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Equivalently: f is the (1, 1) entry of the iterated matrix product
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Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)
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Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog

For read-k oblivious boolean branching programs:
• exp(n/2k) lower bounds [Okolnishnikova,

Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]



Read-k Oblivious ABPs

Lower
Bound: There is a polynomial f ∈ VP that requires
read-k oblivious ABPs of width exp(n/kk).

PIT: There is a white-box* PIT algorithm for read-k oblivious
ABPs, of running time exp(n1−1/2k−1

).
*only the order in which the variables appear is important
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Evaluation Dimension
Reminder: f ∈ F[x1, . . . , xn], S ⊆ [n].

eval-dimS,S( f ) = dim span
�

f |xS=α | α ∈ F|S|
	

.

Characterizes ROABP complexity:
Theorem [Nisan]: f has ROABP of width w in variable order
x1, x2, . . . , xn iff for every i ∈ [n],

eval-dim[i],[i]( f )≤ w.

(same as rank of partial derivative matrix)
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Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i]( f )≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: ∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.
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Think of the ABP as computing a polynomial in the y vars over
F(y) (i.e. all others vars are now “constants”)
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PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)
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Naturally generalizes to k passes with different orders.



PIT for k-pass, different orders
By repeatedly applying the Erdős-Szekeres theorem, we can find
a subsequence of size n1/2k−1 which is monotone in each of the k
passes.

Same algorithm gives nn1−1/2k−1

hitting set.

This is still not a general read-k oblivious ABP!
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Read-Twice oblivious ABPs

Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t



Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t



Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...

BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t



Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t



Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t



Regularly Interleaving Subsequences
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Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T ( f )≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
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�
vars.

Call them S and fix all other vars in those blocks.
T = all remaining variables. Now compute eval-dimS,T using
previous arguments.
if r = 10k2 we fix at most n/10 vars and |S| ≥ n/kk.
what’s left is to find a polynomial such that eval-dimS,T ≥ 2min{|S|,|T |}
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