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algebraic complexity

field F (char(F) 6= 2)
variables X = {x1, . . . , xn}
polynomial f ∈ F[X ]

questions:
what is the circuit or formula size of f ?
specifically, lower bounds?

study simpler/restricted models of computation
like monotone, multilinear, constant depth, ...



removing graph structure

theorem [Valiant]:
1. if f has a formula of size s then

f = det(M)

with M of size ≈ s and Mi ,j ∈ affine(X )

2∗. if f has a circuit of size s then

f = perm(M)

with M of size ≈ s and Mi ,j ∈ affine(X )



determinantal complexity

if f has a formula of size s then

f = det(M)

with M of size s × s and Mi ,j ∈ affine(X )

Definition:
dc(f ) = min{s : f = det(M)}

an algebraic analog of formula size



GCT [Mulmuley]

an approach for investigating dc(perm) based on symmetry

V = linF(X )

GL(V ) acts on V ⇒ GL(V ) acts on F[X ]:

(hf )(x) = f (h−1x)

the stabilizer1 of f is

Gf = {h : hf = f }

idea: Gperm is far from Gdet so dc(perm) is large

again, simpler/restricted models of “computation”

1there is also a projective version



equivariance [Landsberg-Ressayre]

consider
f = det(M)

think of M as a device for computing f

question: does device respect symmetries of f ?

every h ∈ GL(V ) acts on both sides of equality

hf = h det(M) = det(hM)

we can investigate what h does to M



equivariance

consider f = det(M) with

M = A + B, Ai ,j ∈ lin(X ), Bi ,j ∈ F

let
GM = {g ∈ Gdet : gA(V ) = A(V ), gB = B}

“the part of symmetries of det that respects the device”

M is an equivariant representation of f

if for every h ∈ Gf there is g ∈ GM so that hM = gM

h acts on M from “inside” while g from “outside”

edc(f ) = min{s : f = det(M)}

question: edc(f ) <∞?



statements

theorems [Landsberg-Ressayre]: over C

1. edc(permn) =
(2n
n

)
− 1 for n ≥ 3

2. edc
(∑n

i=1 x2
i

)
= n + 1



example: quadratics

let

q =
n∑

i=1

x2
i

thus
Gq = {h ∈ GL(V ) : h−1 = hT}

properties:

i. dcC(q) ≤ n
2 + 1 for n even

ii. edcC(q) = n + 1

iii. dcR(q) = n + 1
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upper bound

claim: for

M =


0 −x1 −x2 . . . xn
y1 1 0 . . . 0
y2 0 1 . . . 0

. . .
yn 0 0 . . . 1

 :=

[
0 −x
y I

]

we have
n∑

i=1

xiyi = det(M)



upper bound on edc

know: M =

[
0 −x
x I

]
⇒ q =

∑n
i=1 x2

i = det(M)

corollary: edc(q) ≤ n + 1

proof: for h ∈ Gq, we have h−1 = hT

hM =

[
0 −(h−1)T x

h−1x I

]
and g defined by

M ′ 7→
g

[
1 0
0 h−1

]
M ′
[

1 0
0 (h−1)T

]
is so that g ∈ Gdet and hM = gM
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real versus complex

know: det

([
0 −x
y I

])
=
∑n

i=1 xiyi

corollary:

1. dcR(q) ≤ edcR(q) ≤ n + 1

2. dcC(q) = n
2 + 1:

det




0 −x1 − ix2 x3 − ix4 . . . xn−1 − ixn
x1 − ix2 1 0 . . . 0
x3 − ix4 0 1 . . . 0

. . .
xn−1 + ixn 0 0 . . . 1




= (x1 + ix2)(x1 − ix2) + . . . = q



real lower bound

claim: if q = det(M) with M real and s × s then s ≥ n + 1

idea:

a. q is degree 2 homogeneous and “smooth” & symmetries of det

⇒ M = A + B with B = diag(0, 1, 1, . . . , 1)

b. first column of A must contain a copy of V ;
otherwise can choose v 6= 0 so that first column of A|x=v is 0

0 6= q(x) = det(A|x=v ) = 0

wrong over C
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complex lower bound

claim: if q = det(M) with M equivariant and s × s then s ≥ n + 1

idea:

deep structural properties of Lie groups

a. q is degree 2 homogeneous and “smooth” & symmetries of det

⇒ M = A + B with B = diag(0, 1, 1, . . . , 1)

b. GM which fixes B has a specific structure

c. first column of A must contain a copy of V
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summary

the algebraic language yields new types of “restricted models”

for equivariant representations, we can understand things (better)

also yields algorithms (“Ryser’s formula”)


