Null cone membership for the left right action on tuples of matrices

Gabor Ivanyos¹, Jimmy Qiao², K V Subrahmanyam³

¹Institute for Computer Science and Control, Hungarian Academy of Sciences, Budapest ²Center for Quantum Computation and Intelligent Systems, Univ of Technology, Sydney ³Chennai Mathematical Institute, Chennai

Tel Aviv University, Feb 09, 2016

Outline

Background and problem statement

- Problem statement
- Invariant theory
- 2 Using Gurvits algorithm
- Progress via Blow-ups
 - Regularity
 - Algorithmic and degree bounds
 - Degree bounds
 - Polynomial bound degree of generation
 - Main lemma and blow ups using division algebras
 - Proof of the main lemma
 - Matrix of maximum rank
 - Division algebras

Outline

Background and problem statement

- Problem statement
- Invariant theory
- Using Gurvits algorithm
- Progress via Blow-ups
 - Regularity
 - Algorithmic and degree bounds
 - Degree bounds
 - Polynomial bound degree of generation
 - Main lemma and blow ups using division algebras
 - Proof of the main lemma

Progress via Blow-ups

• $Mat(n, \mathbb{F}) - n \times n$ matrices with entries in \mathbb{F} .

• Mat(n, \mathbb{F}) - $n \times n$ matrices with entries in \mathbb{F} .

•
$$B_1, B_2, \ldots, B_m \in Mat(n, \mathbb{F}).$$

- $Mat(n, \mathbb{F}) n \times n$ matrices with entries in \mathbb{F} .
- $B_1, B_2, \ldots, B_m \in Mat(n, \mathbb{F}).$
- \mathcal{B} \mathbb{F} -linear span of the matrices $\langle B_1, B_2, \dots, B_m \rangle$.

- $Mat(n, \mathbb{F})$ $n \times n$ matrices with entries in \mathbb{F} .
- $B_1, B_2, \ldots, B_m \in Mat(n, \mathbb{F}).$
- \mathcal{B} \mathbb{F} -linear span of the matrices $\langle B_1, B_2, \dots, B_m \rangle$.

Shrunk subspaces

A subspace $U \leq \mathbb{F}^n$ is *c*-shrunk by \mathcal{B} if there is a subspace $W \subseteq \mathbb{F}^n$ such that dim $W \leq \dim U - c$, and for all matrices *B* in $\mathcal{B}, \langle BU \rangle \subseteq W$.

- $Mat(n, \mathbb{F})$ $n \times n$ matrices with entries in \mathbb{F} .
- $B_1, B_2, \ldots, B_m \in Mat(n, \mathbb{F}).$
- \mathcal{B} \mathbb{F} -linear span of the matrices $\langle B_1, B_2, \dots, B_m \rangle$.

Shrunk subspaces

A subspace $U \leq \mathbb{F}^n$ is *c*-shrunk by \mathcal{B} if there is a subspace $W \subseteq \mathbb{F}^n$ such that dim $W \leq \dim U - c$, and for all matrices *B* in $\mathcal{B}, \langle BU \rangle \subseteq W$.

Non commutative rank

 $n - \max(c \in \{0, 1, \dots, n\} \mid \exists subspace c \text{-shrunk by } \mathcal{B})$ [FR04].

- $Mat(n, \mathbb{F})$ $n \times n$ matrices with entries in \mathbb{F} .
- $B_1, B_2, \ldots, B_m \in Mat(n, \mathbb{F}).$
- \mathcal{B} \mathbb{F} -linear span of the matrices $\langle B_1, B_2, \dots, B_m \rangle$.

Shrunk subspaces

A subspace $U \leq \mathbb{F}^n$ is *c*-shrunk by \mathcal{B} if there is a subspace $W \subseteq \mathbb{F}^n$ such that dim $W \leq \dim U - c$, and for all matrices *B* in $\mathcal{B}, \langle BU \rangle \subseteq W$.

Non commutative rank

 $n - \max(c \in \{0, 1, \dots, n\} \mid \exists subspace c \text{-shrunk by } \mathcal{B})$ [FR04].

Problem NCrk: What is the noncommutative rank?

Background and problem statement $\circ \bullet \circ \circ$

Using Gurvits algorithm

Progress via Blow-ups

Problem statement

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Background and problem statement $\circ \bullet \circ \circ$

Using Gurvits algorithm

Progress via Blow-ups

Problem statement

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Problem Rk: What is the commutative rank? [Edm67]

Background and problem statement $\circ \bullet \circ \circ$

Using Gurvits algorithm

Progress via Blow-ups

Problem statement

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Problem Rk: What is the commutative rank? [Edm67]

• $Rk \leq NCrk$.

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Problem Rk: What is the commutative rank? [Edm67]

- $Rk \leq NCrk$.
- For the family of 3 × 3 skew symmetric matrices, 2=Rk < NCrk=3.

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Problem Rk: What is the commutative rank? [Edm67]

- $Rk \leq NCrk$.
- For the family of 3 × 3 skew symmetric matrices, 2=Rk < NCrk=3.

Theorem - Gurvits

Over \mathbb{Q} , given a matrix space $\langle \mathcal{B} \rangle$ there is a deterministic polynomial time algorithm which will output Rk=n, or NCrk < n, and its output is guaranteed to be correct when either $NCrk(\mathcal{B}) < n$ or $Rk(\mathcal{B}) = n$.

Related problem

Commutative rank

The maximum of the rank of matrices in \mathcal{B} ?

Problem Rk: What is the commutative rank? [Edm67]

- $Rk \leq NCrk$.
- For the family of 3 × 3 skew symmetric matrices, 2=Rk < NCrk=3.

Theorem - Gurvits

Over \mathbb{Q} , given a matrix space $\langle \mathcal{B} \rangle$ there is a deterministic polynomial time algorithm which will output Rk=n, or NCrk < n, and its output is guaranteed to be correct when either $NCrk(\mathcal{B}) < n$ or $Rk(\mathcal{B}) = n$.

The algorithm may give a wrong answer in the case when n = NCrk > Rk.

Background and problem statement

Using Gurvits algorithm

Progress via Blow-ups

Invariant theory

Left right action

• $\mathcal{X} = \{ X_1, X_2, \dots, X_m \}, X_k$, an $n \times n$ matrix with variable entries x_{ij}^k .

Background and problem statement

Using Gurvits algorithm

Progress via Blow-ups

Invariant theory

Left right action

- $\mathcal{X} = \{X_1, X_2, \dots, X_m\}, X_k$, an $n \times n$ matrix with variable entries x_{ij}^k .
- $SL_n \times SL_n \rightharpoonup \mathcal{X}$,

Left right action

- $\mathcal{X} = \{X_1, X_2, \dots, X_m\}, X_k$, an $n \times n$ matrix with variable entries x_{ij}^k .
- $SL_n \times SL_n \curvearrowright \mathcal{X}$, $(A, B) \cdot \{X_1, X_2, \dots, X_m\} = \{AX_1B^t, AX_2B^t, \dots, AX_mB^t\}.$

Left right action

- $\mathcal{X} = \{X_1, X_2, \dots, X_m\}, X_k$, an $n \times n$ matrix with variable entries x_{ij}^k .
- $SL_n \times SL_n \curvearrowright \mathcal{X}$, $(A, B) \cdot \{X_1, X_2, \dots, X_m\} = \{AX_1B^t, AX_2B^t, \dots, AX_mB^t\}.$

Classical invariant theory questions

- What are the polynomial functions invariant under the action? -
- The ring of invariants is known to be finitely generated bound on the degree in which this is generated?

Left right action

- $\mathcal{X} = \{X_1, X_2, \dots, X_m\}, X_k$, an $n \times n$ matrix with variable entries x_{ij}^k .
- $SL_n \times SL_n \curvearrowright \mathcal{X}$, $(A, B) \cdot \{X_1, X_2, \dots, X_m\} = \{AX_1B^t, AX_2B^t, \dots, AX_mB^t\}.$

Classical invariant theory questions

- What are the polynomial functions invariant under the action? well understood characteristic zero fields,[Sch91, DZ01, ANS07], infinite fields [DZ01].
- The ring of invariants is known to be finitely generated bound on the degree in which this is generated?

Left right action

- $\mathcal{X} = \{X_1, X_2, \dots, X_m\}, X_k$, an $n \times n$ matrix with variable entries x_{ij}^k .
- $SL_n \times SL_n \curvearrowright \mathcal{X}$, $(A, B) \cdot \{X_1, X_2, \dots, X_m\} = \{AX_1B^t, AX_2B^t, \dots, AX_mB^t\}.$

Classical invariant theory questions

- What are the polynomial functions invariant under the action? well understood characteristic zero fields,[Sch91, DZ01, ANS07], infinite fields [DZ01].
- The ring of invariants is known to be finitely generated bound on the degree in which this is generated? characteristic zero fields, exp(n²), [Der01].

Background and problem statement $\circ \circ \circ \bullet$

Using Gurvits algorithm

Progress via Blow-ups

Invariant theory

Membership in the null cone

Membership in the null cone

Null cone for the left right action

Is defined as the *m*-tuple of *n* by *n* matrices on which all all invariant polynomial functions vanish

Membership in the null cone

Null cone for the left right action

Is defined as the *m*-tuple of *n* by *n* matrices on which all all invariant polynomial functions vanish i.e $f(B_1, B_2, ..., B_m) = 0$ for all invariant polynomial functions *f*.

Membership in the null cone

Null cone for the left right action

Is defined as the *m*-tuple of *n* by *n* matrices on which all all invariant polynomial functions vanish i.e $f(B_1, B_2, ..., B_m) = 0$ for all invariant polynomial functions *f*.

• Over infinite fields - an alternate characterization -

Membership in the null cone

Null cone for the left right action

Is defined as the *m*-tuple of *n* by *n* matrices on which all all invariant polynomial functions vanish i.e $f(B_1, B_2, ..., B_m) = 0$ for all invariant polynomial functions *f*.

 Over infinite fields - an alternate characterization -(B₁, B₂,..., B_m) such that B has a *c*-shrunk subspace for *c* > 0 [BD06, DZ01, ANS07].

Membership in the null cone

Null cone for the left right action

Is defined as the *m*-tuple of *n* by *n* matrices on which all all invariant polynomial functions vanish i.e $f(B_1, B_2, ..., B_m) = 0$ for all invariant polynomial functions *f*.

- Over infinite fields an alternate characterization -(B₁, B₂,..., B_m) such that B has a *c*-shrunk subspace for *c* > 0 [BD06, DZ01, ANS07].
- A description of the invariants:

Let T_1, T_2, \ldots, T_m be matrices in $Mat(d, \mathbb{F})$. Then $det(T_1 \otimes X_1 + T_2 \otimes X_2 + \ldots + T_m \otimes X_m)$ is an invariant of degree *nd*.

Membership in the null cone

Null cone for the left right action

Is defined as the *m*-tuple of *n* by *n* matrices on which all all invariant polynomial functions vanish i.e $f(B_1, B_2, ..., B_m) = 0$ for all invariant polynomial functions *f*.

- Over infinite fields an alternate characterization -(B₁, B₂,..., B_m) such that B has a *c*-shrunk subspace for *c* > 0 [BD06, DZ01, ANS07].
- A description of the invariants:

Let T_1, T_2, \ldots, T_m be matrices in $Mat(d, \mathbb{F})$. Then $det(T_1 \otimes X_1 + T_2 \otimes X_2 + \ldots + T_m \otimes X_m)$ is an invariant of degree *nd*. Over infinite fields, all invariants are obtained this way.

Outline

- Background and problem statement
 - Problem statement
 - Invariant theory

Using Gurvits algorithm

- Progress via Blow-ups
 - Regularity
 - Algorithmic and degree bounds
 - Degree bounds
 - Polynomial bound degree of generation
 - Main lemma and blow ups using division algebras
 - Proof of the main lemma

Observation

If B_1 shrinks a subspace $U \in \mathbb{F}^n$, and $T_1 \in Mat(d, \mathbb{F})$ then $T_1 \otimes B_1$ shrinks the subspace $U \otimes \mathbb{F}^d$.

Observation

If B_1 shrinks a subspace $U \in \mathbb{F}^n$, and $T_1 \in Mat(d, \mathbb{F})$ then $T_1 \otimes B_1$ shrinks the subspace $U \otimes \mathbb{F}^d$.

If \mathcal{B} shrinks U, then so will its d-th blow-up

Observation

If B_1 shrinks a subspace $U \in \mathbb{F}^n$, and $T_1 \in Mat(d, \mathbb{F})$ then $T_1 \otimes B_1$ shrinks the subspace $U \otimes \mathbb{F}^d$.

If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d,d\}} := \langle T_1 \otimes B_1, T_2 \otimes B_2, \dots, T_m \otimes B_m \rangle, T_i \in Mat(d, \mathbb{F}).$

Observation

If B_1 shrinks a subspace $U \in \mathbb{F}^n$, and $T_1 \in Mat(d, \mathbb{F})$ then $T_1 \otimes B_1$ shrinks the subspace $U \otimes \mathbb{F}^d$.

If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d,d\}} := \langle T_1 \otimes B_1, T_2 \otimes B_2, \dots, T_m \otimes B_m \rangle, T_i \in Mat(d, \mathbb{F}).$

• for i = 1, 2, ..., compute (a basis of) $\mathcal{B}^{\{i,i\}}$.

Observation

If B_1 shrinks a subspace $U \in \mathbb{F}^n$, and $T_1 \in Mat(d, \mathbb{F})$ then $T_1 \otimes B_1$ shrinks the subspace $U \otimes \mathbb{F}^d$.

If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d,d\}} := \langle T_1 \otimes B_1, T_2 \otimes B_2, \dots, T_m \otimes B_m \rangle, T_i \in Mat(d, \mathbb{F}).$

- for $i = 1, 2, \ldots$, compute (a basis of) $\mathcal{B}^{\{i,i\}}$.
- determine if there is a nonsingular matrix in the blow-up.

Observation

If B_1 shrinks a subspace $U \in \mathbb{F}^n$, and $T_1 \in Mat(d, \mathbb{F})$ then $T_1 \otimes B_1$ shrinks the subspace $U \otimes \mathbb{F}^d$.

- If \mathcal{B} shrinks U, then so will its d-th blow-up $\mathcal{B}^{\{d,d\}} := \langle T_1 \otimes B_1, T_2 \otimes B_2, \dots, T_m \otimes B_m \rangle, T_i \in Mat(d, \mathbb{F}).$
 - for $i = 1, 2, \ldots$, compute (a basis of) $\mathcal{B}^{\{i,i\}}$.
 - determine if there is a nonsingular matrix in the blow-up.

Question How long do we go on?

Theorem

Theorem

[IQS15a] Over \mathbb{Q} , if the nullcone is defined by elements of degree $\leq \sigma = \sigma(n, m)$, there exists a deterministic poly (n, m, σ) algorithm deciding if (B_1, B_2, \ldots, B_m) is in the null cone.

If (B₁,..., B_m) is in the null cone all blow-ups B^{d,d} shrink a subspace.

Theorem

- If (B₁,..., B_m) is in the null cone all blow-ups B^{d,d} shrink a subspace.
- Else, for some $d \leq \sigma$, $\exists T_i \in Mat(d, \mathbb{F}), i = 1, ..., m$, $det(T_1 \otimes B_1 + T_2 \otimes B_2 + ... + T_m \otimes B_m) \neq 0$

Theorem

- If (B₁,..., B_m) is in the null cone all blow-ups B^{d,d} shrink a subspace.
- Else, for some $d \leq \sigma$, $\exists T_i \in Mat(d, \mathbb{F}), i = 1, ..., m$, $det(T_1 \otimes B_1 + T_2 \otimes B_2 + ... + T_m \otimes B_m) \neq 0$ i.e. $\mathcal{B}^{\{d,d\}}$ contains a nonsingular matrix.

Theorem

- If (B₁,..., B_m) is in the null cone all blow-ups B^{d,d} shrink a subspace.
- Else, for some $d \leq \sigma$, $\exists T_i \in Mat(d, \mathbb{F}), i = 1, ..., m$, $det(T_1 \otimes B_1 + T_2 \otimes B_2 + ... + T_m \otimes B_m) \neq 0$ i.e. $\mathcal{B}^{\{d,d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage *d*.

Theorem

- If (B₁,..., B_m) is in the null cone all blow-ups B^{d,d} shrink a subspace.
- Else, for some $d \leq \sigma$, $\exists T_i \in Mat(d, \mathbb{F}), i = 1, ..., m$, $det(T_1 \otimes B_1 + T_2 \otimes B_2 + ... + T_m \otimes B_m) \neq 0$ i.e. $\mathcal{B}^{\{d,d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage *d*.
- For $i = 1 : \sigma$ run Gurvits' algorithm on $\mathcal{B}^{i,i}$:

Theorem

- If (B_1, \ldots, B_m) is in the null cone all blow-ups $\mathcal{B}^{\{d,d\}}$ shrink a subspace.
- Else, for some $d \leq \sigma$, $\exists T_i \in Mat(d, \mathbb{F}), i = 1, ..., m$, $det(T_1 \otimes B_1 + T_2 \otimes B_2 + ... + T_m \otimes B_m) \neq 0$ i.e. $\mathcal{B}^{\{d,d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage *d*.
- For $i = 1 : \sigma$ run Gurvits' algorithm on $\mathcal{B}^{i,i}$:
- If Gurvits says $Rk(\mathcal{B}^{i,i}) = i * n$, output $Rk(\mathcal{B}) = n$; exit.

Theorem

- If (B_1, \ldots, B_m) is in the null cone all blow-ups $\mathcal{B}^{\{d,d\}}$ shrink a subspace.
- Else, for some $d \leq \sigma$, $\exists T_i \in Mat(d, \mathbb{F}), i = 1, ..., m$, $det(T_1 \otimes B_1 + T_2 \otimes B_2 + ... + T_m \otimes B_m) \neq 0$ i.e. $\mathcal{B}^{\{d,d\}}$ contains a nonsingular matrix.
- Gurvits promise condition is met at stage *d*.
- For $i = 1 : \sigma$ run Gurvits' algorithm on $\mathcal{B}^{i,i}$:
- If Gurvits says $Rk(\mathcal{B}^{i,i}) = i * n$, output $Rk(\mathcal{B}) = n$; exit.
- Output NCrk(\mathcal{B}) < *n*.

Can we modify the suggested algorithm suitably?

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its *d*-th blow-up.

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its *d*-th blow-up.

• for i = 1, 2, ..., compute (a basis of) $\langle \mathcal{B}^{\{i,i\}} \rangle$,

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its *d*-th blow-up.

- for $i = 1, 2, \dots$, compute (a basis of) $\langle \mathcal{B}^{\{i,i\}} \rangle$,
- determine if there is a nonsingular matrix in the blow-up.

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its *d*-th blow-up.

- for i = 1, 2, ..., compute (a basis of) $\langle \mathcal{B}^{\{i,i\}} \rangle$,
- determine if there is a nonsingular matrix in the blow-up.

However...finding a nonsingular matrix in the span will be difficult.

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its *d*-th blow-up.

- for i = 1, 2, ..., compute (a basis of) $\langle B^{\{i,i\}} \rangle$,and a matrix M_{i-1} .
- determine if there is a nonsingular matrix in the blow-up.

Can we modify the suggested algorithm suitably? Recall If \mathcal{B} shrinks U, then so will its *d*-th blow-up.

- for i = 1, 2, ..., compute (a basis of) $\langle B^{\{i,i\}} \rangle$,and a matrix M_{i-1} .
- determine if there is a nonsingular matrix in the blow-up.
- Using M_{i-1}, update and get M_i, achieving some measurable progress.

Outline

- Background and problem statement
 - Problem statement
 - Invariant theory
 - Using Gurvits algorithm
- Progress via Blow-ups
 - Regularity
 - Algorithmic and degree bounds
 - Degree bounds
 - Polynomial bound degree of generation
 - Main lemma and blow ups using division algebras
 - Proof of the main lemma
 -

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leq Mat(n, \mathbb{F})$ and $\mathcal{A} = \mathcal{B}^{\{d,d\}}$, assume that $|\mathbb{F}| > 2rd$. Given a matrix $A \in \mathcal{A}$ with rkA > (r - 1)d, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses poly(nd) operations and, over \mathbb{Q} , the algorithm runs in polynomial time.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leq Mat(n, \mathbb{F})$ and $\mathcal{A} = \mathcal{B}^{\{d,d\}}$, assume that $|\mathbb{F}| > 2rd$. Given a matrix $A \in \mathcal{A}$ with $\mathrm{rk}A > (r-1)d$, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses $\mathrm{poly}(nd)$ operations and, over \mathbb{Q} , the algorithm runs in polynomial time.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leq Mat(n, \mathbb{F})$ and $\mathcal{A} = \mathcal{B}^{\{d,d\}}$, assume that $|\mathbb{F}| > 2rd$. Given a matrix $A \in \mathcal{A}$ with rkA > (r - 1)d, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses poly(nd) operations and, over \mathbb{Q} , the algorithm runs in polynomial time.

The matrix with maximum rank in the d-th blow-up has rank a multiple of d.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leq Mat(n, \mathbb{F})$ and $\mathcal{A} = \mathcal{B}^{\{d,d\}}$, assume that $|\mathbb{F}| > 2rd$. Given a matrix $A \in \mathcal{A}$ with rkA > (r - 1)d, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses poly(nd) operations and, over \mathbb{Q} , the algorithm runs in polynomial time.

The matrix with maximum rank in the d-th blow-up has rank a multiple of d.

Starting with a matrix of rank (r-1)d + 1 in A, we construct a matrix of rank rd in A - a constructive proof.

Regularity of Blow-ups

Main Lemma

For $\mathcal{B} \leq Mat(n, \mathbb{F})$ and $\mathcal{A} = \mathcal{B}^{\{d,d\}}$, assume that $|\mathbb{F}| > 2rd$. Given a matrix $A \in \mathcal{A}$ with rkA > (r - 1)d, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses poly(nd) operations and, over \mathbb{Q} , the algorithm runs in polynomial time.

The matrix with maximum rank in the d-th blow-up has rank a multiple of d.

Starting with a matrix of rank (r-1)d + 1 in A, we construct a matrix of rank rd in A - a constructive proof.

Central division algebras almost do our job.

Suggested algorithm

1 Start with a matrix in the given family \mathcal{B} of rank r.

- **1** Start with a matrix in the given family \mathcal{B} of rank *r*.
- 2 Determine if this is the matrix with largest rank in the family.

- **1** Start with a matrix in the given family \mathcal{B} of rank *r*.
- 2 Determine if this is the matrix with largest rank in the family.
- **3** If not, consider the r + 1-th blow blow up $\mathcal{A} = \mathcal{B}^{r+1,r+1}$.

- **1** Start with a matrix in the given family \mathcal{B} of rank *r*.
- 2 Determine if this is the matrix with largest rank in the family.
- **3** If not, consider the r + 1-th blow blow up $\mathcal{A} = \mathcal{B}^{r+1,r+1}$.
- 4 Starting with a rank *r* matrix in this blow up, find a matrix of rank at least r(r + 1) + 1.

- **1** Start with a matrix in the given family \mathcal{B} of rank *r*.
- 2 Determine if this is the matrix with largest rank in the family.
- **3** If not, consider the r + 1-th blow blow up $\mathcal{A} = \mathcal{B}^{r+1,r+1}$.
- 4 Starting with a rank *r* matrix in this blow up, find a matrix of rank at least r(r + 1) + 1.
- 5 Use regularity of blow-ups to get a matrix of rank (r + 1) * (r + 1) in the blow up.

- **1** Start with a matrix in the given family \mathcal{B} of rank *r*.
- 2 Determine if this is the matrix with largest rank in the family.
- **3** If not, consider the r + 1-th blow blow up $\mathcal{A} = \mathcal{B}^{r+1,r+1}$.
- 4 Starting with a rank *r* matrix in this blow up, find a matrix of rank at least r(r + 1) + 1.
- 5 Use regularity of blow-ups to get a matrix of rank (r + 1) * (r + 1) in the blow up.
- **6** Loop back to step 2 with $\mathcal{B} = \mathcal{A}$ and r = r + 1.

Realizing the algorithm

Background and problem statement

Using Gurvits algorithm

Progress via Blow-ups

Regularity

Realizing the algorithm

Realizing the algorithm

Issues to be addressed:

• Finding if a matrix in a given family has the largest rank.

Realizing the algorithm

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.

Realizing the algorithm

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.

Realizing the algorithm

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.

Realizing the algorithm

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.
- Blowing down matrices to keep matrix size polynomial.

Regularity

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.
- Blowing down matrices to keep matrix size polynomial.
- Knowing when to stop.

Regularity

Realizing the algorithm

Issues to be addressed:

- Finding if a matrix in a given family has the largest rank.
- Incrementing rank otherwise.
- Finding a matrix with rank a multiple of the blow-up factor.
- Keeping the size of matrix entries polynomial.
- Blowing down matrices to keep matrix size polynomial.
- Identifying the shrunk subspace, if any.
- Knowing when to stop.

Using Gurvits algorithm

Progress via Blow-ups

Algorithmic and degree bounds

Using Gurvits algorithm

Progress via Blow-ups

Algorithmic and degree bounds

Upper bounds

• [Der01] Over algebraically closed fields of characteristic zero, $\sigma = O(n^2 4^{n^2})$. The invariant ring is generated in degree $\beta = O(n^2 \sigma^2)$.

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma = O(n^2 4^{n^2})$. The invariant ring is generated in degree $\beta = O(n^2 \sigma^2)$.
- [IQS15a] When F is large, a poly(n + 1!) algorithm for computing Rk(B) so σ ≤ n + 1!. Over algebraically closed fields of char 0, β = O(n⁴(n + 1!)²).

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma = O(n^2 4^{n^2})$. The invariant ring is generated in degree $\beta = O(n^2 \sigma^2)$.
- [IQS15a] When F is large, a poly(n + 1!) algorithm for computing Rk(B) so σ ≤ n + 1!. Over algebraically closed fields of char 0, β = O(n⁴(n + 1!)²).
- [GGOW15] used the degree bound from [IQS15a] give a polynomial time algorithm for the nullcone membership over fields of characteristic zero.

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma = O(n^2 4^{n^2})$. The invariant ring is generated in degree $\beta = O(n^2 \sigma^2)$.
- [IQS15a] When F is large, a poly(n + 1!) algorithm for computing Rk(B) so σ ≤ n + 1!. Over algebraically closed fields of char 0, β = O(n⁴(n + 1!)²).
- [GGOW15] used the degree bound from [IQS15a] give a polynomial time algorithm for the nullcone membership over fields of characteristic zero.
- [DM15] use the regularity under blow-up lemma of [IQS15a], and a convexity argument - σ ≤ O(n²), over algebraically closed fields, β = O(n⁶).

- [Der01] Over algebraically closed fields of characteristic zero, $\sigma = O(n^2 4^{n^2})$. The invariant ring is generated in degree $\beta = O(n^2 \sigma^2)$.
- [IQS15a] When F is large, a poly(n + 1!) algorithm for computing Rk(B) so σ ≤ n + 1!. Over algebraically closed fields of char 0, β = O(n⁴(n + 1!)²).
- [GGOW15] used the degree bound from [IQS15a] give a polynomial time algorithm for the nullcone membership over fields of characteristic zero.
- [DM15] use the regularity under blow-up lemma of [IQS15a], and a convexity argument $\sigma \leq O(n^2)$, over algebraically closed fields, $\beta = O(n^6)$.
- [IQS15b] Show σ ≤ O(n²) over all large fields. Two proofs
 a constructive version of [DM15] and a simple proof based on regularity under blow-up. Get the above results.

Using Gurvits algorithm

Progress via Blow-ups

Polynomial bound - degree of generation

Blow-up upper bound of n + 1

Polynomial bound - degree of generation

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

Polynomial bound - degree of generation

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

Polynomial bound - degree of generation

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

• Take
$$d = n + 2$$
.

Polynomial bound - degree of generation

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

- Take *d* = *n* + 2.
- So the largest ranked matrix in a $n + 1 \times n + 1$ window is $(n + 1) * (n 1) = n^2 1$.

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

- Take *d* = *n* + 2.
- So the largest ranked matrix in a $n + 1 \times n + 1$ window is $(n + 1) * (n 1) = n^2 1$.
- But we add to such a matrix at most 2*n* linearly independent rows and columns.

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

- Take *d* = *n* + 2.
- So the largest ranked matrix in a $n + 1 \times n + 1$ window is $(n + 1) * (n 1) = n^2 1$.
- But we add to such a matrix at most 2*n* linearly independent rows and columns.
- So rank is upper bounded by $n^2 1 + 2n$,

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

- Take *d* = *n* + 2.
- So the largest ranked matrix in a $n + 1 \times n + 1$ window is $(n + 1) * (n 1) = n^2 1$.
- But we add to such a matrix at most 2*n* linearly independent rows and columns.
- So rank is upper bounded by $n^2 1 + 2n$, cannot be (n + 2) * n.

Blow-up upper bound of n + 1

Generation of the invariant ring in poly(*n*)-degree

[DM15]. If there is no nonsingular matrix in $\mathcal{B}^{n+1,n+1}$, then there is no nonsingular matrix in $\mathcal{B}^{d,d}$, for all $d \ge n+1$. Over infinite fields the null cone is cut by invariants of degree $O(n^2)$. Over $\overline{\mathbb{Q}}$ the ring of invariants is generated in degree $O(n^6)$.

- Take *d* = *n* + 2.
- So the largest ranked matrix in a $n + 1 \times n + 1$ window is $(n + 1) * (n 1) = n^2 1$.
- But we add to such a matrix at most 2*n* linearly independent rows and columns.
- So rank is upper bounded by $n^2 1 + 2n$, cannot be (n + 2) * n. Regularity says rank is at most $(n + 2) * (n 1) = n^2 + n 2$. QED

Using Gurvits algorithm

Progress via Blow-ups

Main lemma and blow ups using division algebras

Blowing-up using a division algebra.

Blowing-up using a division algebra.

Claim

Blowing-up using a division algebra.

Claim

Let \mathbb{F}' be an extension field of \mathbb{F} , and Let D be a central division algebra over \mathbb{F}' of dimension d^2 over \mathbb{F}' , and let \mathbb{K} be a maximal field in D with extension degree d over \mathbb{F}' . Let $\rho: D \to Mat(d, \mathbb{K})$ be a representation of D over \mathbb{K} . Then every matrix in $Mat(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$ has rank divisible by d over \mathbb{K} .

 D ⊗ K ≃ Mat(K). Explicit matrices describing the F'-algebra D ≃ D ⊗ 1 can be written down easily.

Blowing-up using a division algebra.

Claim

- D ⊗ K ≃ Mat(K). Explicit matrices describing the F'-algebra D ≃ D ⊗ 1 can be written down easily.
- Regard $\mathbb{K}^{dn} \cong \mathbb{F}'^{d^2n}$ as a module over $Mat(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$.

Blowing-up using a division algebra.

Claim

- D ⊗ K ≃ Mat(K). Explicit matrices describing the F'-algebra D ≃ D ⊗ 1 can be written down easily.
- Regard $\mathbb{K}^{dn} \cong \mathbb{F}^{d^2 n}$ as a module over $Mat(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$.
- Since D ⊗ D^{op} ≃ Mat(d, F') ⊂ Mat(K), the centralizer of the action of Mat(n, F) ⊗_F ρ(D) is id ⊗ D^{op} ≃ D^{op}.

Blowing-up using a division algebra.

Claim

- D ⊗ K ≃ Mat(K). Explicit matrices describing the F'-algebra D ≃ D ⊗ 1 can be written down easily.
- Regard $\mathbb{K}^{dn} \cong \mathbb{F}^{d^2 n}$ as a module over $Mat(n, \mathbb{F}) \otimes_{\mathbb{F}} \rho(D)$.
- Since D ⊗ D^{op} ≃ Mat(d, F') ⊂ Mat(K), the centralizer of the action of Mat(n, F) ⊗_F ρ(D) is id ⊗ D^{op} ≃ D^{op}.
- For all A in Mat(n, 𝔅) ⊗_𝔅 ρ(D), A𝔅'd²n is a D^{op}-submodule, and so its dimension over 𝔅' is divisible by d², so dimension over 𝔅 is divisible by d. But this is the rank of A'.

Recap

Main Lemma

For $\mathcal{B} \leq Mat(n, \mathbb{F})$ and $\mathcal{A} = \mathcal{B}^{\{d,d\}}$, assume that $|\mathbb{F}| > 2rd$. Given a matrix $A \in \mathcal{A}$ with rkA > (r - 1)d, there exists a deterministic algorithm that returns $\widetilde{A} \in \mathcal{A}$ and an $r \times r$ window W in \widetilde{A} s.t. W is nonsingular (of rank rd). This algorithm uses poly(nd) operations and, over \mathbb{Q} , the algorithm runs in polynomial time.

Proof of the main lemma

 Assuming we have a division algebra and a representation of it.

- Assuming we have a division algebra and a representation of it.
- Induction on *r*: Base case: *r* = 1 there is at least one nonzero matrix *B* in *B*; (*i*, *j*)-th entry is nonzero then we have a *d* × *d* block in *B* ⊗ *I* which is non zero, of rank *d*.

- Assuming we have a division algebra and a representation of it.
- Induction on *r*: Base case: *r* = 1 there is at least one nonzero matrix *B* in *B*; (*i*, *j*)-th entry is nonzero then we have a *d* × *d* block in *B* ⊗ *I* which is non zero, of rank *d*.
- By induction, the principal (r 1) window of $A' \in \mathcal{A} = \mathcal{B}^{\{d,d\}}$ has non-zero determinant.

- Assuming we have a division algebra and a representation of it.
- Induction on *r*: Base case: *r* = 1 there is at least one nonzero matrix *B* in *B*; (*i*, *j*)-th entry is nonzero then we have a *d* × *d* block in *B* ⊗ *I* which is non zero, of rank *d*.
- By induction, the principal (r − 1) window of A' ∈ A = B^{d,d} has non-zero determinant. ∃λ, μ, with the principal r − 1 window of λ * A + μA' having non-zero determinant and the principal *r*-window having rank at least (r − 1)d + 1.

- Assuming we have a division algebra and a representation of it.
- Induction on *r*: Base case: *r* = 1 there is at least one nonzero matrix *B* in *B*; (*i*, *j*)-th entry is nonzero then we have a *d* × *d* block in *B* ⊗ *I* which is non zero, of rank *d*.
- By induction, the principal (r − 1) window of
 A' ∈ A = B^{d,d} has non-zero determinant. ∃λ, μ, with the principal r − 1 window of λ * A + μA' having non-zero determinant and the principal r-window having rank at least (r − 1)d + 1.
- Wlog we have matrix of rank at least (n-1)d + 1 with the principal n-1 window having a nonsingular matrix.

Using Gurvits algorithm

Progress via Blow-ups

Proof of the main lemma

Using Gurvits algorithm

Progress via Blow-ups

Proof of the main lemma

Proof of main lemma

• Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.

- Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.
- $\mathcal{A}' := \mathcal{A} \otimes Mat(d, \mathbb{K})$. Then $\mathcal{A}' = \mathcal{B} \otimes Mat(d, \mathbb{K})$ is a \mathbb{K} -linear subspace of $Mat(n, \mathbb{K}) \otimes Mat(d, \mathbb{K})$.

- Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.
- $\mathcal{A}' := \mathcal{A} \otimes Mat(d, \mathbb{K})$. Then $\mathcal{A}' = \mathcal{B} \otimes Mat(d, \mathbb{K})$ is a \mathbb{K} -linear subspace of $Mat(n, \mathbb{K}) \otimes Mat(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}' linear space. Its \mathbb{K} linear span is \mathcal{A}' .

- Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.
- $\mathcal{A}' := \mathcal{A} \otimes Mat(d, \mathbb{K})$. Then $\mathcal{A}' = \mathcal{B} \otimes Mat(d, \mathbb{K})$ is a \mathbb{K} -linear subspace of $Mat(n, \mathbb{K}) \otimes Mat(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}' linear space. Its \mathbb{K} linear span is \mathcal{A}' .
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least (n-1)d + 1.

- Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.
- $\mathcal{A}' := \mathcal{A} \otimes Mat(d, \mathbb{K})$. Then $\mathcal{A}' = \mathcal{B} \otimes Mat(d, \mathbb{K})$ is a \mathbb{K} -linear subspace of $Mat(n, \mathbb{K}) \otimes Mat(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}' linear space. Its \mathbb{K} linear span is \mathcal{A}' .
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least (n-1)d + 1.
- All matrices in B ⊗_𝔅 ρ(D) have rank nd (over 𝔅) so has rank nd

Proof of main lemma

- Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.
- $\mathcal{A}' := \mathcal{A} \otimes Mat(d, \mathbb{K})$. Then $\mathcal{A}' = \mathcal{B} \otimes Mat(d, \mathbb{K})$ is a \mathbb{K} -linear subspace of $Mat(n, \mathbb{K}) \otimes Mat(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}' linear space. Its \mathbb{K} linear span is \mathcal{A}' .
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least (n-1)d + 1.
- All matrices in B ⊗_𝔅 ρ(D) have rank nd (over 𝔅) so à has rank nd
- Because F ≥ 2nd, we can find a matrix in A of rank nd using ideas from [dGIR96].

Proof of main lemma

- Let $\rho : D \to Mat(d, \mathbb{K})$, be a representation of *D*.
- $\mathcal{A}' := \mathcal{A} \otimes Mat(d, \mathbb{K})$. Then $\mathcal{A}' = \mathcal{B} \otimes Mat(d, \mathbb{K})$ is a \mathbb{K} -linear subspace of $Mat(n, \mathbb{K}) \otimes Mat(d, \mathbb{K})$.
- $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ is an \mathbb{F}' linear space. Its \mathbb{K} linear span is \mathcal{A}' .
- Starting with the matrix A, get a matrix \tilde{A} in $\mathcal{B} \otimes_{\mathbb{F}} \rho(D)$ of the same rank, so rank is at least (n-1)d + 1.
- All matrices in B ⊗_𝔅 ρ(D) have rank nd (over 𝔅) so à has rank nd
- Because F ≥ 2nd, we can find a matrix in A of rank nd using ideas from [dGIR96].
- We need to construct division algebras, and be able to compute with them, at each stage

Background and problem statement

Using Gurvits algorithm

Progress via Blow-ups

Proof of the main lemma

Using extension fields [dGIR96].

 Assume K is an extension of F and you have a matrix in B ⊗ Mat(d, K) of rank r. Let S ⊂ F of size at least r.

- Assume K is an extension of F and you have a matrix in B ⊗ Mat(d, K) of rank r. Let S ⊂ F of size at least r.
- Let B_1, \ldots, B_l be a \mathbb{F} basis of \mathcal{B} . Then $A = a'_1 B_1 + a'_2 B_2 + \ldots + a'_l B_l$, and there is a $r \times r$ window in A with nonzero determinant, say the principal r window.

- Assume K is an extension of F and you have a matrix in B ⊗ Mat(d, K) of rank r. Let S ⊂ F of size at least r.
- Let B_1, \ldots, B_l be a \mathbb{F} basis of \mathcal{B} . Then $A = a'_1 B_1 + a'_2 B_2 + \ldots + a'_l B_l$, and there is a $r \times r$ window in A with nonzero determinant, say the principal r window.
- As a polynomial in *x*, the determinant of the principal *r* window xB₁ + a'₂B₂ + ... + a'_IB_I is non zero. This is of degree *r*. Since *S* has more than *r* elements there is an a₁ ∈ S ⊂ F such that the determinant a₁B₁ + a'₂B₂ + ... + a'_IB_I is non zero.

- Assume K is an extension of F and you have a matrix in B ⊗ Mat(d, K) of rank r. Let S ⊂ F of size at least r.
- Let B_1, \ldots, B_l be a \mathbb{F} basis of \mathcal{B} . Then $A = a'_1 B_1 + a'_2 B_2 + \ldots + a'_l B_l$, and there is a $r \times r$ window in A with nonzero determinant, say the principal r window.
- As a polynomial in *x*, the determinant of the principal *r* window xB₁ + a'₂B₂ + ... + a'_IB_I is non zero. This is of degree *r*. Since *S* has more than *r* elements there is an a₁ ∈ S ⊂ F such that the determinant a₁B₁ + a'₂B₂ + ... + a'_IB_I is non zero.
- Complete the proof by recursion, substituting values for a'_2, a'_3, \ldots, a'_l .

Background and problem statement

Using Gurvits algorithm

Progress via Blow-ups

Matrix of maximum rank

Second Wong sequence [IKQS14]

Second Wong sequence [IKQS14]

Definition

Given (A, \mathcal{B}) , $A \in Mat(n, \mathbb{F})$ and $\mathcal{B} \leq Mat(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in \mathbb{F}^n : $W_0 = 0$, $W_1 = \mathcal{B}(A^{-1}(W_0))$, ..., $W_i = \mathcal{B}(A^{-1}(W_{i-1}))$,

Second Wong sequence [IKQS14]

Definition

Given (A, \mathcal{B}) , $A \in Mat(n, \mathbb{F})$ and $\mathcal{B} \leq Mat(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in \mathbb{F}^n : $W_0 = 0$, $W_1 = \mathcal{B}(A^{-1}(W_0)), \ldots, W_i = \mathcal{B}(A^{-1}(W_{i-1})), \ldots$

*W*₀ < *W*₁ < *W*₂ < ··· < *W*_ℓ = *W*_{ℓ+1} = ... for some ℓ ∈ {0, 1, ..., n}. *W*_ℓ is then called the limit of this sequence, denoted as *W**.

Second Wong sequence [IKQS14]

Definition

Given (A, \mathcal{B}) , $A \in Mat(n, \mathbb{F})$ and $\mathcal{B} \leq Mat(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in \mathbb{F}^n : $W_0 = 0$, $W_1 = \mathcal{B}(A^{-1}(W_0))$, ..., $W_i = \mathcal{B}(A^{-1}(W_{i-1}))$,

- *W*₀ < *W*₁ < *W*₂ < ··· < *W*_ℓ = *W*_{ℓ+1} = ... for some ℓ ∈ {0, 1, ..., n}. *W*_ℓ is then called the limit of this sequence, denoted as *W**.
- When A ∈ B, W* ≤ im(A) if and only if there exists a corank(A)-shrunk subspace

Second Wong sequence [IKQS14]

Definition

Given (A, \mathcal{B}) , $A \in Mat(n, \mathbb{F})$ and $\mathcal{B} \leq Mat(n, \mathbb{F})$, the second Wong sequence of (A, \mathcal{B}) is the following sequence of subspaces in \mathbb{F}^n : $W_0 = 0$, $W_1 = \mathcal{B}(A^{-1}(W_0))$, ..., $W_i = \mathcal{B}(A^{-1}(W_{i-1}))$,

- *W*₀ < *W*₁ < *W*₂ < ··· < *W*_ℓ = *W*_{ℓ+1} = ... for some ℓ ∈ {0, 1, ..., n}. *W*_ℓ is then called the limit of this sequence, denoted as *W**.
- When A ∈ B, W* ≤ im(A) if and only if there exists a corank(A)-shrunk subspace
- A is of maximum rank and $A^{-1}(W^*)$ is a corank(A)-shrunk subspace.

Background and problem statement

Using Gurvits algorithm

Progress via Blow-ups

Matrix of maximum rank

Using the second Wong sequence

Progress via Blow-ups

Matrix of maximum rank

Using the second Wong sequence

• What if A is not of maximum rank in $\mathcal{B}^{\{d,d\}}$?

Using the second Wong sequence

• What if *A* is not of maximum rank in $\mathcal{B}^{\{d,d\}}$?

Incrementing rank

Let $\mathcal{B} \leq \operatorname{Mat}(n, \mathbb{F})$ and let $\mathcal{A} = \mathcal{B}^{\{d,d\}}$. Assume that we are given a matrix $A \in \mathcal{A}$ with $\operatorname{rk}(A) = rd$, and $|\mathbb{F}|$ is $\Omega(ndd')$, where d' > ris any positive integer. There exists a deterministic algorithm that returns either an (n - r)d-shrunk subspace for \mathcal{A} (equivalently, an (n - r)-shrunk subspace for \mathcal{B}), or a matrix $B \in \mathcal{A} \otimes \operatorname{Mat}(d', \mathbb{F})$ of rank at least (r + 1)dd'.

Division algebras

Cyclic algebras and the construction of Dickson

- Let K/F be a Galois extension with cyclic Galois group. Let σ be a generator of the Galois group and s = dim_F(K).
- Take $f \in \mathbb{F}$ and a symbol x, and consider $D = \mathbb{K} \oplus \mathbb{K} \cdot x \oplus \mathbb{K} \cdot x^2 + \dots \mathbb{K} \cdot x^{s-1}$.
- Multiply elements in *D* using the distributive law and using $x^s = f$ and $x \cdot b = \sigma(b)x$ for all $b \in K$.
- F i in the center of *D* and so *D* is an 𝔽-algebra. Dimension over 𝔽 is *s*².
- Wedderburn if f, f^2, \ldots, f^{s-1} are not in Norm(\mathbb{K}), then D is a division algebra, and in this case $D \otimes_{\mathbb{F}} \mathbb{K} \cong Mat(\mathbb{K})$.

Determining the shrunk subspaces

Blowing-down a shrunk subspace

Blowing-down a shrunk subspace

Shrinking by a factor of d

If $\mathcal{A} = \mathcal{B}^{\{d,d\}}$ has an *s*-shrunk subspace, then \mathcal{A} has an *s'*-shrunk subspace with $s' \ge s$ and s.t. *d* divides *s'*. \mathcal{B} has an s'/d-shrunk subspace.

Blowing-down a shrunk subspace

Shrinking by a factor of d

If $\mathcal{A} = \mathcal{B}^{\{d,d\}}$ has an *s*-shrunk subspace, then \mathcal{A} has an *s'*-shrunk subspace with $s' \ge s$ and s.t. *d* divides *s'*. \mathcal{B} has an s'/d-shrunk subspace.

Idea Maximal shrunk subspaces are of the form $U_o \otimes \mathbb{F}^d$ and their image under \mathcal{A} is of the form $W_o \otimes \mathbb{F}^d$.

Determining the shrunk subspaces

Blowing-down

Blowing-down

Reducing the size of blow-ups

Let $\mathcal{B} \leq \text{Mat}(n, \mathbb{F})$, and d > n + 1. Assume we are given a matrix $A \in \mathcal{B}^{\{d,d\}}$ of rank dn. Then there exists a deterministic polynomial-time procedure that constructs $A' \in \mathcal{B}^{\{d-1,d-1\}}$ of rank (d-1)n.

Construction of division algebras

Let *L* be a cyclic extension of degree *d* of a field *K'*. Let σ be a generator of the Galois group. Consider the transcendental extension L(Z) of *L*. Then σ extends to an automorphism (denoted again by σ) of L(Z) such that the fixed field of σ is K'(Z). Thus L(Z) is a cyclic extension of K'(Z). Consider the K'(Z)-algebra *D* generated by (a basis for) *L* and by an element *U* with relations $U^d = Z$ and $Ua = a^{\sigma}U$ ($\forall a \in L(Z)$, or, equivalently $\forall a \in$ the basis for *L*). Then *D* is a central division algebra of index *d* over K'(Z).

Determining the shrunk subspaces

Determining the shrunk subspaces

Open problems

• Get a combinatorial algorithm in characteristic zero.

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?
- For the GCT programme, desingularizing the null cone may be important this may help isolate points which are in the border.

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?
- For the GCT programme, desingularizing the null cone may be important this may help isolate points which are in the border.
- Orbit closure problem for the left right action

- Get a combinatorial algorithm in characteristic zero.
- Is there an augmenting path algorithm?
- For the GCT programme, desingularizing the null cone may be important this may help isolate points which are in the border.
- Orbit closure problem for the left right action .. NNL for this invariant ring.

References I

- B. Adsul, S. Nayak, and K. V. Subrahmanyam. A geometric approach to the Kronecker problem II: rectangular shapes, invariants of matrices and the Artin–Procesi theorem. preprint, 2007.
- M. Bürgin and J. Draisma. The Hilbert null-cone on tuples of matrices and bilinear forms.

Mathematische Zeitschrift, 254(4):785–809, 2006.

 Harm Derksen.
 Polynomial bounds for rings of invariants.
 Proceedings of the American Mathematical Society, 129(4):955–964, 2001.

References II

- Willem A. de Graaf, Gábor Ivanyos, and Lajos Rónyai.
 Computing Cartan subalgebras of Lie algebras.
 Applicable Algebra in Engineering, Communication and Computing, 7(5):339–349, 1996.
- Harm Derksen and Visu Makam. Polynomial degree bounds for matrix semi-invariants. preprint, 2015.
- M. Domokos and A. N. Zubkov. Semi-invariants of quivers as determinants. <u>Transformation groups</u>, 6(1):9–24, 2001.
- Jack Edmonds.

Systems of distinct representatives and linear algebra. J. Res. Nat. Bur. Standards Sect. B, 71:241–245, 1967.

References III

M. Fortin and C. Reutenauer.

Commutative/noncommutative rank of linear matrices and subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire, 52:B52f, 2004.

 Ankit Garg, Leonid Gurvits, Rafael Oliveira, and Avi Wigderson.
 A deterministic polynomial time algorithm for non-commutative rational identity testing. preprint ArXiv:1511.03730, 2015.

References IV

- Gábor Ivanyos, Marek Karpinski, Youming Qiao, and Miklos Santha.
 Generalized Wong sequences and their applications to Edmonds' problems.
 In <u>STACS</u>, pages 397–408, 2014.
- Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. Non-commutative Edmonds' problem and matrix semi-invariants. preprint arXiv:1508.00690, 2015.
- Gábor Ivanyos, Youming Qiao, and K. V. Subrahmanyam. On generating the ring of matrix semi-invariants. preprint, 2015.

Determining the shrunk subspaces

References V

Aidan Schofield.
 Semi-invariants of quivers.
 Journal of the London Mathematical Society, 2(3):385–395, 1991.