symmetric computations

amir yehudayoff

Technion

algebraic complexity

field $\mathbb{F}(\operatorname{char}(\mathbb{F}) \neq 2)$
variables $X=\left\{x_{1}, \ldots, x_{n}\right\}$
polynomial $f \in \mathbb{F}[X]$

questions:

what is the circuit or formula size of f ? specifically, lower bounds?
study simpler/restricted models of computation like monotone, multilinear, constant depth, ...

removing graph structure

theorem [Valiant]:

1. if f has a formula of size s then

$$
f=\operatorname{det}(M)
$$

with M of size $\approx s$ and $M_{i, j} \in \operatorname{affine}(X)$
2^{*}. if f has a circuit of size s then

$$
f=\operatorname{perm}(M)
$$

with M of size $\approx s$ and $M_{i, j} \in \operatorname{affine}(X)$

determinantal complexity

if f has a formula of size s then

$$
f=\operatorname{det}(M)
$$

with M of size $s \times s$ and $M_{i, j} \in \operatorname{affine}(X)$

Definition:

$$
d c(f)=\min \{s: f=\operatorname{det}(M)\}
$$

an algebraic analog of formula size

GCT [Mulmuley]

an approach for investigating $d c$ (perm) based on symmetry
$V=\operatorname{lin}_{\mathbb{F}}(X)$
$G L(V)$ acts on $V \Rightarrow G L(V)$ acts on $\mathbb{F}[X]:$

$$
(h f)(x)=f\left(h^{-1} x\right)
$$

the stabilizer ${ }^{1}$ of f is

$$
G_{f}=\{h: h f=f\}
$$

idea: $G_{p e r m}$ is far from $G_{d e t}$ so $d c($ perm $)$ is large again, simpler/restricted models of "computation"

equivariance [Landsberg-Ressayre]

consider

$$
f=\operatorname{det}(M)
$$

think of M as a device for computing f
question: does device respect symmetries of f ?
every $h \in G L(V)$ acts on both sides of equality

$$
h f=h \operatorname{det}(M)=\operatorname{det}(h M)
$$

we can investigate what h does to M

equivariance

consider $f=\operatorname{det}(M)$ with

$$
M=A+B, A_{i, j} \in \operatorname{lin}(X), B_{i, j} \in \mathbb{F}
$$

let

$$
G_{M}=\left\{g \in G_{\text {det }}: g A(V)=A(V), g B=B\right\}
$$

"the part of symmetries of det that respects the device"
M is an equivariant representation of f
if for every $h \in G_{f}$ there is $g \in G_{M}$ so that $h M=g M$
h acts on M from "inside" while g from "outside"

$$
e d c(f)=\min \{s: f=\operatorname{det}(M)\}
$$

question: $\operatorname{edc}(f)<\infty$?

statements

theorems [Landsberg-Ressayre]: over \mathbb{C}

1. $\operatorname{edc}\left(\operatorname{perm}_{n}\right)=\binom{2 n}{n}-1$ for $n \geq 3$
2. $\operatorname{edc}\left(\sum_{i=1}^{n} x_{i}^{2}\right)=n+1$

example: quadratics

let

$$
q=\sum_{i=1}^{n} x_{i}^{2}
$$

thus

$$
G_{q}=\left\{h \in G L(V): h^{-1}=h^{T}\right\}
$$

example: quadratics

let

$$
q=\sum_{i=1}^{n} x_{i}^{2}
$$

thus

$$
G_{q}=\left\{h \in G L(V): h^{-1}=h^{T}\right\}
$$

properties:
i. $d c_{\mathbb{C}}(q) \leq \frac{n}{2}+1$ for n even
ii. $\operatorname{edc}_{\mathbb{C}}(q)=n+1$
iii. $d c_{\mathbb{R}}(q)=n+1$

upper bound

claim: for

$$
M=\left[\begin{array}{ccccc}
0 & -x_{1} & -x_{2} & \ldots & x_{n} \\
y_{1} & 1 & 0 & \ldots & 0 \\
y_{2} & 0 & 1 & \ldots & 0 \\
& & & \ldots & \\
y_{n} & 0 & 0 & \ldots & 1
\end{array}\right]:=\left[\begin{array}{cc}
0 & -x \\
y & l
\end{array}\right]
$$

we have

$$
\sum_{i=1}^{n} x_{i} y_{i}=\operatorname{det}(M)
$$

upper bound on edc

know: $M=\left[\begin{array}{cc}0 & -x \\ x & 1\end{array}\right] \Rightarrow q=\sum_{i=1}^{n} x_{i}^{2}=\operatorname{det}(M)$
corollary: $\operatorname{edc}(q) \leq n+1$

upper bound on edc

know: $M=\left[\begin{array}{cc}0 & -x \\ x & 1\end{array}\right] \Rightarrow q=\sum_{i=1}^{n} x_{i}^{2}=\operatorname{det}(M)$
corollary: $\operatorname{edc}(q) \leq n+1$
proof: for $h \in G_{q}$, we have $h^{-1}=h^{T}$

$$
h M=\left[\begin{array}{cc}
0 & -\left(h^{-1}\right)^{T} x \\
h^{-1} x & I
\end{array}\right]
$$

and g defined by

$$
M^{\prime} \stackrel{\leftrightarrow}{\mapsto}\left[\begin{array}{cc}
1 & 0 \\
0 & h^{-1}
\end{array}\right] M^{\prime}\left[\begin{array}{cc}
1 & 0 \\
0 & \left(h^{-1}\right)^{T}
\end{array}\right]
$$

is so that $g \in G_{d e t}$ and $h M=g M$

real versus complex

know: $\operatorname{det}\left(\left[\begin{array}{cc}0 & -x \\ y & l\end{array}\right]\right)=\sum_{i=1}^{n} x_{i} y_{i}$

corollary:

1. $d c_{\mathbb{R}}(q) \leq e d c_{\mathbb{R}}(q) \leq n+1$
2. $d c_{\mathbb{C}}(q)=\frac{n}{2}+1$:

$$
\begin{aligned}
& \operatorname{det}\left(\left[\begin{array}{ccccc}
0 & -x_{1}-i x_{2} & x_{3}-i x_{4} & \ldots & x_{n-1}-i x_{n} \\
x_{1}-i x_{2} & 1 & 0 & \cdots & 0 \\
x_{3}-i x_{4} & 0 & 1 & \cdots & 0 \\
& & & \cdots & \\
x_{n-1}+i x_{n} & 0 & 0 & \cdots & 1
\end{array}\right]\right) \\
& =\left(x_{1}+i x_{2}\right)\left(x_{1}-i x_{2}\right)+\ldots=q
\end{aligned}
$$

real lower bound

claim: if $q=\operatorname{det}(M)$ with M real and $s \times s$ then $s \geq n+1$

real lower bound

claim: if $q=\operatorname{det}(M)$ with M real and $s \times s$ then $s \geq n+1$
idea:

real lower bound

claim: if $q=\operatorname{det}(M)$ with M real and $s \times s$ then $s \geq n+1$
idea:
a. q is degree 2 homogeneous and "smooth" \& symmetries of det

$$
\Rightarrow M=A+B \text { with } B=\operatorname{diag}(0,1,1, \ldots, 1)
$$

real lower bound

claim: if $q=\operatorname{det}(M)$ with M real and $s \times s$ then $s \geq n+1$

idea:

a. q is degree 2 homogeneous and "smooth" \& symmetries of det

$$
\Rightarrow M=A+B \text { with } B=\operatorname{diag}(0,1,1, \ldots, 1)
$$

b. first column of A must contain a copy of V; otherwise can choose $v \neq 0$ so that first column of $\left.A\right|_{x=v}$ is 0

$$
0 \neq q(x)=\operatorname{det}\left(\left.A\right|_{x=v}\right)=0
$$

real lower bound

claim: if $q=\operatorname{det}(M)$ with M real and $s \times s$ then $s \geq n+1$

idea:

a. q is degree 2 homogeneous and "smooth" \& symmetries of det

$$
\Rightarrow M=A+B \text { with } B=\operatorname{diag}(0,1,1, \ldots, 1)
$$

b. first column of A must contain a copy of V; otherwise can choose $v \neq 0$ so that first column of $\left.A\right|_{x=v}$ is 0

$$
0 \neq q(x)=\operatorname{det}\left(\left.A\right|_{x=v}\right)=0
$$

wrong over \mathbb{C}

complex lower bound

claim: if $q=\operatorname{det}(M)$ with M equivariant and $s \times s$ then $s \geq n+1$

complex lower bound

claim: if $q=\operatorname{det}(M)$ with M equivariant and $s \times s$ then $s \geq n+1$ idea:
deep structural properties of Lie groups

complex lower bound

claim: if $q=\operatorname{det}(M)$ with M equivariant and $s \times s$ then $s \geq n+1$ idea:

deep structural properties of Lie groups

a. q is degree 2 homogeneous and "smooth" \& symmetries of det

$$
\Rightarrow M=A+B \text { with } B=\operatorname{diag}(0,1,1, \ldots, 1)
$$

complex lower bound

claim: if $q=\operatorname{det}(M)$ with M equivariant and $s \times s$ then $s \geq n+1$ idea:

deep structural properties of Lie groups

a. q is degree 2 homogeneous and "smooth" \& symmetries of det

$$
\Rightarrow M=A+B \text { with } B=\operatorname{diag}(0,1,1, \ldots, 1)
$$

b. G_{M} which fixes B has a specific structure

complex lower bound

claim: if $q=\operatorname{det}(M)$ with M equivariant and $s \times s$ then $s \geq n+1$ idea:

deep structural properties of Lie groups

a. q is degree 2 homogeneous and "smooth" \& symmetries of det

$$
\Rightarrow M=A+B \text { with } B=\operatorname{diag}(0,1,1, \ldots, 1)
$$

b. G_{M} which fixes B has a specific structure
c. first column of A must contain a copy of V

summary

the algebraic language yields new types of "restricted models"
for equivariant representations, we can understand things (better)
also yields algorithms ("Ryser's formula")

