
Identity Testing & Lower Bounds
for

Read-k Oblivious ABPs

Ben Lee Volk

Joint with
Matthew Anderson
Michael A. Forbes

Ramprasad Saptharishi
Amir Shpilka

Read-Once Oblivious ABPs

s ...

x9 − 1

x9 + 2

x9 + 9

...

x2 + 1

3x2 · · · ...
t

2x7 − 2

x7

x7 − 4

Read-Once Oblivious ABPs

s ...

x9 − 1

x9 + 2

x9 + 9

...

x2 + 1

3x2 · · · ...
t

2x7 − 2

x7

x7 − 4

• Each s→ t path computes multiplication of edge labels
• Program computes the sum of those over all s→ t paths
• Read Once: Each var appears in one layer

Read-Once Oblivious ABPs

s ...

x9 − 1

x9 + 2

x9 + 9

...

x2 + 1

3x2 ...
t

2x7 − 2

x7

x7 − 4Width

• Each s→ t path computes multiplication of edge labels
• Program computes the sum of those over all s→ t paths
• Read Once: Each var appears in one layer

Read-Once Oblivious ABPs

s ...

x9 − 1

x9 + 2

x9 + 9

...

x2 + 1

3x2 ...
t

2x7 − 2

x7

x7 − 4Width

Equivalently: f is the (1, 1) entry of the iterated matrix product
n∏

i=1

Mi(xπ(i))

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]

• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]

• Quasipoly-size hitting sets even when order is unknown
[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.

(def: same as before except that now every variable appears in at
most k layers)

Some Things You’ve All Heard About
We know a lot about ROABPs :)

• Exponential lower bounds [Nisan]
• Poly-time white-box PIT [Raz-Shpilka]
• Quasipoly-size hitting sets even when order is unknown

[Forbes-Shpilka, Forbes-Shpilka-Saptharishi,
Agrawal-Gurjar-Korwar-Saxena]

... and also PIT for sums of ROABPs and bounded-width
ROABPs (all in this workshop).

This talk is about read-k oblivious ABPs.
(def: same as before except that now every variable appears in at
most k layers)

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog

For read-k oblivious boolean branching programs:
• exp(n/2k) lower bounds [Okolnishnikova,

Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Reading k Times

• Generalizes sum of k ROABPs (PIT by [Gurjar, Korwar,
Saxena, Thierauf])

• Generalizes read-k formulas (PIT by [Anderson,
van Melkbeek, Volkovich])

• Well-studied boolean analog
For read-k oblivious boolean branching programs:

• exp(n/2k) lower bounds [Okolnishnikova,
Borodin-Razborov-Smolensky] even for randomized and
non-deterministic variants

• PRG with seed length ps for size-s programs
[Impagliazzo-Meka-Zuckerman]

Read-k Oblivious ABPs

Lower
Bound: There is a polynomial f ∈ VP that requires
read-k oblivious ABPs of width exp(n/kk).

PIT: There is a white-box* PIT algorithm for read-k oblivious
ABPs, of running time exp(n1−1/2k−1

).
*only the order in which the variables appear is important

Read-k Oblivious ABPs
Lower
Bound: There is a polynomial f ∈ VP that requires
read-k oblivious ABPs of width exp(n/kk).

PIT: There is a white-box* PIT algorithm for read-k oblivious
ABPs, of running time exp(n1−1/2k−1

).
*only the order in which the variables appear is important

Read-k Oblivious ABPs
Lower
Bound: There is a polynomial f ∈ VP that requires
read-k oblivious ABPs of width exp(n/kk).

PIT: There is a white-box* PIT algorithm for read-k oblivious
ABPs, of running time exp(n1−1/2k−1

).
*only the order in which the variables appear is important

Evaluation Dimension
Reminder: f ∈ F[x1, . . . , xn], S ⊆ [n].

eval-dimS,S(f) = dim span
�

f |xS=α | α ∈ F|S|
	

.

Characterizes ROABP complexity:
Theorem [Nisan]: f has ROABP of width w in variable order
x1, x2, . . . , xn iff for every i ∈ [n],

eval-dim[i],[i](f)≤ w.

(same as rank of partial derivative matrix)

Evaluation Dimension
Reminder: f ∈ F[x1, . . . , xn], S ⊆ [n].

eval-dimS,S(f) = dim span
�

f |xS=α | α ∈ F|S|
	

.

Characterizes ROABP complexity:
Theorem [Nisan]: f has ROABP of width w in variable order
x1, x2, . . . , xn iff for every i ∈ [n],

eval-dim[i],[i](f)≤ w.

(same as rank of partial derivative matrix)

Evaluation Dimension
Reminder: f ∈ F[x1, . . . , xn], S ⊆ [n].

eval-dimS,S(f) = dim span
�

f |xS=α | α ∈ F|S|
	

.

Characterizes ROABP complexity:
Theorem [Nisan]: f has ROABP of width w in variable order
x1, x2, . . . , xn iff for every i ∈ [n],

eval-dim[i],[i](f)≤ w.

(same as rank of partial derivative matrix)

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Fixing x1 = α1:�
N1(α1)M

1
2 (x2) · · ·M1

n (xn) · N2(α1)M
2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Fixing x1 = α1, x2 = α2:�
N1(α1,α2)M

1
3 (x3) · · ·M1

n (xn) · N2(α1,α2)M
2
3 (x3) · · ·M2

n (xn)
�
(1,1)

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Fixing x1, x2, . . . , x i:

f |x[i]=α =
�
N1(α1, ...,αi)M

1
i+1(x i+1) · · ·M1

n (xn)

N2(α1, ...,αi)M
2
i+1(x i+1) · · ·M2

n (xn)
�
(1,1)

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Fixing x1, x2, . . . , x i:

f |x[i]=α =
�
N1(α1, ...,αi)M

1
i+1(x i+1) · · ·M1

n (xn)

N2(α1, ...,αi)M
2
i+1(x i+1) · · ·M2

n (xn)
�
(1,1)

Every restriction determined by N1, N2 that have w2 entries.

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Fixing x1, x2, . . . , x i:

f |x[i]=α =
�
N1(α1, ...,αi)M

1
i+1(x i+1) · · ·M1

n (xn)

N2(α1, ...,αi)M
2
i+1(x i+1) · · ·M2

n (xn)
�
(1,1)

Every restriction determined by N1, N2 that have w2 entries.
So eval-dim[i],[i](f)≤ w4.

Warm-up: 2-pass ABP
Same as ROABP but with two “passes”:

x1 x2 · · · xn−1 xn x1 x2 · · · xn−1 xn

f =
�
M1

1 (x1)M
1
2 (x2) · · ·M1

n (xn) ·M2
1 (x1)M

2
2 (x2) · · ·M2

n (xn)
�
(1,1)

Fixing x1, x2, . . . , x i:

f |x[i]=α =
�
N1(α1, ...,αi)M

1
i+1(x i+1) · · ·M1

n (xn)

N2(α1, ...,αi)M
2
i+1(x i+1) · · ·M2

n (xn)
�
(1,1)

Every restriction determined by N1, N2 that have w2 entries.
So eval-dim[i],[i](f)≤ w4. =⇒ f has width w4 ROABP.

Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i](f)≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: ∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.

Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i](f)≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: ∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.

Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i](f)≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: ∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.

Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i](f)≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: ∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.

Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i](f)≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs:

∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.

Generalize: k-pass ABP
Theorem: If f is computed by a width-w k-pass ABP in variable
order x1, x2, . . . , xn, then for every i ∈ [n], eval-dim[i],[i](f)≤ w2k.

In particular, f is computed by a ROABP of width w2k.

=⇒ Exp. lower bounds and quasi-poly PIT for k-pass ABPs.

Up next: 2-pass, different order.

this is already exponentially more powerful than ROABPs and even
sums of ROABPs: ∃ a polynomial computed by a 2-pass ABP with
different orders that requires exponential width when computed as a
sum of ROABPs.

2-pass, different order

x1 x2 · · · xn−1 xn x8 xn · · · x2 xn/2

y1, . . . , ypn

2-pass, different order

x1 x2 · · · xn−1 xn x8 xn · · · x2 xn/2

y1, . . . , ypn

Theorem [Erdős-Szekeres]: Every sequence of n integers has
a monotone subsequence of length pn.

2-pass, different order

x1 x2 · · · xn−1 xn x8 xn · · · x2 xn/2

y1, . . . , ypn

Theorem [Erdős-Szekeres]: Every sequence of n integers has
a monotone subsequence of length pn.

2-pass, different order

x1 x2 · · · xn−1 xn x8 xn · · · x2 xn/2

y1, . . . , ypn

Theorem [Erdős-Szekeres]: Every sequence of n integers has
a monotone subsequence of length pn.
Think of the ABP as computing a polynomial in the y vars over
F(y) (i.e. all others vars are now “constants”)

2-pass, different order

x1 x2 · · · xn−1 xn x8 xn · · · x2 xn/2

y1, . . . , ypn

Theorem [Erdős-Szekeres]: Every sequence of n integers has
a monotone subsequence of length pn.
Think of the ABP as computing a polynomial in the y vars over
F(y) (i.e. all others vars are now “constants”)
What you get is a 2-pass ABP over y vars.

2-pass, different order

x1 x2 · · · xn−1 xn x8 xn · · · x2 xn/2

y1, . . . , ypn

Theorem [Erdős-Szekeres]: Every sequence of n integers has
a monotone subsequence of length pn.
Think of the ABP as computing a polynomial in the y vars over
F(y) (i.e. all others vars are now “constants”)
What you get is a 2-pass ABP over y vars. In other words,
ignoring y, for every i ∈ [pn], eval-dim[i],[i](f)≤ w4.

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

Running Time: In total, ≈pn copies of a nlog n size hitting set
=⇒≈ n

p
n

PIT for 2-pass, different order
PIT algorithm:

1. Find monotone subsequence y of length pn

2. Plug-in hitting set for width w4 ROABPs to y

3. Repeat with y
(plugging in a fresh copy of the hitting set each time)

Running Time: In total, ≈pn copies of a nlog n size hitting set
=⇒≈ n

p
n

Naturally generalizes to k passes with different orders.

PIT for k-pass, different orders
By repeatedly applying the Erdős-Szekeres theorem, we can find
a subsequence of size n1/2k−1 which is monotone in each of the k
passes.

Same algorithm gives nn1−1/2k−1

hitting set.

This is still not a general read-k oblivious ABP!

PIT for k-pass, different orders
By repeatedly applying the Erdős-Szekeres theorem, we can find
a subsequence of size n1/2k−1 which is monotone in each of the k
passes.

Same algorithm gives nn1−1/2k−1

hitting set.

This is still not a general read-k oblivious ABP!

PIT for k-pass, different orders
By repeatedly applying the Erdős-Szekeres theorem, we can find
a subsequence of size n1/2k−1 which is monotone in each of the k
passes.

Same algorithm gives nn1−1/2k−1

hitting set.

This is still not a general read-k oblivious ABP!

PIT for k-pass, different orders
By repeatedly applying the Erdős-Szekeres theorem, we can find
a subsequence of size n1/2k−1 which is monotone in each of the k
passes.

Same algorithm gives nn1−1/2k−1

hitting set.

This is still not a general read-k oblivious ABP!

Read-Twice oblivious ABPs

Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t

Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t

Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...

BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t

Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t

Read-Twice oblivious ABPs
Begin by applying Erdős-Szekeres.

x1 x2 x3 x4 x1 x2 x5 x6 x3 · · ·

Monotone sequences are not disjoint...
BUT we can find a large set of the variables such that the
resulting sequence is “regularly-interleaving”:

first X1

second X1

first X2

second X2

· · ·
first X t

second X t

Regularly Interleaving Subsequences
This structure is enough to carry out the original argument: with
respect to the variables y in the regularly interleaving sequence
(|y| ≈ pn), the evaluation dimension is at most w4.

Generalizes to read-k: apply Erdős-Szekeres to every sequence
and make every pair regularly-interleaving.

Wrap-up: PIT algorithm with running time exp(n1−1/2k−1
) for

read-k oblivious ABPs.

Regularly Interleaving Subsequences
This structure is enough to carry out the original argument: with
respect to the variables y in the regularly interleaving sequence
(|y| ≈ pn), the evaluation dimension is at most w4.

Generalizes to read-k: apply Erdős-Szekeres to every sequence
and make every pair regularly-interleaving.

Wrap-up: PIT algorithm with running time exp(n1−1/2k−1
) for

read-k oblivious ABPs.

Lower Bounds for Read-k

• These arguments are sufficient to get a lower bound of
roughly exp(n1/2k

)

• But actually, for a lower bound we don’t need to show that
for every prefix [i] the eval-dimension is small: it’s enough to
show it is small for some prefix [i]

• That is, to show that if f is computed by a read-k oblivious
ABP, then there is i such that eval-dim[i],[i](f)≤ w2k

• This is very close to being true

Lower Bounds for Read-k

• These arguments are sufficient to get a lower bound of
roughly exp(n1/2k

)

• But actually, for a lower bound we don’t need to show that
for every prefix [i] the eval-dimension is small: it’s enough to
show it is small for some prefix [i]

• That is, to show that if f is computed by a read-k oblivious
ABP, then there is i such that eval-dim[i],[i](f)≤ w2k

• This is very close to being true

Lower Bounds for Read-k

• These arguments are sufficient to get a lower bound of
roughly exp(n1/2k

)

• But actually, for a lower bound we don’t need to show that
for every prefix [i] the eval-dimension is small: it’s enough to
show it is small for some prefix [i]

• That is, to show that if f is computed by a read-k oblivious
ABP, then there is i such that eval-dim[i],[i](f)≤ w2k

• This is very close to being true

Lower Bounds for Read-k

• These arguments are sufficient to get a lower bound of
roughly exp(n1/2k

)

• But actually, for a lower bound we don’t need to show that
for every prefix [i] the eval-dimension is small: it’s enough to
show it is small for some prefix [i]

• That is, to show that if f is computed by a read-k oblivious
ABP, then there is i such that eval-dim[i],[i](f)≤ w2k

• This is very close to being true

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
�r

k

�
vars.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
�r

k

�
vars.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
�r

k

�
vars.

Call them S and fix all other vars in those blocks.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
�r

k

�
vars.

Call them S and fix all other vars in those blocks.
T = all remaining variables. Now compute eval-dimS,T using
previous arguments.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
�r

k

�
vars.

Call them S and fix all other vars in those blocks.
T = all remaining variables. Now compute eval-dimS,T using
previous arguments.
if r = 10k2 we fix at most n/10 vars and |S| ≥ n/kk.

Exponential Lower Bound
Claim: We can fix n/10 variables and partition the remaining to
subsets S, T with |S|, |T | ≥ n/kk and eval-dimS,T (f)≤ w2k

Proof: Partition program into r contiguous blocks.

By averaging, ∃k blocks that contain all reads of n/
�r

k

�
vars.

Call them S and fix all other vars in those blocks.
T = all remaining variables. Now compute eval-dimS,T using
previous arguments.
if r = 10k2 we fix at most n/10 vars and |S| ≥ n/kk.
what’s left is to find a polynomial such that eval-dimS,T ≥ 2min{|S|,|T |}

Summary

Lower
Bound: An exp(n/kk) lower bound on any read-k
oblivious ABP computing some polynomial f ∈ VP.

PIT: A white-box PIT algorithm for read-k oblivious ABPs, with
running time exp(n1−1/2k−1

).

Summary
Lower
Bound: An exp(n/kk) lower bound on any read-k
oblivious ABP computing some polynomial f ∈ VP.

PIT: A white-box PIT algorithm for read-k oblivious ABPs, with
running time exp(n1−1/2k−1

).

Summary
Lower
Bound: An exp(n/kk) lower bound on any read-k
oblivious ABP computing some polynomial f ∈ VP.

PIT: A white-box PIT algorithm for read-k oblivious ABPs, with
running time exp(n1−1/2k−1

).

Open Problems

• Faster PIT algorithm
• A complete black-box test (no dependence on order)
• “Tighter” lower bounds (e.g. a hierarchy theorem for read-k

ABPs)
• Non-oblivious? (open even for k = 1)
• Connections with pseudorandomness for boolean branching

programs?

Thank You

Open Problems

• Faster PIT algorithm

• A complete black-box test (no dependence on order)
• “Tighter” lower bounds (e.g. a hierarchy theorem for read-k

ABPs)
• Non-oblivious? (open even for k = 1)
• Connections with pseudorandomness for boolean branching

programs?

Thank You

Open Problems

• Faster PIT algorithm
• A complete black-box test (no dependence on order)

• “Tighter” lower bounds (e.g. a hierarchy theorem for read-k
ABPs)

• Non-oblivious? (open even for k = 1)
• Connections with pseudorandomness for boolean branching

programs?

Thank You

Open Problems

• Faster PIT algorithm
• A complete black-box test (no dependence on order)
• “Tighter” lower bounds (e.g. a hierarchy theorem for read-k

ABPs)

• Non-oblivious? (open even for k = 1)
• Connections with pseudorandomness for boolean branching

programs?

Thank You

Open Problems

• Faster PIT algorithm
• A complete black-box test (no dependence on order)
• “Tighter” lower bounds (e.g. a hierarchy theorem for read-k

ABPs)
• Non-oblivious? (open even for k = 1)

• Connections with pseudorandomness for boolean branching
programs?

Thank You

Open Problems

• Faster PIT algorithm
• A complete black-box test (no dependence on order)
• “Tighter” lower bounds (e.g. a hierarchy theorem for read-k

ABPs)
• Non-oblivious? (open even for k = 1)
• Connections with pseudorandomness for boolean branching

programs?

Thank You

