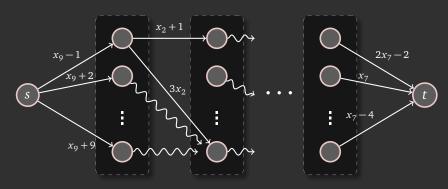
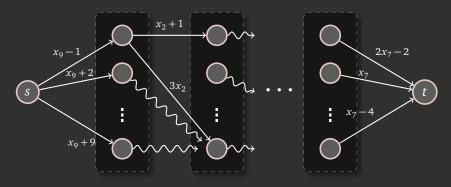
IDENTITY TESTING & LOWER BOUNDS FOR READ-k OBLIVIOUS ABPS

Ben Lee Volk

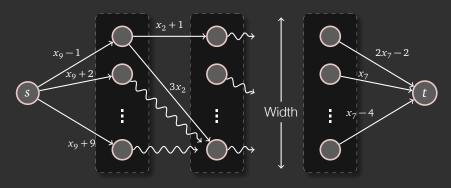
Joint with

Matthew Anderson Michael A. Forbes Ramprasad Saptharishi Amir Shpilka

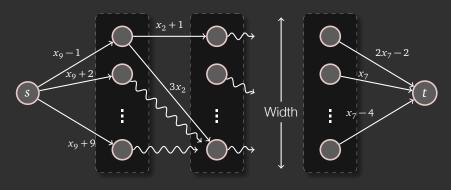




- Each $s \to t$ path computes multiplication of edge labels
- Program computes the sum of those over all $s \to t$ paths
- Read Once: Each var appears in one layer



- Each $s \to t$ path computes multiplication of edge labels
- Program computes the sum of those over all $s \to t$ paths
- Read Once: Each var appears in one layer



Equivalently: f is the (1,1) entry of the iterated matrix product

$$\prod_{i=1}^n M_i(x_{\pi(i)})$$

We know a lot about ROABPs :)

We know a lot about ROABPs:)

• Exponential lower bounds [Nisan]

We know a lot about ROABPs:)

- Exponential lower bounds [Nisan]
- Poly-time white-box PIT [Raz-Shpilka]

We know a lot about ROABPs:)

- Exponential lower bounds [Nisan]
- Poly-time white-box PIT [Raz-Shpilka]
- Quasipoly-size hitting sets even when order is unknown [Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Agrawal-Gurjar-Korwar-Saxena]

We know a lot about ROABPs:)

- Exponential lower bounds [Nisan]
- Poly-time white-box PIT [Raz-Shpilka]
- Quasipoly-size hitting sets even when order is unknown [Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width ROABPs (all in this workshop).

We know a lot about ROABPs:)

- Exponential lower bounds [Nisan]
- Poly-time white-box PIT [Raz-Shpilka]
- Quasipoly-size hitting sets even when order is unknown [Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width ROABPs (all in this workshop).

This talk is about **read-***k* **oblivious ABPs**.

We know a lot about ROABPs:)

- Exponential lower bounds [Nisan]
- Poly-time white-box PIT [Raz-Shpilka]
- Quasipoly-size hitting sets even when order is unknown [Forbes-Shpilka, Forbes-Shpilka-Saptharishi, Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width ROABPs (all in this workshop).

This talk is about **read-**k **oblivious ABPs**. (def: same as before except that now every variable appears in at most k layers)

 Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar, Saxena, Thierauf])

- Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar, Saxena, Thierauf])
- Generalizes read-k formulas (PIT by [Anderson, van Melkbeek, Volkovich])

- Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar, Saxena, Thierauf])
- Generalizes read-k formulas (PIT by [Anderson, van Melkbeek, Volkovich])
- Well-studied **boolean** analog

- Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar, Saxena, Thierauf])
- Generalizes read-k formulas (PIT by [Anderson, van Melkbeek, Volkovich])
- Well-studied boolean analog

For read-k oblivious **boolean** branching programs:

- Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar, Saxena, Thierauf])
- Generalizes read-k formulas (PIT by [Anderson, van Melkbeek, Volkovich])
- Well-studied boolean analog

For read-*k* oblivious **boolean** branching programs:

 exp(n/2^k) lower bounds [Okolnishnikova, Borodin-Razborov-Smolensky] even for randomized and non-deterministic variants

- Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar, Saxena, Thierauf])
- Generalizes read-k formulas (PIT by [Anderson, van Melkbeek, Volkovich])
- Well-studied boolean analog

For read-*k* oblivious **boolean** branching programs:

- exp(n/2^k) lower bounds [Okolnishnikova, Borodin-Razborov-Smolensky] even for randomized and non-deterministic variants
- PRG with seed length √s for size-s programs [Impagliazzo-Meka-Zuckerman]

READ-k Oblivious abps

READ-k OBLIVIOUS ABPS

Lower Bound: There is a polynomial $f \in VP$ that requires read-k oblivious ABPs of width $\exp(n/k^k)$.

READ-k OBLIVIOUS ABPS

Lower Bound: There is a polynomial $f \in VP$ that requires read-k oblivious ABPs of width $\exp(n/k^k)$.

PIT: There is a white-box* PIT algorithm for read-k oblivious ABPs, of running time $\exp(n^{1-1/2^{k-1}})$.

*only the order in which the variables appear is important

EVALUATION DIMENSION

Reminder: $f \in \mathbb{F}[\overline{x_1, \dots, x_n}], S \subseteq [n].$

$$\operatorname{eval-dim}_{S,\overline{S}}(f) = \operatorname{dim} \ \operatorname{span} \ \left\{ f \, |_{\mathbf{x}_S = \alpha} \mid \alpha \in \mathbb{F}^{|S|} \right\}.$$

EVALUATION DIMENSION

Reminder: $f \in \mathbb{F}[x_1, \dots, x_n], S \subseteq [n].$

$$\operatorname{eval-dim}_{S,\overline{S}}(f) = \operatorname{dim} \ \operatorname{span} \ \left\{ f \, |_{\mathbf{x}_S = \alpha} \mid \alpha \in \mathbb{F}^{|S|} \right\}.$$

Characterizes ROABP complexity:

Theorem [Nisan]: f has ROABP of width w in variable order $x_1, x_2, ..., x_n$ iff for every $i \in [n]$,

eval-dim
$$_{[i],\overline{[i]}}(f) \leq w$$
.

EVALUATION DIMENSION

Reminder: $f \in \mathbb{F}[x_1, \dots, x_n], S \subseteq [n].$

$$\operatorname{eval-dim}_{S,\overline{S}}(f) = \operatorname{dim} \operatorname{span} \left\{ f |_{\mathbf{x}_S = \alpha} \mid \alpha \in \mathbb{F}^{|S|} \right\}.$$

Characterizes ROABP complexity:

Theorem [Nisan]: f has ROABP of width w in variable order $x_1, x_2, ..., x_n$ iff for every $i \in [n]$,

eval-dim
$$_{[i],\overline{[i]}}(f) \leq w$$
.

(same as rank of partial derivative matrix)

$x_1 \mid x_2 \mid \cdots \mid x_{n-1} \mid x_n$	$x_1 x_2$	x_{n-1}	x_n
--	-----------	-----------	-------

$$f = (M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n))_{(1,1)}$$

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n & x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

$$f = \left(M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n)\right)_{(1,1)}$$
 Fixing $x_1 = \alpha_1$:

$$(N^{1}(\alpha_{1})M_{2}^{1}(x_{2})\cdots M_{n}^{1}(x_{n})\cdot N^{2}(\alpha_{1})M_{2}^{2}(x_{2})\cdots M_{n}^{2}(x_{n}))_{(1,1)}$$

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n & x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

$$f = \left(M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n)\right)_{(1,1)}$$
Fixing $x_1 = \alpha_1, x_2 = \alpha_2$:
$$\left(N^1(\alpha_1, \alpha_2)M_3^1(x_3)\cdots M_n^1(x_n)\cdot N^2(\alpha_1, \alpha_2)M_3^2(x_3)\cdots M_n^2(x_n)\right)_{(1,1)}$$

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n & x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

$$f = \left(M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n)\right)_{(1,1)}$$

Fixing x_1,x_2,\ldots,x_i :

$$f|_{\mathbf{x}_{[i]}=\alpha} = (N^{1}(\alpha_{1},...,\alpha_{i})M_{i+1}^{1}(x_{i+1})\cdots M_{n}^{1}(x_{n})$$
$$N^{2}(\alpha_{1},...,\alpha_{i})M_{i+1}^{2}(x_{i+1})\cdots M_{n}^{2}(x_{n}))_{(1,1)}$$

Same as ROABP but with two "passes":

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n & x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

$$f = \left(M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n)\right)_{(1,1)}$$

Fixing x_1,x_2,\ldots,x_i :

$$f|_{\mathbf{x}_{[i]}=\alpha} = (N^{1}(\alpha_{1},...,\alpha_{i})M_{i+1}^{1}(x_{i+1})\cdots M_{n}^{1}(x_{n})$$
$$N^{2}(\alpha_{1},...,\alpha_{i})M_{i+1}^{2}(x_{i+1})\cdots M_{n}^{2}(x_{n}))_{(1,1)}$$

Every restriction determined by N^1, N^2 that have w^2 entries.

Same as ROABP but with two "passes":

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n & x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

$$f = \left(M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n)\right)_{(1,1)}$$
 Fixing x_1,x_2,\ldots,x_i :

$$f|_{\mathbf{x}_{[i]}=\alpha} = (N^{1}(\alpha_{1},...,\alpha_{i})M_{i+1}^{1}(x_{i+1})\cdots M_{n}^{1}(x_{n})$$
$$N^{2}(\alpha_{1},...,\alpha_{i})M_{i+1}^{2}(x_{i+1})\cdots M_{n}^{2}(x_{n}))_{(1,1)}$$

Every restriction determined by N^1, N^2 that have w^2 entries. So eval-dim $_{[i], [i]}(f) \le w^4$.

Same as ROABP but with two "passes":

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{n-1} & x_n & x_1 & x_2 & \cdots & x_{n-1} & x_n \end{bmatrix}$$

$$f = \left(M_1^1(x_1)M_2^1(x_2)\cdots M_n^1(x_n)\cdot M_1^2(x_1)M_2^2(x_2)\cdots M_n^2(x_n)\right)_{(1,1)}$$
 Fixing x_1,x_2,\ldots,x_i :

$$f|_{\mathbf{x}_{[i]}=\alpha} = (N^{1}(\alpha_{1},...,\alpha_{i})M_{i+1}^{1}(x_{i+1})\cdots M_{n}^{1}(x_{n})$$
$$N^{2}(\alpha_{1},...,\alpha_{i})M_{i+1}^{2}(x_{i+1})\cdots M_{n}^{2}(x_{n}))_{(1,1)}$$

Every restriction determined by N^1, N^2 that have w^2 entries. So eval-dim $_{[i], [i]}(f) \le w^4$. $\Longrightarrow f$ has width w^4 ROABP.

GENERALIZE: k-Pass Abp

Theorem: If f is computed by a width-w k-pass ABP in variable order x_1, x_2, \ldots, x_n , then for every $i \in [n]$, eval-dim_{[i], [i]} $(f) \le w^{2k}$.

GENERALIZE: k-pass abp

Theorem: If f is computed by a width-w k-pass ABP in variable order x_1, x_2, \ldots, x_n , then for every $i \in [n]$, eval-dim $_{[i], \overline{[i]}}(f) \le w^{2k}$.

In particular, f is computed by a ROABP of width w^{2k} .

GENERALIZE: k-pass abp

Theorem: If f is computed by a width-w k-pass ABP in variable order x_1, x_2, \ldots, x_n , then for every $i \in [n]$, eval-dim $_{[i], \overline{[i]}}(f) \le w^{2k}$.

In particular, f is computed by a ROABP of width w^{2k} .

 \implies Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

GENERALIZE: k-PASS ABP

Theorem: If f is computed by a width-w k-pass ABP in variable order x_1, x_2, \ldots, x_n , then for every $i \in [n]$, eval-dim $_{[i], \overline{[i]}}(f) \le w^{2k}$.

In particular, f is computed by a ROABP of width w^{2k} .

 \implies Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

GENERALIZE: k-PASS ABP

Theorem: If f is computed by a width-w k-pass ABP in variable order x_1, x_2, \ldots, x_n , then for every $i \in [n]$, eval-dim $_{[i], \overline{[i]}}(f) \le w^{2k}$.

In particular, f is computed by a ROABP of width w^{2k} .

 \implies Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even sums of ROABPs:

GENERALIZE: k-pass abp

Theorem: If f is computed by a width-w k-pass ABP in variable order x_1, x_2, \ldots, x_n , then for every $i \in [n]$, eval-dim $_{[i], \overline{[i]}}(f) \le w^{2k}$.

In particular, f is computed by a ROABP of width w^{2k} .

 \implies Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even sums of ROABPs: 3 a polynomial computed by a 2-pass ABP with different orders that requires exponential width when computed as a sum of ROABPs.

x_1	x_2	 x_{n-1}	x_n	<i>x</i> ₈	x_n	 x_2	$x_{n/2}$

$x_1 \mid x_2 \mid \cdots \mid x_{n-1} \mid x_n$	$x_8 x_n$	x_2	$x_{n/2}$
--	-----------	-------	-----------

Theorem [Erdős-Szekeres]: Every sequence of n integers has a monotone subsequence of length \sqrt{n} .

Theorem [Erdős-Szekeres]: Every sequence of n integers has a monotone subsequence of length \sqrt{n} .

Theorem [Erdős-Szekeres]: Every sequence of n integers has a monotone subsequence of length \sqrt{n} .

Think of the ABP as computing a polynomial in the y vars over $\mathbb{F}(\overline{y})$ (i.e. all others vars are now "constants")

Theorem [Erdős-Szekeres]: Every sequence of n integers has a monotone subsequence of length \sqrt{n} .

Think of the ABP as computing a polynomial in the y vars over $\mathbb{F}(\overline{y})$ (i.e. all others vars are now "constants")

What you get is a 2-pass ABP over y vars.

Theorem [Erdős-Szekeres]: Every sequence of n integers has a monotone subsequence of length \sqrt{n} .

Think of the ABP as computing a polynomial in the y vars over $\mathbb{F}(\overline{y})$ (i.e. all others vars are now "constants")

What you get is a 2-pass ABP over \mathbf{y} vars. In other words, ignoring $\overline{\mathbf{y}}$, for every $i \in [\sqrt{n}]$, eval-dim_{$[i],\overline{[i]}$} $(f) \le w^4$.

PIT algorithm:

1. Find monotone subsequence y of length \sqrt{n}

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\boldsymbol{y}}$ (plugging in a fresh copy of the hitting set each time)

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\boldsymbol{y}}$ (plugging in a fresh copy of the hitting set each time)

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\mathbf{y}}$ (plugging in a fresh copy of the hitting set each time)

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\boldsymbol{y}}$ (plugging in a fresh copy of the hitting set each time)

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\boldsymbol{y}}$ (plugging in a fresh copy of the hitting set each time)

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\boldsymbol{y}}$ (plugging in a fresh copy of the hitting set each time)

PIT algorithm:

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\mathbf{y}}$ (plugging in a fresh copy of the hitting set each time)

Running Time: In total, $\approx \sqrt{n}$ copies of a $n^{\log n}$ size hitting set $\implies \approx n^{\sqrt{n}}$

PIT algorithm:

- 1. Find monotone subsequence \mathbf{y} of length \sqrt{n}
- 2. Plug-in hitting set for width w^4 ROABPs to y
- 3. Repeat with $\overline{\boldsymbol{y}}$ (plugging in a fresh copy of the hitting set each time)

Running Time: In total, $\approx \sqrt{n}$ copies of a $n^{\log n}$ size hitting set $\implies \approx n^{\sqrt{n}}$

Naturally generalizes to k passes with different orders.

PIT FOR k-pass, different orders

By repeatedly applying the Erdős-Szekeres theorem, we can find a subsequence of size $n^{1/2^{k-1}}$ which is monotone in each of the k passes.

PIT FOR k-Pass, different orders

By repeatedly applying the Erdős-Szekeres theorem, we can find a subsequence of size $n^{1/2^{k-1}}$ which is monotone in each of the k passes.

PIT FOR k-Pass, different orders

By repeatedly applying the Erdős-Szekeres theorem, we can find a subsequence of size $n^{1/2^{k-1}}$ which is monotone in each of the k passes.

Same algorithm gives $n^{n^{1-1/2^{k-1}}}$ hitting set.

PIT FOR k-pass, different orders

By repeatedly applying the Erdős-Szekeres theorem, we can find a subsequence of size $n^{1/2^{k-1}}$ which is monotone in each of the k passes.

Same algorithm gives $n^{n^{1-1/2^{k-1}}}$ hitting set.

This is still not a general read-k oblivious ABP!

Begin by applying Erdős-Szekeres.

Begin by applying Erdős-Szekeres.

Monotone sequences are not disjoint...

Begin by applying Erdős-Szekeres.

Monotone sequences are not disjoint...

BUT we can find a large set of the variables such that the resulting sequence is "regularly-interleaving":

Begin by applying Erdős-Szekeres.

Monotone sequences are not disjoint...

BUT we can find a large set of the variables such that the resulting sequence is "regularly-interleaving":

REGULARLY INTERLEAVING SUBSEQUENCES

This structure is enough to carry out the original argument: with respect to the variables \mathbf{y} in the regularly interleaving sequence $(|\mathbf{y}| \approx \sqrt{n})$, the evaluation dimension is at most w^4 .

REGULARLY INTERLEAVING SUBSEQUENCES

This structure is enough to carry out the original argument: with respect to the variables \mathbf{y} in the regularly interleaving sequence $(|\mathbf{y}| \approx \sqrt{n})$, the evaluation dimension is at most w^4 .

Generalizes to read-k: apply Erdős-Szekeres to every sequence and make every pair regularly-interleaving.

Wrap-up: PIT algorithm with running time $\exp(n^{1-1/2^{k-1}})$ for read-k oblivious ABPs.

• These arguments are sufficient to get a lower bound of roughly $\exp(n^{1/2^k})$

- These arguments are sufficient to get a lower bound of roughly $\exp(n^{1/2^k})$
- But actually, for a lower bound we don't need to show that for every prefix [i] the eval-dimension is small: it's enough to show it is small for some prefix [i]

- These arguments are sufficient to get a lower bound of roughly $\exp(n^{1/2^k})$
- But actually, for a lower bound we don't need to show that for every prefix [i] the eval-dimension is small: it's enough to show it is small for some prefix [i]
- That is, to show that if f is computed by a read-k oblivious ABP, then there is i such that eval-dim $_{i,1}$ $\overline{l_{i,1}}$ $(f) \le w^{2k}$

- These arguments are sufficient to get a lower bound of roughly $\exp(n^{1/2^k})$
- But actually, for a lower bound we don't need to show that for every prefix [i] the eval-dimension is small: it's enough to show it is small for some prefix [i]
- That is, to show that if f is computed by a read-k oblivious ABP, then there is i such that eval-dim $_{[i],\overline{[i]}}(f) \leq w^{2k}$
- This is very close to being true

EXPONENTIAL LOWER BOUND

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with |S|, $|T| \ge n/k^k$ and eval-dim_{S,T} $(f) \le w^{2k}$

EXPONENTIAL LOWER BOUND

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with |S|, $|T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with $|S|, |T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

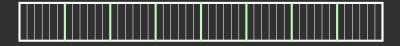
Proof: Partition program into r contiguous blocks.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with $|S|, |T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with $|S|, |T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

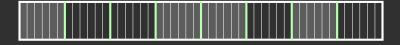
Proof: Partition program into r contiguous blocks.



By averaging, $\exists k$ blocks that contain all reads of $n/\binom{r}{k}$ vars.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with $|S|, |T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.



By averaging, $\exists k$ blocks that contain all reads of $n/\binom{r}{k}$ vars.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with $|S|, |T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.

By averaging, $\exists k$ blocks that contain all reads of $n/\binom{r}{k}$ vars. Call them S and fix all other vars in those blocks.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with |S|, $|T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.

By averaging, $\exists k$ blocks that contain all reads of $n/\binom{r}{k}$ vars. Call them S and fix all other vars in those blocks.

T= all remaining variables. Now compute eval-dim $_{S,T}$ using previous arguments.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with |S|, $|T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.

By averaging, $\exists k$ blocks that contain all reads of $n/\binom{r}{k}$ vars. Call them S and fix all other vars in those blocks.

T= all remaining variables. Now compute eval-dim $_{S,T}$ using previous arguments.

if $r = 10k^2$ we fix at most n/10 vars and $|S| \ge n/k^k$.

Claim: We can fix n/10 variables and partition the remaining to subsets S, T with |S|, $|T| \ge n/k^k$ and eval-dim $_{S,T}(f) \le w^{2k}$

Proof: Partition program into r contiguous blocks.

By averaging, $\exists k$ blocks that contain all reads of $n/\binom{r}{k}$ vars. Call them S and fix all other vars in those blocks.

T= all remaining variables. Now compute eval-dim $_{S,T}$ using previous arguments.

if $r = 10k^2$ we fix at most n/10 vars and $|S| \ge n/k^k$.

what's left is to find a polynomial such that eval-dim_{\mathcal{S},T} \geq 2^{\min\{|\mathcal{S}|,|T|\}}

SUMMARY

Lower Bound: An $\exp(n/k^k)$ lower bound on any read-k oblivious ABP computing some polynomial $f \in VP$.

SUMMARY

Lower Bound: An $\exp(n/k^k)$ lower bound on any read-k oblivious ABP computing some polynomial $f \in VP$.

PIT: A white-box PIT algorithm for read-k oblivious ABPs, with running time $\exp(n^{1-1/2^{k-1}})$.

• Faster PIT algorithm

- Faster PIT algorithm
- A complete black-box test (no dependence on order)

- Faster PIT algorithm
- A complete black-box test (no dependence on order)
- "Tighter" lower bounds (e.g. a hierarchy theorem for read-k ABPs)

- Faster PIT algorithm
- A complete black-box test (no dependence on order)
- "Tighter" lower bounds (e.g. a hierarchy theorem for read-k ABPs)
- Non-oblivious? (open even for k = 1)

- Faster PIT algorithm
- A complete black-box test (no dependence on order)
- "Tighter" lower bounds (e.g. a hierarchy theorem for read-k ABPs)
- Non-oblivious? (open even for k = 1)
- Connections with pseudorandomness for boolean branching programs?

THANK YOU