “ W``1 “ . . . for some
` P t0,1, . . . ,nu. W` is then called the limit of this
sequence, denoted as W ˚.
When A P B, W ˚ ď impAq if and only if there exists a
corankpAq-shrunk subspace
A is of maximum rank and A´1pW ˚q is a corank(A)-shrunk
subspace.
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Matrix of maximum rank

Using the second Wong sequence

What if A is not of maximum rank in Btd ,du?

Incrementing rank

Let B ď Matpn,Fq and let A “ Btd ,du. Assume that we are given
a matrix A P A with rkpAq “ rd , and |F| is Ωpndd 1q, where d 1 ą r
is any positive integer. There exists a deterministic algorithm
that returns either an pn ´ rqd-shrunk subspace for A
(equivalently, an pn ´ rq-shrunk subspace for B), or a matrix
B P AbMatpd 1,Fq of rank at least pr ` 1qdd 1.
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Division algebras

Cyclic algebras and the construction of Dickson

Let K{F be a Galois extension with cyclic Galois group. Let
σ be a generator of the Galois group and s “ dimFpKq.
Take f P F and a symbol x , and consider
D “ K‘K ¨ x ‘K ¨ x2 ` . . .K ¨ xs´1.
Multiply elements in D using the distributive law and using
xs “ f and x ¨ b “ σpbqx for all b P K .
F i in the center of D and so D is an F-algebra. Dimension
over F is s2.
Wedderburn - if f , f 2, . . . , f s´1 are not in NormpKq, then D
is a division algebra, and in this case D bF K – MatpKq.
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Blowing-down a shrunk subspace

Shrinking by a factor of d

If A “ Btd ,du has an s-shrunk subspace, then A has an
s1-shrunk subspace with s1 ě s and s.t. d divides s1. B has an
s1{d-shrunk subspace.
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Blowing-down a shrunk subspace

Shrinking by a factor of d

If A “ Btd ,du has an s-shrunk subspace, then A has an
s1-shrunk subspace with s1 ě s and s.t. d divides s1. B has an
s1{d-shrunk subspace.

Idea Maximal shrunk subspaces are of the form Uo b Fd and
their image under A is of the form Wo b Fd .
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Blowing-down

Reducing the size of blow-ups
Let B ď Matpn,Fq, and d ą n ` 1. Assume we are given a
matrix A P Btd ,du of rank dn. Then there exists a deterministic
polynomial-time procedure that constructs A1 P Btd´1,d´1u of
rank pd ´ 1qn.
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Construction of division algebras

Let L be a cyclic extension of degree d of a field K 1. Let σ be a
generator of the Galois group. Consider the transcendental
extension LpZ q of L. Then σ extends to an automorphism
(denoted again by σ) of LpZ q such that the fixed field of σ is
K 1pZ q. Thus LpZ q is a cyclic extension of K 1pZ q. Consider the
K 1pZ q-algebra D generated by (a basis for) L and by an
element U with relations Ud “ Z and Ua “ aσU (@a P LpZ q, or,
equivalently @a P the basis for L). Then D is a central division
algebra of index d over K 1pZ q.



Determining the shrunk subspaces

Open problems

Get a combinatorial algorithm in characteristic zero.
Is there an augmenting path algorithm?
For the GCT programme, desingularizing the null cone
may be important - this may help isolate points which are
in the border.
Orbit closure problem for the left right action

.. NNL for this
invariant ring.
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