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Equivalently: f is the (1, 1) entry of the iterated matrix product

n
l—[Mi(Xn(i))
i=1
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We know a lot about ROABPs :)
« Exponential lower bounds [Nisan]
« Poly-time white-box PIT [Raz-Shpilka]
» Quasipoly-size hitting sets even when order is unknown
[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)
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» Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

» Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

» Well-studied boolean analog
For read-k oblivious boolean branching programs:

« exp(n/2*) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

« PRG with seed length /s for size-s programs
[Impagliazzo-Meka-Zuckerman]
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Lower Bound: There is a polynomial f € VP that requires
read-k oblivious ABPs of width exp(n/k).

PIT: There is a white-box* PIT algorithm for read-k oblivious
ABPs, of running time exp(n}=/2"").

*only the order in which the variables appear is important



EVALUATION DIMENSION

Reminder: f € F[xy,...,x,], S € [n].

eval—dims’g(f) = dim span {f|x5=a |ae ]F'Sl} .



EVALUATION DIMENSION

Reminder: f € F[xy,...,x,], S € [n].
eval—dims’g(f) = dim span {f|x5=a |ae ]F'Sl} .

Characterizes ROABP complexity:
Theorem [Nisan]: f has ROABP of width w in variable order
X1, X0,y x, iff for every i € [n],

eval—dimmm(f) <w.



EVALUATION DIMENSION

Reminder: f € F[xy,...,x,], S € [n].
eval—dims’g(f) = dim span {f|x5=a |ae ]F'Sl} .

Characterizes ROABP complexity:
Theorem [Nisan]: f has ROABP of width w in variable order

X1,Xq,...,X, iff for every i € [n],
eval—dimmm(f) <w.

(same as rank of partial derivative matrix)
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Same as ROABP but with two “passes”:

X1

X2

Xn—1

Xn

X1

X2

Xn—1

f = (M ()M (x2) - - M) - M2( )M2(x2) - - - M2(x,,))

Fixing xq, x5, ...

f |x[i]=a = (Nl(als ceey ai)Mil_H(XHl) e M,}(xn)
Nz(alz [RX3) ai)Mi2+1(xi+l) U Mr%(xn))(l,l)

Every restriction determined by N, N2 that have w? entries.
So eval-dimg;; (f) < w*. = f has width w* ROABP.

(1,1)
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Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, X, - -, Xy, then for every i € [n], eval-dim; 77(f) < w2k,

In particular, f is computed by a ROABP of width w~.
—> Exp. lower bounds and quasi-poly PIT for k-pass ABPs.
Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: 3 a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.
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X1

X2

Xg

X3

Xn/2

Yis--

5 Yym

Theorem [Erd6s-Szekeres]: Every sequence of n integers has
a monotone subsequence of length 4/n.

Think of the ABP as computing a polynomial in the y vars over

F(y) (i.e. all others vars are now “constants”)

What you get is a 2-pass ABP over y vars. In other words,
ignoring y, for every i € [vn], eval-dim;; 75(f) < w*,
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PIT FOR 2-PASS, DIFFERENT ORDER

PIT algorithm:
1. Find monotone subsequence y of length /n
2. Plug-in hitting set for width w* ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

Running Time: In total, ~ 4/n copies of a n'°¢" size hitting set
— ~nV"

Naturally generalizes to k passes with different orders.
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By repeatedly applying the Erdés-Szekeres theorem, we can find
a subsequence of size n}/2" which is monotone in each of the k
passes.

_1/9k—1
Same algorithm gives L hitting set.

This is still not a general read-k oblivious ABP!
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Begin by applying Erd6s-Szekeres.

EIE|E|E) || )

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X; first Xy first X,

//\ //\ .“//\

second X, second X, second X,
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REGULARLY INTERLEAVING SUBSEQUENCES

This structure is enough to carry out the original argument: with
respect to the variables y in the regularly interleaving sequence
(ly| &~ +/n), the evaluation dimension is at most w*

Generalizes to read-k: apply Erdés-Szekeres to every sequence
and make every pair regularly-interleaving.

Wrap-up: PIT algorithm with running time exp(n=/2"") for
read-k oblivious ABPs.
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LOWER BOUNDS FOR READ-k

» These arguments are sufficient to get a lower bound of
roughly exp(n!/2“)

« But actually, for a lower bound we don’t need to show that
for every prefix [i] the eval-dimension is small: it’s enough to
show it is small for some prefix [i]

» That is, to show that if f is computed by a read-k oblivious
ABP, then there is i such that eval-dim;; 77(f) < w2k

« This is very close to being true
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Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|,|T| = n/kk and eval-dimg r(f) < w?

Proof: Partition program into r contiguous blocks.

By averaging, 3k blocks that contain all reads of n/(}) vars.
Call them S and fix all other vars in those blocks.

T = all remaining variables. Now compute eval-dimg - using
previous arguments.

if r = 10k we fix at most n/10 vars and |S| > n/kk.

what's left is to find a polynomial such that eval-dimg > 2mintISLTI}
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Lower Bound: An exp(n/k*) lower bound on any read-k
oblivious ABP computing some polynomial f € VP.

PIT: A white-box PIT algorithm for read-k oblivious ABPs, with
running time exp(n!=1/2"),
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OPEN PROBLEMS

Faster PIT algorithm
A complete black-box test (no dependence on order)

“Tighter” lower bounds (e.g. a hierarchy theorem for read-k
ABPs)

« Non-oblivious? (open even for k = 1)

Connections with pseudorandomness for boolean branching
programs?

THANK YOU



