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Goal of talk 

• Model: Arithmetic circuits 
• Problem: Polynomial Identity Testing 
• Example: Depth-3 circuits 
• Some open problems 
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Boolean Complexity 

• Holy grail: P vs. NP  
• In a nutshell: Show that certain problems (e.g., 

finding the minimum distance of a binary code given 
by its parity check matrix) cannot be decided by 
small Boolean circuits 
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Boolean Complexity 

• Holy grail: P vs. NP  
• In a nutshell: Show that certain problems (e.g., 

finding the minimum distance of a binary code given 
by its parity check matrix) cannot be decided by 
small Boolean circuits 

• Problem notoriously difficult – with minuscule 
advance 

• Natural idea: consider more structured models 
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Playground: Arithmetic Circuits 
Field:   (e.g., 2, ) 
Variables:  X1,...,Xn 
Gates: +, × 
Every gate in the  

circuit computes a  
polynomial in [X1,...,Xn] 

Example:   (X1 ⋅ X2) ⋅ (X2 + 1) 
Size = number of wires 
Depth = length of longest input-output path 
Degree = max degree of internal gates 

September 29, 2011 5 



PIT – Bernoullie Lecture  

Playground: Arithmetic Circuits 
Field:   (e.g., 2, ) 
Variables:  X1,...,Xn 
Gates: +, × 
Every gate in the  

circuit computes a  
polynomial in [X1,...,Xn] 

Example:   (X1 ⋅ X2) ⋅ (X2 + 1) 
Size = number of wires 
Depth = length of longest input-output path 
Degree = max degree of internal gates 

September 29, 2011 6 

In Example: 
 Size = 6 
 Depth = 2 
 Degree = 3 
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Why Arithmetic Circuits? 

• Structured model (compared to Boolean circuits) P vs. 
NP may be easier 

• Most natural model for computing polynomials 
• For many problems (e.g. Matrix Multiplication, Det) 

best algorithm is an arithmetic circuit 
• Great algorithmic achievements: 

– Fourier Transform 
– Matrix Multiplication 
– Polynomial Factorization 
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Important Problems 

• Design new algorithms: 
– Õ(n2) for Matrix Multiplication? 
– Understanding P 

• Prove lower bounds: 
– Find a polynomial (e.g. Permanent) that requires super-

polynomial size or super-logarithmic depth 
– Analog of P vs. NP  

• Derandomize Polynomial Identity Testing: 
– Understanding the power of randomness 
– Analog of P vs. BPP  
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Exam(ple) 

 ωn=1. Is the following polynomial identically 0? 
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Prove it! 
Will do so later. 
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Polynomial Identity Testing 

Randomized algorithm [Schwartz, Zippel, DeMillo-Lipton]: 
evaluate f at a random point 
Goal: A proof. I.e., a deterministic algorithm 

Input: Arithmetic circuit computing f 
Problem: Is f≡0 ? 

x1 x2 xn 

f(x1,...,xn) 
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Note: x2 – x is the zero function over 2 but not the  
 zero polynomial! 



PIT – Bernoullie Lecture  

Polynomial Identity Testing 

Randomized algorithm [Schwartz, Zippel, DeMillo-Lipton]: 
evaluate f at a random point 
Goal: A proof. I.e., a deterministic algorithm 

Input: Arithmetic circuit computing f 
Problem: Is f≡0 ? 

x1 x2 xn 

f(x1,...,xn) 

September 29, 2011 

+ 

11 

× × 



PIT – Bernoullie Lecture  

Analogy with SAT 

 
Input: Boolean circuit 
 
Decide: is C = 0? 
 
Note: SAT does not have 
  randomized algorithms 
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Black Box PIT ≡ Explicit Hitting Set 

Input: A Black-Box circuit computing f. 

f(a1,...,an) (a1,...,an) 

September 29, 2011 13 

+ × × f(b1,...,bn) (b1,...,bn) 

Problem: Is f≡0 ? 
S,Z,DM-L: Evaluate at a random point 
Goal: deterministic algorithm (a.k.a. Hitting Set): 
find explicit set H:  if f ≠ 0,  ∃a ∈ H with  f(a) ≠ 0  

x1 x2 xn 
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Motivation 

• Natural and fundamental problem 
• Strong connection to circuit lower bounds 
• Algorithmic importance: 

– Primality testing [Agrawal-Kayal-Saxena] 
– Parallel algorithms for finding matching  

[Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani] 
• May help you solve exams! 
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Talk Overview 

Definition of the problem 
• Connection to lower bounds (hardness) 
• Survey of positive results 
• Some proofs 
• Open problems 
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Hardness: PIT ≡ lower bounds 
[Heintz-Schnorr,Agrawal]:  

Polynomial time Black-Box PIT ⇒  
Exponential lower bounds for arith. Circuits 

[Kabanets-Impagliazzo]:  
• Exponential lower bound for Permanent ⇒  

 Black-Box PIT in npolylog(n) time 
• Polynomial time White-Box PIT ⇒  

(roughly) super-polynomial lower bounds. 
[Dvir-S-Yehudayoff]: (almost) same as K-I for bounded 

depth circuits 
Lesson: Derandomizing PIT essentially equivalent to 

proving lower bounds for arithmetic circuits  
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Black-Box PIT  ⇒ Lower Bounds 
[Heintz-Schnorr,Agrawal]:  

BB PIT for size s circuits in time poly(s)  
(i.e. poly(s) size hitting set)  
 ⇒ exp. lower bounds for arithmetic circuits. 

Proof: Given ={pi}, find non-zero polynomial f in 
log(||) variables, such that f(pi)=0 for all i.  

⇒ f does not have size s circuits    
Gives lower bounds for f in EXP (PSPACE) 
Conjecture [Agrawal]:  
 ={(y1,…, yn) : yi=yki mod r, k,r < s20} is a hitting set for size 

s circuits 
September 29, 2011 17 



A short digression 

Bounded Depth Circuits 
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Bounded depth circuits: ΣΠ 

• ΣΠ circuits: depth-2 circuits with + at the top and × at 
the bottom. Size s circuits compute  
s-sparse polynomials. 
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(-e)x1⋅xn + 2x1⋅x2⋅x7 + 5(xn)2 
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x1 x7 x1 x2 xn 

× × 

+ 

× 
2 5 -e 

+ + + + + 
π -2 ¼ 

Example: 
(-e)⋅(-2x1+xn)⋅(x1+πx2+¼x7) + …  

Bounded depth circuits: ΣΠΣ 

• ΣΠΣ circuits: + at the top, × at the middle and + at the 
bottom: computes sums of products of linear functions.  
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Bounded depth circuits: ΣΠΣΠ 

• ΣΠΣΠ circuits: depth-4 circuits with + at the top, then 
×, then + and another × at the bottom. Compute sums 
of products of sparse polynomials. 
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Back to Hardness-Randomness 
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Importance of ΣΠΣΠ circuits  

[Agrawal-Vinay,Raz]: Exponential lower bounds for  ΣΠΣΠ 
circuits imply exponential lower bounds for general 
circuits. 

Cor [Agrawal-Vinay]: Polynomial time PIT of ΣΠΣΠ circuits 
gives quasi-polynomial time PIT for general circuits. 

Proof: By [Heintz-Schnorr,Agrawal] polynomial time PIT ⇒ 
exponential lower bounds for ΣΠΣΠ circuits. By 
[Agrawal-Vinay, Raz] ⇒ exponential lower bounds for 
general circuits. Now use [Kabanets-Impagliazzo].  
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Lesson: Understanding small depth (i.e. depth 4) circuits 
is as important as the general case! 
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Talk Overview 

Definition of the problem 
 Connection to lower bounds (hardness) 
• Survey of positive results 
• Some proofs 
• Open problems 
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Deterministic algorithms for PIT 
• ΣΠ circuits [BenOr-Tiwari, Grigoriev-Karpinski, Klivans-Spielman,…]  

– Black-Box in polynomial time 
• Non-commutative formulas [Raz-S]  

– White-Box in polynomial time 
• ΣΠΣ(k) circuits [Dvir-S,Kayal-Saxena,Karnin-S,Kayal-Saraf,Saxena-

Seshadri]  
– Black-Box in time nO(k) 

• Mult. ΣΠΣΠ(k) [Karnin-Mukhopadhyay-S-Volkovich,Saraf-Volkovich]  
– Black-Box in time npoly(k)  

• Read-k multilinear formulas [S-Volkovich,Anderson-van Melkebeek-
Volkovich] 
– White-Box in time nkO(k) 

– Black-Box in nO(log(n)+kO(k)) 
27 September 29, 2011 
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Talk Overview 

Definition of the problem 
 Connection to lower bounds (hardness) 
 Survey of positive results 
• Some proofs: 

– Depth-3 circuits 

• Open problems 
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Solution to Exam (ΣΠΣ circuit) 

 ωn=1. Is the following polynomial identically 0? 
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Prove it! 
Will do so later now 
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Idea: change of basis 

• A = π⋅X + e⋅Y 
• B =  ⋅X + π⋅e⋅Z 
• C = e⋅X - π⋅Y + ⋅Z 
•  Identity becomes 
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• But surely, this is not the general case. Right? 
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Depth 3 identities 

• What is the structure of a zero circuit? 
• If M1 + … + Mk = 0 then 

– Multiplying by a common factor: 
  Πxi⋅M1 + … + Πxi⋅Mk = 0 

– Adding two identities: 
(M1 + … + Mk ) + (T1 + … + Tk’) = 0 

• How do the most basic identities look like? 
• Basic: cannot be `broken’ to pieces (minimal) and no 

common linear factors (simple). 
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Depth 3 identities 
• C = M1 + … + Mk        Mi = Πj=1...di

Li,j 

• Rank: dimension of space spanned by {Li,j} 
• In the exam: Rank=3 
• Turns out: this is (almost) the general case! 
• Theorem [Dvir S]: If C ≡ 0 is a basic identity then 

dim(C) ≤ Rank(k,d) = (log(d))k 

• White-Box Algorithm: find partition to sub-circuits of 
low dimension (after removal of g.c.d.) and brute force 
verify that they vanish. 

• Improved nO(k) algorithm by [Kayal-Saxena]. 
• Black-Box: Similar ideas… 
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Depth 3 identities 

• Lesson 1: depth 3 identities are very structured! 
• Lesson 2: Rank is an important invariant to study. 
• Improvements [Kayal-Saraf,Saxena-Seshadri]: 

– finite ,   k⋅log(d) < Rank(k,d) < k3⋅log(d) 
– over ,   k < Rank(k,d) < k2⋅log(k) 

• Improves [Dvir-S] + [Karnin-S] (plug and play) 
• [Saxena-Seshadri] BB-PIT in time nO(k) 
Open problem: remove k from the exponent! 
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L1 L2 ... Li ... Lj ... Ld 

L'1 L'2 ... L'i ... L'j ... L'd 

M1 = 

M2 = 

Fact: linear functions are irreducible polynomial. 

Corollary: C ≡ 0 then M1, M2 have same factors. 
Corollary: ∃ matching i → π(i) s.t. Li ~ L'π(i) 

Bounding the rank 

Basic observation: Consider C = M1 + M2  
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Bounding the rank 

• Claim: Rank(3,d) = O(log(d)) 
 

35 

Sketch: cover all linear 
functions in log(d) steps, 
where at m’th step:  
• dim of cover is O(m) 
• Ω(2m) functions in span 

0 

September 29, 2011 



PIT – Bernoullie Lecture  

Bounding the rank 

• Claim: Rank(3,d) = O(log(d)) 
 

36 

Sketch: cover all linear 
functions in log(d) steps, 
where at m’th step:  
• dim of cover is O(m) 
• Ω(2m) functions in span 

0 

September 29, 2011 



PIT – Bernoullie Lecture  

 
“Geometric interpretation of  

M1+M2+M3 = 0” 
 

• Lets map Linear forms to points in n 

• The map 
 
 
 

• Say    L1 → P1       L2 → P2        L3 → P3 

– If L3 =  α L1 +  β L2 then  
P3 lies on the line through P1 and P2 
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M1+M2+M3 = 0 → colored points 

Linear forms of 
M1 

Linear forms of 
M2 

Linear forms of 
M3 
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M1+M2+M3 = 0 → colored points 

Linear forms of 
M1 

Linear forms of 
M2 

Linear forms of 
M3 

Question:  If every line containing points of two colors also  
includes the third, must the points sit in low-dimensional space? 
39 September 29, 2011 
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The Sylvester-Gallai Theorem  

• Sylvester-Gallai Theorem:  
 Given a finite set of points S in the plane. 

– ∃ line L intersecting exactly two points of S 
–  or all points in S are collinear  

Not good enough!  
L may contain only red points 
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Edelstein-Kelly Theorem  

• [Edelstein-Kelly 66]: Let P be a set of points with the 
following properties: 

• Every point is assigned one of three colors – either 
Red or Blue or Green 

• The points span a space of ≤ 4 dimensions 
• Then there exists a line containing points of exactly 2 

distinct colors from P  
• Theorem: Rank(3,d) ≤ 4 over  
• For Rank(k,d) generalizations for higher dimensions are 

used 
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Summary of depth-3 

• Depth-3 important subcase before the general case 
of ΣΠΣΠ circuits 

• Demonstrated structure in depth-3 identities that led 
to beautiful mathematics 
– High dimensional colored versions of Sylvester-Gallai 

theorem 
– Extensions to finite fields 

• Didn’t see it but 
– Problem related to low-rank-recovery in signal processing 
– Reconstruction of depth-3 circuits 
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Talk Overview 

Definition of the problem 
 Connection to lower bounds (hardness) 
 Survey of positive results 
 Some proofs: 
Depth-3 circuits 

• Open problems 
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Open problems 

• Improve PIT of depth-3 circuits 
– e.g. to f(k)⋅poly(n) 

• Give PIT algorithm to ΣΠΣΠ(k) circuits 
– Even nf(k) white-box algorithm will be great 
– Related to open problems on factorization of 

sparse polynomials  
• PIT for tensors 

– Special case of depth-3 circuits 
– Related to Low-Rank-Recovery in signal processing 

• Use PIT to reconstruct arithmetic circuits 
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Thank You! 
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