
Corrigendum: Explicit Construction of a Small ε-Net for
Linear Threshold Functions

Yuval Rabani* Amir Shpilka†

Abstract

We give explicit constructions of ε-nets for linear threshold functions on the binary cube and
on the unit sphere. The size of the constructed nets is polynomial in the dimension n and in 1

ε .
To the best of our knowledge no such constructions were previously known. Our results match,
up to the exponent of the polynomial, the bounds that are achieved by probabilistic arguments.
As a corollary we also construct subsets of the binary cube that have size polynomial in n and
a covering radius of n

2 − c
√

n log n for any constant c. This improves upon the well-known
construction of dual BCH codes that guarantee only a covering radius of n

2 − c
√

n.

1 Introduction

Influenced by the discovery of unexpected connections linking fundamental questions in geo-
metric functional analysis to problems in theoretical computer science, there has been recent in-
terest in explicit or algorithmic construction of certain geometric objects that are known to exist
via probabilistic arguments. For example, the celebrated dimension reduction lemma of Johnson
and Lindenstrauss [JL84] has been derandomized using the method of conditional expectations
[EIO02, Siv02]. Another example that is still mostly open is the construction of high dimensional
nearly-Euclidean linear subspaces of `n

1 [Ind07, GLR08, GLW08]. This problem is related to the
question of constructing compressed sensing schemes [Don06]; other probabilistic compressed
sensing schemes, using the restricted isometry property [CT06], also exhibit a geometric flavor.
All these geometric objects have numerous applications in areas such as coding theory and data
compression, communication complexity, nearest neighbor search, learning theory, and computa-
tional linear algebra (see, e.g., the introduction of [GLR08]), hence the desire to discover explicit
constructions.

In this paper we study what is perhaps the simplest such question. We construct ε-nets for
linear threshold functions on the binary cube Bn = {−1,+1}n as well as on the unit sphere Sn−1 ⊂
Rn. A function f : Rn → {−1, 1} is called a linear threshold function (LTF) iff for some v ∈ Rn and
θ ∈ R we have that f (x) = 1 iff 〈v, x〉 ≥ θ. Notice that when restricted to Sn−1, an LTF is simply
the indicator function of a closed spherical cap of Sn−1. Given a measurable set Ω ⊂ Rn endowed
with a measure µ and a family F of measurable subsets of Ω, an ε-net for F is a set S ⊂ Ω such

*The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem,
Jerusalem 91904, Israel (yrabani@cs.huji.ac.il). This author’s research was supported by Israel Science Foundation grant
1109/07 and by US-Israel Binational Science Foundation grant 2008059.

†Computer Science Department, Technion, Haifa 32000, Israel (shpilka@cs.technion.ac.il). This author’s research
was supported by the Israel Science Foundation (grant 439/06).

1

that for every F ∈ F with µ(F) > ε, we have that |S ∩ F| > 0.1 Constructing ε-nets for natural set
systems (Ω, µ,F) has been studied extensively in some cases. For example, the case where Ω is
the convex hull of a d-points set P and F is the family of all convex hulls of subsets of P received
a lot of attention (see, e.g., [Cha94, AKN+08]). The case where Ω = [m]d and the set F is the set of
all combinatorial rectangles also received a lot of attention [EGL+92, LLSZ97]. Finally, ε-nets were
extensively studied for fixed dimensions; see, e.g., [CM96]. To the best of our knowledge, the case
of LTFs (in high dimensions) has not been previously considered in this context.

We consider Ω, which is either the binary cube or the unit sphere (endowed with the uniform
measure), and the family F includes the subsets A f = {x ∈ Ω : f (x) = 1} for all LTFs f . We
construct S ⊂ Ω of cardinality poly(n, 1/ε) that includes a point from A f for every LTF f that
satisfies µ(A f) ≥ ε, where µ is the uniform measure on Ω. A random sample of O(n/ε) points
is an ε-net with high probability,2 and our goal is to construct such a set explicitly. We prove the
following theorem.

Theorem 1.1. There exist two universal constants a, b > 0 such that for every ε > 0 there is an explicit
construction3 of an ε-net, Nε ⊂ Bn, for LTFs of size

|Nε| = O(ε−b · na).
Note that when ε = 1/poly(n) the construction above yields a polynomial sized set. As a

corollary of our construction, we get a similar construction for the unit sphere.

Theorem 1.2. There exist two universal constants a, b > 0 such that for every ε = exp(−O(
√

n)) there
is an explicit construction of an ε-net, Sε ⊂ Sn−1, for spherical caps of size |Sε| = O(ε−b · na).

As another corollary of our construction we also construct a poly(n) size subset of Bn with
covering radius of n

2 −Ω(
√

n log n). The covering radius r of a set of points S ⊂ Bn is the smallest
ρ such that for every x ∈ Bn there is some s ∈ S with H(x, s) ≤ ρ, where H denotes Hamming
distance. We note that this construction improves upon the one guaranteed by dual BCH codes.
This result was independently obtained by Alon [Alo08].

Corollary 1.3. There exists a > 0 such that for every c > 0 there is an explicit construction of a set C ⊂ Bn
of size |C| = n2 · (nc)a such that for every z ∈ Bn there is some x ∈ C withH(z, x) ≤ n

2 −
√

cn log n.

We note that LTFs play an important role in both theory and practice. For example, bounded
depth TC0 circuits, composed of a constant number of layers of threshold functions, received
considerable attention in complexity theory, and support vector machines use threshold functions
as a hypothesis in many learning scenarios. Aside from the intrinsic interest in studying LTFs,
our work is motivated by the desire to build methodically a theory of pseudorandom generators
for geometric functions. In the algebraic setting (over GF[2]), ε-biased sample spaces fool linear
functions [NN93]; they were recently composed to construct pseudorandom generators for low-
degree polynomials [Vio08]. Analogously, we hope that dealing with LTFs is a good starting
point for the gradual construction of more complicated pseudorandom generators for nonlinear
geometric functions, which are needed to resolve some of the questions mentioned earlier.

1Such a set S is also called a hitting set in the CS literature, however in the geometric setting we prefer the notion of
ε-nets.

2This follows, for example, from applying a VC dimension argument; see [AS08].
3Whenever we say that an “explicit construction” exists we mean that there is a polynomial time algorithm that on

input 1n outputs the required construction. It is not difficult to verify that the constructions in this work can also be
performed by a log-space machine.

2

1.1 Proof technique

Our constructions use several ideas from derandomization theory. The first is the notion of a
k-wise independent distribution. A set of m random variables on a sample space Ω is k-wise
independent iff every subset of the random variables of cardinality at most k is independent. There
are numerous applications in computer science for k-wise independent distributions with small
support. In particular, poly(n) size k-wise independent distributions on Bn give a construction of a
covering code with covering radius n

2 −Ω(
√

n). We improve the covering radius of a poly(n) size
set to n

2 −Ω(
√

n log n). The idea is to concatenate O(log n) samples from a 4-wise independent
distribution with m = n/O(log n) random variables. In order to restrict the size of the constructed
set, we need to consider only a subset of all possible concatenations. In the case of the covering
code we actually concatenate the same element with itself O(log n) times. More accurately, for
every element s ∈ S and every sequence of t = O(log n) signs α1, . . . , αt we consider α1 · s ◦ · · · ◦
αt · s. Thus, every element of S gives rise to 2t = poly(n) vectors in the Boolean cube.

Note that this idea does not yield an ε-net. Indeed, a covering code is an ε-net for LTFs of the
form f (x) = sign(〈x, v〉 − θ) (for an appropriate θ) when v ∈ Bn. However, when v is taken from
the unit sphere and all the weight of v is concentrated on the first n/O(log n) coordinates, the
inner product of v and the “self-concatenated” s will be off by a factor of O(

√
log n). To overcome

this and to ensure that the weight of v is “spread” we first hash the coordinates of v into O(log n)
“buckets” such that each of them contains approximately the same weight of coefficients as the
other sets. To get a small set of partitions, we use certain explicit constructions of perfect hash
functions. Once we have this “reordering” of the coordinates of v we would like to repeat the idea
from before. However, an additional component is needed. Instead of concatenating each s ∈ S
to itself (with different signs) we instead pick a subset of O(log n) elements of s and concatenate
them together. As we do not wish to go over all such O(log n)-tuples we use walks on an expander
to pick those sets (in fact, we could have used any sampler and not just expander walks here).

The analysis of the construction of ε-nets is different from the analysis in the case of covering
codes. The main difference is that the distribution of an LTF f (x) = sign(〈x, v〉 − θ) depends on
the way the weight of v is distributed among its coordinates. If no subset of coordinates contains
too much weight, then the analysis is similar to before. However, if there is a small subset of
coordinates (say, of size O(log n)) that contains most of the weight, then we need to have the
correct sign on those coordinates. This reasoning gives rise to a case analysis in the spirit of an
earlier work of Servedio [Ser06] where the notion of critical index was first used to obtain small
weight approximators for LTFs. Specifically, assume that the coordinates of v satisfy |v1| ≥ |v2| ≥
· · · ≥ |vn|. Consider the first index t such that v2

t ≤ O((v2
t+1 + · · ·+ v2

n)/t). Intuitively, if t is large
(say, t > log(1/ε)), then v is roughly concentrated on its first t coordinates and by hashing them
to different buckets we just have to go over all possible sign assignments (to the buckets) in order
to get an inner product of (roughly) |v1|+ · · ·+ |vt|, which is the maximum one can hope for. On
the other hand, if t is small, then it means that except for a few large coordinates the weight of v is
“spread” among many coordinates, which is similar to the case of covering codes discussed above
where one studies (normalized) sign vectors.

Organization. In section 2 we give some formal definitions and the necessary background on k-
wise independent distributions, expander graphs, and perfect hash functions. We also give some
concentration results for threshold functions. In section 3 we give the construction of a covering
code. In section 4 we give our main construction for linear threshold functions and in section 5 we
give the construction for spherical caps.

3

1.2 Subsequent works

Following our work [RS09] several other papers looked at the problem of obtaining pseudoran-
dom generators for LTFs on the Boolean cube. [DGJ+09] showed that k-wise distributions ε-fool
LTFs, where k = O(log2(1/ε)/ε2), namely, a k-wise independent distribution contains the “cor-
rect” number of accepting inputs of any LTF up to error (roughly) exp(−

√
k). Note however that

the size of such sets is nΩ(k) and so this gives a polynomial size construction only when ε is a con-
stant (and of course, the exponent of the construction depends on ε).4 More recently, [MZ09] gave
a construction of a pseudorandom generator for polynomial threshold functions, namely, functions
that are the sign of a low-degree polynomial. The size of their construction is around n1/εd

for
error ε. For the special case of LTFs they obtain a pseudorandom generator of size nO(log 1/ε) for
ε > 1/poly(n) and of polynomial size whenever ε > 1/poly log(n). Compared to our construction
they obtain a pseudorandom generator where we obtain only a hitting set. On the other hand, our
construction is of polynomial size even for a polynomially small ε.

2 Preliminaries

We will use the following notation. The n-dimensional binary cube is Bn = {−1, 1}n. The (n− 1)-
dimensional unit sphere in Rn is Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The Hamming distance on Rn

is denoted by H, so H(x, y) is the number of coordinates i for which xi 6= yi. For x ∈ Rn and
J = {i1, . . . , i|J|} ⊆ [n] we denote xJ = (xi1 , . . . , xi|J|). We will abuse notation and use (for A ⊂ Rn)
H(x, A) to denote miny∈AH(x, y). For A ⊆ Bn and ρ > 0, we put Aρ = {x ∈ Bn : H(x, A) ≤ ρ}.
The covering radius of a set C ⊂ Bn is the minimum ρ such that Cρ = Bn, namely, it is the minimal
ρ such that for every x ∈ Bn there is y ∈ A withH(x, y) ≤ ρ.

In this paper we focus on LTFs. A vector v ∈ Rn and a real number θ ∈ R define an LTF
Lv,θ : Bn → {−1, 1} by Lv,θ(x) = sign(〈v, x〉 − θ). In other words, Lv,θ(x) = 1 if 〈v, x〉 ≥ θ and
Lv,θ(x) = −1 otherwise. For a linear function Lv,θ we define by Av,θ its set of accepting inputs,
namely, Av,θ = L−1

v,θ (1) = {x ∈ Bn : 〈v, x〉 ≥ θ}. A spherical cap in Rn is a subset of Sn−1

that is contained in a half-space, namely, for every v ∈ Rn and θ > 0 the cap Cv,θ is defined as
Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}. Stated differently, Cv,θ = L−1

v,θ (1) ∩ Sn−1 (we now think of Lv,θ as a
function from Rn to {−1, 1}).

2.1 k-wise independent distributions

A multiset I ⊂ {−1, 1}n that, for every j ∈ {1, 2, . . . , k}, for every {i1, i2, . . . , ij} ⊂ {1, 2, . . . , n},
and for every z1, z2, . . . , zj ∈ {−1, 1}, satisfies that∣∣∣{x ∈ I : (xi1 , xi2 , . . . , xij) = (z1, z2, . . . , zj)

}∣∣∣ = |I|
2j

is called a k-wise independent sample space. Many explicit constructions of small k-wise indepen-
dent sample spaces are known. For example, extended binary BCH codes of length n = 2m − 1
and designed distance 2t + 2 can be used to construct a (2t + 1)-wise independent sample space
of size 2mt+1 = 2(n + 1)t (see [AS08, Chapter 16]).

4When speaking of pseudorandom generators one usually considers the seed length. However, to ease the compar-
ison to our result we consider the size of the image of the pseudorandom generator.

4

Fact 2.1. For every integer k > 0 there exists an explicit construction of a sample space of size O(nk/2)
that is k-wise independent.

Let a multiset S ⊆ {−1, 1}n be a k-wise independent sample space. The following is an easy
observation.

Observation 2.2. For i ∈ [n] and α ∈ {−1, 1}, restricted to coordinates [n] \ {i}, the multiset Si,α :=
{x ∈ S : xi = α} is a (k− 1)-wise independent sample space.

The following result was proved by Berger in [Ber97].

Lemma 2.3 (see Lemma 3.1 in [Ber97]). Let S ⊂ {−1, 1}n be a 4-wise independent sample space.
Then for every x ∈ Sn−1 we have that EE[〈s, x〉] = 0, EE[〈s, x〉2] = 1, and EE[〈s, x〉4] ≤ 3, where all
expectations are with respect to a uniform choice of s ∈ S. Moreover, for every x ∈ Rn we have that

Pr
s∈S

[
|〈s, x〉| > ‖x‖2√

3

]
≥ 2

11
.

The following lemma is a special case of a lemma of Alon, Gutin, and Krivelevich [AGK04].

Lemma 2.4 (see Lemma 3.2 in [AGK04]). Let X be a real random variable and suppose that its first,
second, and fourth moments satisfy EE[X] = 0, EE[X2] = 1, and EE[X4] ≤ 3. Then Pr[X > 1/7] ≥
1/20. Consequently, if S ⊂ {−1, 1}n is a 4-wise independent sample space, then for every x ∈ Sn−1 we
have that

Pr
s∈S

[〈s, x〉 > 1/7] ≥ 1/20.

Next is an easy corollary of Observation 2.2 and Lemma 2.4 that gives an anticoncentration
result for LTFs. As the distribution of LTFs on the Boolean cube is very different from their dis-
tribution on the sphere (e.g., compare the distribution of f (x) = 〈x, v〉 for v = (1, 0, . . . , 0) on the
sphere and cube), we need to separately handle the large coordinates of v and its small coordin-
ates.

Lemma 2.5. Let k > 4 be an integer, S ⊆ {−1, 1}n a k-wise independent sample space, and v =
(v1, . . . , vn) ∈ Rn a unit vector. Let M ⊂ [n] be such that |M| = k − 4 and the entries of v corre-
sponding to the coordinates in M are the k − 4 largest entries of v (namely, for every j /∈ M and every
i ∈ M we have that |vj| ≤ |vi|). Then

Pr
x∈S

[
〈x, v〉 ≥ ‖vM‖1 +

1
7
‖v[n]\M‖2

]
≥ 4

5
· 2−k.

Proof. Let S′ ⊂ S be the set of all s ∈ S such that sign si = sign vi for every i ∈ M. By definition
we have that |S′| = 2−|M| · |S| = |S|/2k−4. Moreover, by Observation 2.2 we get that S′ is 4-wise
independent. Let v′ = (v′1, . . . , v′n) be defined as v′i = 0 for i ∈ M and v′i = vi for i /∈ M. By
Lemma 2.4 we have that

Pr
s∈S′

[〈
s, v′

〉
>

1
7
‖v′‖2

]
>

1
20

.

By definition of v′ we get that 〈s, v〉 = ∑i∈M si · vi + 〈s, v′〉 = ‖vM‖1 + 〈s, v′〉. Thus,

Pr
x∈S

[
〈x, v〉 ≥ ‖vM‖1 +

1
7
‖v[n]\M‖2

]
≥ 1

20 · 2k−4 =
4
5
· 2−k.

5

2.2 Expander graphs

An undirected graph G = (V, E) is called an (n, d, λ)-expander if |V| = n, the degree of each node
is d, and the second largest eigenvalue, in absolute value, of the adjacency matrix of G is λ. For
every d = p + 1, where p is a prime congruent to 1 modulo 4, there are explicit constructions for
infinitely many n of (n, d, λ)-expanders, where λ ≤ 2

√
d− 1 [Mar88, LPS88].

A random walk of length ` on G is the following random process. First pick a vertex of G
uniformly at random. Denote this vertex with v1. At the ith step (for 1 < i ≤ `) we pick a neighbor
of vi−1 uniformly at random and label it with vi. The walk is the ordered list (v1, v2, . . . , v`). We
shall need the following theorem of Alon et al. [AFWZ95].

Theorem 2.6. Let G be an [n, d, λ]-expander. Let W1, . . . , W` ⊂ V(G) be some subsets of G, each of size
at least µn ≥ 6λn/d. The probability that a random walk of length ` stays inside W1, W2, . . . , W` is at
least µ(µ− 2λ/d)`−1.

2.3 Perfect hash functions

A set H of functions h : {1, 2, . . . , n} → {1, 2, . . . , m} such that for every S ⊂ {1, 2, . . . , n} with
|S| = s there exists h ∈ H such that |h(S)| = s is called an (n, m, s)-perfect hash family. For
all n, s ∈ N, s ≤ n, there are explicit constructions of (n, O(s), s)-perfect hash families H with
|H| = 2O(s+log log n) (see Theorem 6 in [SS90]). Lemma 2.7 is a strengthening of the above require-
ment. Informally, the strengthened version says that we can construct H to have the following
property. For every vector v = (v1, . . . , vn) there is h ∈ H that maps its “heaviest” s coordin-
ates (in absolute value) to different locations, and furthermore, if the remaining coordinates have
sufficient L2 mass, then it is distributed by h roughly evenly among the O(s) locations.

Lemma 2.7 (perfect hash functions). There exists a universal constant A such that the following holds.
For every integers s, n such that s ≤ n, there is an explicit family H of hash functions h : [n] → [8s]
of cardinality |H| = 2(4+o(1))·s+A·log 2s log log n+O(1) such that the following holds for every unit vector
v ∈ Sn−1. Let i1, i2, . . . , in be an enumeration of [n] such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let It denote
the set {i1, i2, . . . , it}. For every t ∈ [s− 1], there exists some h ∈ H such that

1. The map h is an injection on Is.

2. If v2
it+1
≤ 1

64s · ‖v[n]\It‖2
2, then

∑
r∈[8s]

min
{
‖vh−1(r)\It

‖2
2,

2
s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2. (2.8)

Furthermore, the o(1) term in the exponent of |H| depends only on s.

For completeness we give the proof in the appendix. The following is an easy corollary.

Corollary 2.9. Let 24 ≤ s ≤ n be integers and H the hash family guaranteed by Lemma 2.7. There
exists constants c1 and c2 such that one of the following conditions holds (using the same notation as in
Lemma 2.7):

1. either ∑s−1
q=d2s/3e |viq+1 | ≥

√
s

32 ‖v[n]\Is‖2 ;

6

2. or, there exists d2s/3e ≤ q ≤ s− 1 and h ∈ H such that h is an injection on Is and for at least c1 · 8s
buckets r it holds that ‖vh−1(r)\Iq

‖2
2 ≥

c2
s · ‖v[n]\Iq‖2

2.

Proof. We consider two cases.
Case 1. There is some d2s/3e ≤ q ≤ s− 1 such that v2

iq+1
≤ 1

64s · ‖v[n]\Iq‖2
2.

Case 2. For every d2s/3e ≤ q ≤ s− 1 we have that v2
iq+1

> 1
64s · ‖v[n]\Iq‖2

2.

Consider Case 1. By the assumption in Case 1 we get from Lemma 2.7 that there exists h ∈ H
such that Eq (2.8) is satisfied. We will show that for some constants c1, c2 at least c1 · 8s buckets
satisfy that ‖vh−1(r)\Iq

‖2
2 ≥

c2
s · ‖v[n]\Iq‖2

2. Assume for a contradiction that less than c1 · 8s buckets
have high norm. Hence,

1
2
· ‖v[n]\Iq‖

2
2 ≤ ∑

r∈[8s]
min

{
‖vh−1(r)\Iq

‖2
2,

2
s
· ‖v[n]\Iq‖

2
2

}
≤ c1 · 8s · 2

s
· ‖v[n]\Iq‖

2
2 + 8s · c2

s
· ‖v[n]\Iq‖

2
2 = (16c1 + 8c2) · ‖v[n]\Iq‖

2
2.

Therefore, for c1 = 1
48 and c2 = 1

49 we get a contradiction, unless ‖v[n]\Iq‖2
2 = 0. However, the

claim is trivial if this is the case.
Let us now assume that we are in Case 2. It follows that

s−1

∑
q=d2s/3e

|viq+1 | ≥
s−1

∑
q=d2s/3e

1
8
√

s
· ‖v[n]\Iq‖2 ≥

s−1

∑
q=d2s/3e

1
8
√

s
· ‖v[n]\Is‖2 ≥

√
s

32
‖v[n]\Is‖2,

where in the last inequality we used the assumption that s ≥ 24.

2.4 Concentration of threshold functions

In order to construct an ε-net for LTFs we need to understand, for every LTF Lv,θ , for which values
of θ it holds that Prx∈Bn [Lv,θ(x) = 1] > ε. The following theorem is a standard application of the
Bernstein–Chernoff–Hoeffding bound. A proof can be found, e.g., in Chapter 1 of [DP09].

Theorem 2.10 (Bernstein–Chernoff–Hoeffding). For v = (v1, . . . , vn) ∈ Rn and θ ∈ (0, ∞) we have
that

Pr
x∈Bn

[〈x, v〉 > θ] ≤ exp

(
−1

2

(
θ

‖v‖2

)2
)

.

The following result will be used to determine how large θ can be for a given v ∈ Rn so that
Lv,θ accepts an ε fraction of the inputs.

Corollary 2.11. Let v = (v1, . . . , vn) ∈ Rn and δ ∈ R+. Assume that |v1| ≥ |v2| ≥ · · · ≥ |vn|. Let
1 ≤ k ≤ n be an integer. Assume further that |vk| > 0. Then

Pr
x∈Bn

[
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

]
≤ exp(−k/18) + exp(−δ2/2).

Proof. We have that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

]
≤ Pr

x[k]∈Bk

[〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

]
+ Pr

x[n]\[k]∈Bn−k

[〈
x[n]\[k], v[n]\[k]

〉
≥ δ · ‖v[n]\[k]‖2

]
.

7

As |v1| ≥ |v2| ≥ · · · ≥ |vk| > 0 we see that in order for the inequality〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

to hold we must have that sign(xi) = sign(vi) for at least 2k/3 of the indices. Using the Bernstein–
Chernoff–Hoeffding bound, we bound this probability with

Pr
x[k]∈Bk

[〈
x[k], v[k]

〉
≥ ‖v[d2k/3e]‖1

]
≤ exp(−k/18).

The upper estimate

Pr
x[n]\[k]∈Bn−k

[〈
x[n]\[k], v[n]\[k]

〉
≥ δ · ‖v[n]\[k]‖2

]
≤ exp(−δ2/2)

also follows immediately from the Bernstein–Chernoff–Hoeffding bound.

When considering caps and not LTFs the results are somewhat easier. Recall that Cv,θ is defined
as Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}. For a proof of the next lemma, see, e.g., [Mat02].

Lemma 2.12. Let v ∈ Sn−1 be a unit vector. Then

Pr
x∈Sn−1

[x ∈ Cv,θ] ≤ exp
(
−1

2
nθ2
)

,

where we consider the uniform probability measure on Sn−1.

3 Construction of a covering code

As a warm up for the proof of Theorem 1.1 we give an explicit construction of a covering code of
covering radius n

2 − c
√

n log n for Bn. Later we will build on the ideas of the proof to get the more
general result.5 For convenience we repeat the claim of Corollary 1.3 here.

COROLLARY 1.3. There exists a > 0 such that for every c > 0 there is an explicit construction of
a set C ⊂ Bn of size |C| = n2 · (nc)a such that for every z ∈ Bn there is some x ∈ C with H(z, x) ≤
n
2 −

√
cn log n.

As described in the introduction the construction is based on first picking a 4-wise independent
distribution S on vectors of length n/t (where t is roughly log n) and then constructing vectors of
length n, using concatenation, from them. In this simple case we actually concatenate each vector
with itself log n times, but in each copy we may take a different sign flip, so that eventually each
vector in S contributes 2t different vectors to the covering code.

Proof. Fix c > 0, and let n ∈ N. Put t = dc1 log ne for a sufficiently large constant c1 that will be
determined later. For simplicity we assume that t divides n. Let J1, J2, . . . , Jt be the partition of [n]
defined by Ji = {(i − 1) · n/t + 1, . . . , i · n/t} (in fact, we can take the Ji’s to be any partition of
the coordinates into t disjoint sets, each of size n/t). Let S ⊂ {−1, 1}n/t be a 4-wise independent
distribution. Let m = |S| and recall that by Fact 2.1 we can assume that m = O((n/t)2). Denote
S = {s0, . . . , sm−1}. The set C is defined as follows. For every sequence of signs α = (α1, . . . , αt) ∈

5The corollary does follow immediately from Theorem 1.1 but we prove it separately to give some intuition for the
proof of the theorem.

8

{−1, 1}t and every 0 ≤ j ≤ m− 1, let xα,j ∈ Bn be defined as the concatenation (α1 · sj) ◦ · · · ◦ (αt ·
sj). That is, xα,j

Ji
= αi · sj. In other words, we concatenate t copies of the same element of S, with

possibly different signs, for each of the 2t sign patterns. The set C is the collection of all the xα,j’s,
i.e., C = {xα,j : α ∈ {−1, 1}t, 0 ≤ j < m}. Hence, the size of C is 2t ·m = O((n

t)
2 · 2t) ≤ n2 · nc1 .

We now proceed with the analysis of this construction. As S is 4-wise independent we get by
Lemma 2.3 that for every y ∈ {−1, 1}n/t

Pr
[
|〈y, s〉| >

√
n/3t

]
≥ 2

11
.

Fix z ∈ Bn. Let Xi denote the indicator of the event that |
〈
zJi , sj+i−1 mod m

〉
| >

√
n/3t (where

0 ≤ j ≤ m − 1 is picked uniformly at random). Recall that EE[Xi] ≥ 2/11 and so, by linearity
of expectation, we get that EE

[
∑t

i=1 Xi
]
≥ 2t/11. Therefore, for every z ∈ Bn there exists jz ∈

{0, . . . , m− 1} such that ∣∣∣{i : |
〈
zJi , sjz+i−1 mod m

〉
| ≥
√

n/3t
}∣∣∣ ≥ 2t

11
.

Set α ∈ {−1, 1}t as αi = sign(
〈
zJi , sjz+i−1 mod m

〉
). It follows that

〈
z, xα,j

〉
=

t

∑
i=1
|
〈
zJi , sjz+i−1 mod m

〉
| ≥ 2t

11

√
n/3t ≥ 2

√
c1

11
√

3

√
n log n.

To complete the proof, set c1 = 400c to get
〈
z, xα,j〉 > 2

√
cn log n. We thus obtain that

H(z, xα,j) =
n
2
− 1

2

〈
z, xα,j

〉
≤ n

2
−
√

cn log n.

Moreover, |C| ≤ n2 · nc1 = n2 · (nc)400, as required.

We note that by a simple application of the Chernoff bound one can show that this result is
essentially tight (up to the exact setting of a). Indeed, given a set C ⊂ Bn and a point s ∈ C it
holds that Pr[|〈x, s〉| ≥ c

√
log n] ≤ n−O(c2). Thus, for any fixed set C of size |C| = nb, if we let c

be O(
√

b), then by the union bound we get that there is some x ∈ Bn that has distance larger than
n/2− c

√
log n from all points in S.

4 The main construction

We now give an explicit construction of an ε-net set Nε ⊂ Bn for LTFs. In particular we will prove
Theorem 1.1. For convenience we repeat it here.

THEOREM 1.1. There exist two universal constants a, b > 0 such that for every ε > 0 there is an
explicit construction of an ε-net, Nε ⊂ Bn, for LTFs of size |Nε| = O(ε−b · na).

Before giving the construction we explain what changes are needed from the earlier construc-
tion of the covering code. Consider a vector v′ ∈ {−1, 1}n/ log n and let v be the unit vector in Rn

having v′/‖v′‖2 in its first n/ log n coordinates and zeros elsewhere. Consider the linear function
Lv,
√

log n : Bn → {−1, 1}. It is not hard to see that with probability 1/poly(n) over the choice

of x ∈ Bn we have that Lv,
√

log n(x) = 1 for every such v. On the other hand, there exists a v′

9

(and actually a random v′ will have the required property) such that for every y ∈ C, where C
is the covering code constructed in section 3, we will have that |〈y, v〉| = O(1). Thus, for every
y ∈ C we have that Lv,

√
log n(y) = 0. Therefore C is not a 1/poly(n)-net. The reason for the

failure of C is that all the large coordinates of v were concentrated on a set of size n/ log n that
was one of the sets in the partition of the coordinates with respect to which we constructed C. To
overcome this difficulty we construct sets in a way analogous to the construction of C but with
respect to different partitions of the n coordinates. These partitions will come from the family of
perfect hash functions discussed in section 2.3. Another change that we will have to make is in
the way that we concatenate short strings (of length O(n/ log n) in order to get length n strings.
Previously we simply concatenated consecutive strings. Now we will have to concatenate them
according to an expander walk, the reason being that there will be O(log n) sets in the partitions
from which we will have to make sure that we get the “correct” contribution. We now turn to the
actual construction (also replacing 1/poly(n) with ε).

Proof. Let ε > 0 be given. We assume that ε > 2−n/100 as otherwise we can pick Nε = Bn. Let
t = dc log 2/εe for some absolute constant c that will be determined later. We assume w.l.o.g. that
t ≥ 24. We will later need this assumption (without explicitly referring to it) for applying the result
of Corollary 2.9. Set k = 5 and d = 218. Similarly to the case of covering codes, let S ⊂ {−1, 1}n be a
k-wise independent sample space. Let m = |S|. By Fact 2.1 we can assume that m = |S| = O(nk/2).
Denote S = {si}m

i=1. As mentioned above we will need to consider many different partitions of
the coordinates, so let H be the (n, 8t, t)-perfect hash family guaranteed by Lemma A.1. We think
of every h ∈ H as partitioning the coordinates to 8t sets {Jh,1, . . . , Jh,8t} with Jh,i = h−1(i). Let
Jh = {Jh,1, . . . , Jh,8t} be the collection of the sets in the partition. Note that the sets in Jh are not
necessarily of the same size. In order to concatenate elements of S to create a word in Bn we need
to consider walks on an expander graph. Let G be an (m, d, d/1000)-expander with node set S.
In other words, we identify the ith node of G with si. In particular a walk (w1, . . . , w`) on G is a
sequence of ` elements from S. We now explain how to mix all these ingredients together to get
the final construction.

The set Nε contains all the points xh,w (that will soon be defined), where h ∈ H and w is a walk
of length 8t in G. We now explain how to construct xh,w. Let h ∈ H be a hash function and let
w = (w1, . . . , w8t) ∈ S8t be a walk on G. Let i ∈ {1, 2, . . . , 8t}. Let w′i be the first |Jh,i| bits of wi.
The reason for this is that it may be the case (and it is most likely the case) that |Jh,i| < n and so
we need to cut the last bits of wi to get a vector of length exactly |Jh,i|. We now define

xh,w|Jh,i = w′i = first |Jh,i| bits of wi.

As the collection {Jh,i}8t
i=1 is a partition of [n] we get that indeed xh,w ∈ Bn.

A good way to understand the construction is the following. We would like to define a point
x = xh,w ∈ Nε. To do so we first map the coordinates of x to 8t buckets according to h. Assume
that the set Jh,i was mapped to the ith bucket. Now, we would like to assign a value to xJh,i from
the k-wise independent set S, and we would like to do so for every i ∈ [8t]. As there are m8t

possibilities for such assignments we have to pick a small subset of all possible assignments. We
do so by taking an expander walk on an expander with m vertices. Given a walk w = (w1, . . . , w8t)
of length 8t we would like to consider the assignment xJh,i = wi. The final thing to notice is that
|Jh,i|may be smaller than n and so we consider only the first |Jh,i| bits of wi. Going over all i ∈ [8t]

10

we get the vector xh,w. An easy bound on the size of Nε is

|Nε| = |H| · d8t−1 ·m = O
(

2(4+o(1))·t+A log 2t log log n · d7 · (2/ε)8c log d · nk/2
)

= O
(

na · (1/ε)b
)

,

for any constants a > k/2 and b > 4c + 8c log d. We now show that Nε is an ε-net for LTFs. Let Lv,θ
be an LTF, where ‖v‖2 = 1, such that

Pr
x∈Bn

[Lv,θ(x) = 1] ≥ ε.

Let i1, i2, . . . , in be an enumeration of [n] such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let Ir denote the
set {i1, i2, . . . , ir}. We now show that there exists xh,w in Nε for which Lv,θ(xh,w) = 1, which implies
that Nε is an ε-net for LTFs.

We analyze three different cases. The first is when the support of v is small. The second is
when the support is not too small, but most of the mass of v is concentrated on a few coordinates
(this case corresponds to the first point in Corollary 2.9). The last case is when the mass of v is
“nicely” spread. We shall make use of the following notations. Given the k-wise independent set
S and an index i ∈ [8t], consider coordinates Jh,i of every element in S. Denote this multiset with
Sh,i. Clearly Sh,i is k-wise independent.

Case 1. Assume that the size of the support of v is at most t. Clearly, for every x ∈ Bn we
have that 〈x, v〉 ≤ ‖v‖1. We now show that there is some xh,w ∈ Nε with

〈
xh,w, v

〉
= ‖v‖1. This

clearly implies that Lv,θ(xh,w) = 1. Indeed, Lemma A.1 guarantees that there is some h ∈ H that is
injective on It. Namely, it maps all the nonzero coordinates of v to different buckets. As a bucket
now contains at most one nonzero element, we see that for each i ∈ [8t] we have that

Pr
s∈Sh,i

[〈
s, vJh,i

〉
= ‖vIt∩Jh,i‖1

]
≥ 1

2
, (4.1)

where we used the fact that each bucket contains at most one nonzero element so we need only
one entry of s to have the correct sign. For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i
that belongs to the “good” sets defined in (4.1), namely, those elements from Sh,i that have a large
inner product with vJh,i . Clearly, for every i we have that |Ai|/|Sh,i| ≥ 1

2 . We will now show that
there exists a walk on G such that for every i, wi ∈ Ai. Indeed, G is an [m, d, λ]-expander and
so Theorem 2.6 guarantees that if 1

2 > 6λ/d, then there exists a walk that hits all the Ai’s. As
we picked a graph G with λ ≤ d/1000 we have the required property. Thus, there exists a walk
w = (w1, . . . , w8t) such that for every i, wi ∈ Ai. Calculating, we get that〈

xh,w, v
〉
=

8t

∑
i=1

〈
wi, vJh,i

〉
= ∑

i∈h(It)

〈
wi, vJh,i

〉
= ∑

i∈It

|vi| = ‖v‖1,

as required. This completes the analysis of the first case.

Case 2. Assume that ∑t−1
r=d2t/3e |vir+1 | ≥

√
t

32 ‖v[n]\It‖2 (this is the first bullet of Corollary 2.9).6

Similarly to the first case (and, using Lemma 2.5) we get that there is xh,w ∈ Nε such that〈
xh,w, v

〉
≥ ‖vIt‖1 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2. (4.2)

6Clearly this case subsumes Case 1, but we decided to give both of them as the first case is easier to handle and gives
an intuition for the second case.

11

Indeed, as in the first case we consider the different buckets into which coordinates from It fell.
Lemma 2.5 guarantees that for each bucket a 1/40 fraction of all elements in S gives the required
inner product. Theorem 2.6 guarantees the existence of such a good xh,w. We now show that θ is
smaller than the right-hand side of (4.2) and hence our chosen xh,w satisfies that Lv,θ(xh,w) = 1 as
required. By Corollary 2.11 we get that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2

]

≤ exp(−t/18) + exp

−1
2

(√
t

32

)2
 = exp(−γt)

for some absolute constant γ > 0. If we pick c large enough (i.e., c ≥ 1/γ), then for t =
dc log(2/ε)e we get that

Pr
x∈Bn

[
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2

]
≤ exp(−γt) < ε.

As we assumed that Prx∈Bn [Lv,θ(x) = 1] ≥ ε, we have that

θ < ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2. (4.3)

This completes the analysis of the second case.

Case 3. We now assume that ∑t−1
r=d2t/3e |vir+1 | <

√
t

32 ‖v[n]\It‖2. Hence, Corollary 2.9 implies that
there exist d2t/3e ≤ q ≤ t− 1 and some h ∈ H such that h is an injection on It, and for at least
c1 · 8t buckets r ∈ [8t] it holds that ‖vh−1(r)\Iq

‖2
2 ≥

c2
t · ‖v[n]\Iq‖2

2 for two universal constants c1 and
c2. Denote the set of ≥ c1 · 8t “good” buckets r with R ⊂ [8t]. We also define, for every i ∈ [8t],
J′h,i = h−1(i) \ Iq. It follows that for every i ∈ R

‖vJ′h,i
‖2 ≥

√
c2

t
· ‖v[n]\Iq‖2.

By Lemma 2.5, specialized to k = 5, we get that for every i ∈ h(Iq)

Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥ ‖vIq ∩ Jh,i‖1 +

1
7
‖vJ′h,i
‖2

]
≥ 4

5
· 2−5 =

1
40

, (4.4)

where we recall that by our assumption on h we have that |Iq ∩ Jh,i| = 1. In addition, Lemma 2.4
implies that for i /∈ h(Iq) (this actually holds for every i)

Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥
‖vJh,i‖2

7

]
≥ 1

20
. (4.5)

For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i that belong to the “good” sets defined
in (4.4), (4.5), namely, those elements from Sh,i that have large inner product with vJh,i . Clearly, for
every i we have that |Ai|/|Sh,i| ≥ min(1

40 , 1
20) =

1
40 . We will now show that there exists a walk on

G such that for every i, wi ∈ Ai. Indeed, G is an [m, d, λ]-expander and so Theorem 2.6 guarantees
that if 1

40 > 6λ/d, then there exists a walk that hits all the Ai’s. As we picked a graph G with

12

λ ≤ d/1000 we have the required property. Thus, there exists a walk w = (w1, . . . , w8t) such that
for every i, wi ∈ Ai. Calculating, we get that〈

xh,w, v
〉

=
8t

∑
i=1

〈
wi, vJh,i

〉
= ∑

i∈h(Iq)

〈
wi, vJh,i

〉
+ ∑

i/∈h(Iq)

〈
wi, vJh,i

〉
≥ ∑

i∈h(Iq)

(
‖vIq ∩ Jh,i‖1 +

1
7
‖vJ′h,i
‖2

)
+ ∑

i/∈h(Iq)

‖vJh,i‖2

7

= ‖vIq‖1 +
1
7 ∑

i∈[8t]
‖vJ′h,i
‖2 ≥ ‖vIq‖1 +

1
7 ∑

i∈R
‖vJ′h,i
‖2

≥ ‖vIq‖1 +
1
7 ∑

i∈R

√
c2

t
· ‖v[n]\Iq‖2

≥‡ ‖vIq‖1 +
8c1
√

c2

7
·
√

t · ‖v[n]\Iq‖2

≥ ‖vIq‖1 +
8c1
√

c · c2

7
·
√

log(2/ε) · ‖v[n]\Iq‖2

≥∗ ‖vIq‖1 +
√

2 log(2/ε) · ‖v[n]\Iq‖2 >† θ,

where inequality (‡) follows from the fact that |R| ≥ c1 · 8t, inequality (∗) holds for a large enough
universal constant c, and inequality (†) holds from the same argument as in case 2 (for c large
enough), recalling that q ≥ d2t/3e = d 2

3 c log 2/εe. Thus, Lv,θ(xh,w) = 1 as required. This con-
cludes the proof of Theorem 1.1.

5 Construction of ε-nets for spherical caps

In this section we show how to construct ε-nets for spherical caps. In particular we prove Theo-
rem 1.2.

THEOREM 1.2. There exist two universal constants a, b > 0 such that for every ε = exp(−O(
√

n))
there is an explicit construction of an ε-net, Sε ⊂ Sn−1, for spherical caps of size |Sε| = O(ε−b · na).

A first natural attempt is to check whether the ε-net for threshold functions is also an ε-net for
spherical caps. As we are looking for subsets of the sphere Sn−1, we consider the natural embed-
ding of Bn in Sn−1 that shrinks every vector by a factor of

√
n, i.e., we set Bn = {−1/

√
n, 1/

√
n}n.

In this section whenever we discuss the Boolean cube we will refer to the set Bn. In particular
we will view every subset of Bn as a subset of Bn. To see that the Boolean cube (as a subset of
Sn−1) is not an ε-net for a polynomially small ε consider the cap defined by v = (1, 0, . . . , 0) and
θ =

√
log(1/ε)/n. We see that Lv,θ(Bn) = 0 whereas the cap Cv,θ = L−1

v,θ (1) ∩ Sn−1 has measure
poly(ε). However, it turns out that if an ε-net for LTFs does not hit a large enough cap, then a “ro-
tation” of it does hit the cap. Therefore, the union of an ε′-net for LTFs and its rotation yields an
ε-net for spherical caps. Indeed, the reason that v = (1, 0, . . . , 0) and θ =

√
log(1/ε)/n show that

the Boolean cube is not an ε-net is because all the mass of v is concentrated on a few coordinates
(actually only one coordinate). On the other hand, if it was the case that no set of O(log(1/ε))
coordinates contains more than, say, 3/4 of the total mass of v, then the set Nε guaranteed by
Theorem 1.1 will hit the cap C

v,
√

2 log(1/ε1/16)/n
, which by Lemma 2.12 is of weight at most ε1/16.

13

Indeed, the proof of Theorem 1.1 shows that there is an element x ∈ Nε such that if M ⊂ [n] is the
set of O(log 1/ε) largest coordinates of v, then7

〈x, v〉 >
√

2 log(1/ε)/n · ‖v[n]\M‖2 ≥(∗) (1/4) ·
√

2 log(1/ε)/n =
√

2 log(1/ε1/16)/n,

where inequality (∗) follows from the fact that at least 1/4 of the mass of v is supported on the set
of coordinates [n] \M. Hence, all that we have to do is find a way of spreading out the coordinates
of v so that the mass is “nicely” distributed on many coordinates. Our approach to solving this
problem is the following: We show that for the Fourier matrix F, either Fv has the property that
its mass is “well spread” or v itself is well spread. Then we simply let Sε = Nε′ ∪ F(Nε′) for some
ε′ = poly(ε), where Nε′ is an ε′-net for LTFs. We now give the formal proof.

Proof of Theorem 1.2. As before, we let i1, i2, . . . , in be an enumeration of [n] such that |vi1 | ≥
|vi2 | ≥ · · · ≥ |vin |, and let Ir denote the set {i1, i2, . . . , ir}. Assume that8 n = 2k for some integer k.
Let F be the n× n Fourier matrix. In other words, each coordinate of F is in {−1/

√
n, 1/

√
n} and

the rows of F are orthogonal. The following lemma shows that Fv or v are “well spread.”

Lemma 5.1. For every two subsets M1, M2 ⊂ [n] of size |M1|, |M2| ≤
√

n/20 and any unit vector
v ∈ Rn we have that ‖(Fv)M1‖2 ≤ 3/4 or ‖vM2‖2 ≤ 3/4.

Proof. The proof follows the following lemma of [Ind07] (specialized for L = 2).

Lemma 5.2 (see Lemma 4.2 of [Ind07]). Let T be a matrix obtained by concatenating rows of two unitary
n× n matrices H1 and H2 with coherence9 δ. Then, for any set of coordinates M ⊂ [2n] of size |M| = s
and any unit vector v ∈ Rn we have that ‖(Tv)M‖2

2 ≤ 1
2 (1 + δs) · ‖Tv‖2

2.

Indeed, let T be the matrix whose first n rows are the identity matrix and the last n rows are
F. Then, the coherence of T is δ = 1/

√
n. Given two subsets M1, M2 ⊂ [n] of size |M1|, |M2| ≤√

n/20, let M′2 be the subset of {n + 1, . . . , 2n} obtained by adding n to each element of M2. Let
M = M1 ∪M′2. Then for any unit vector v ∈ Rn it holds that

‖(Fv)M1‖2
2 + ‖vM2‖2

2 = ‖(Tv)M‖2
2 ≤

1
2
(1 + δ|M|) · ‖Tv‖2

2 ≤ 1.1/2 · ‖Tv‖2
2 < 1.1.

This completes the proof of Lemma 5.1.

Let Nε′ ⊂ {−1/
√

n, 1/
√

n}n be an ε′-net for LTFs for some ε′ that will be determined later.
Define Sε = Nε′ ∪ F(Nε′). In other words, Sε is the union of Nε′ with the rotation of Nε′ by F. Note
that as F is unitary we have that Sε ⊂ Sn−1. We now show that Sε is indeed an ε-net for spherical
caps. Let Cv,θ be a spherical cap of weight ε. By Lemma 2.12 we see that θ ≤

√
2 log(1/ε)/n.

Let u = Tv, where T is the matrix defined in the proof of Lemma 5.1. As u = Tv = (v, Fv) (the
concatenation of v and Fv) and ‖v‖ = ‖Fv‖ we get by Lemma 5.1 that either in v or in Fv, no set
of
√

n/40 coordinates contains more than 3/4 of the total mass (as, if there were two such sets,
then their union contradicts the lemma). Assume w.l.o.g. that in Fv no set of

√
n/40 coordinates

contains more than 3/4 of the total mass (the analysis for v is similar). Let It ⊂ [n] be the set of
largest10 t = dc log(1/ε′)e ≤

√
n/40 coordinates of Fv (note that c, t, and It are chosen as in the

7This inequality (or a stronger one) is reached in both Case 2 and Case 3 before using the fact that x belongs to the
Boolean cube.

8If it is not the case, then we can work with n′ = 2k such that n < n′ < 2n.
9The coherence of H1 and H2 is the largest inner product between a row of H1 and a row of H2.

10Recall our assumption that ε = exp(−O(
√

n)).

14

proof of Theorem 1.1). In particular, no coordinate in It is the zero coordinate. Following the proof
of Theorem 1.1, we note that we are in either Case 2 or Case 3 there and hence, for a large enough
c, Nε′ contains an element x ∈ Nε′ such that11

〈x, Fv〉 ≥(†) 1√
n
·
√

2 log(1/ε′) · ‖(Fv)[n]\It‖2

≥(∗) 1√
n
·
√

2 log(1/ε′) · 1
4
=
√

2 log(1/ε′1/16)/n,

where inequality (†) is implied either by (4.2) (in Case 2) or by the conclusion of Case 3. Inequal-
ity (∗) follows from the fact that dc log(1/ε′)e <

√
n/40 and the assumption that every subset of√

n/40 coordinates of Fv contains at most 3/4 of the mass of Fv. Hence, Fx ∈ F(Nε′) ⊂ Sε and

〈Fx, v〉 = 〈x, Fv〉 ≥
√

2 log(1/ε′1/16)/n =
√

2 log(1/ε)/n ≥ θ

for ε′ = ε16. This shows that Sε is indeed an ε-net for spherical caps. Moreover, we have that

|Sε| ≤ 2|Nε′ | = O(ε−b′ · na′)

for absolute constants a′ and b′. This completes the proof of Theorem 1.2. �

A Regarding an error in [RS10]

Lemma 2.7 and its proof below fix an error in the original version of this paper [RS10]. The
error was pointed out to us by William Hoza. Lemma 2.7 in [RS10] states:

Lemma A.1 (Lemma 2.7 in [RS10]). For every integer s, there is an explicit family H of hash functions
h : [n] → [8s] of cardinality |H| = 2(4+o(1))·s+log 2s log log n 12 such that the following holds for every unit
vector v ∈ Sn−1. Let i1, i2, . . . , in be an enumeration of [n] such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let It
denote the set {i1, i2, . . . , it}. There exists some h ∈ H such that the following hold:

1. The map h is an injection on Is.

2. Let t ∈ [s− 1]. If v2
it+1
≤ 1

64s · ‖v[n]\It‖2
2, then

∑
r∈[8s]

min
{
‖vh−1(r)\It

‖2
2,

2
s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2. (A.2)

The flawed proof in the appendix of [RS10] constructs H in two steps. The error is that the
first step uses known constructions of pairwise independent hash families mapping [n] to [s].
However, the cardinality of such families is 2O(log(sn)), which is too large to give the bounds stated
in the lemma (in the paper we wrongly claimed that the size is much smaller). If we were to use

11The factor of 1√
n comes from viewing Bn as a subset of Sn−1. In fact, we can get a much better inner product but

we do not try to optimize.
12The log 2s factor can be eliminated at the expense of a slight complication of the construction (adding a preliminary

phase that maps [n] to [s2] and replacing the maps from [n] in the two-phase construction by maps from [s2]). In our
application, this does not improve the exponent beyond an o(1) factor, as we use s = Θ(log n).

15

this bound in the construction of the hitting set then we would get a set of size (n/ε)O(log log 1/ε),
which is larger than the claimed size (alternatively, in terms of seed length, we get seed of length
O(log(n/ε) log log 1/ε) instead of the optimal O(log(n/ε)). In a footnote we also proposed to
add a preliminary step that maps [n] to [s2] and then to map [s2] to [s]. This, too, is a flawed
construction as it does not guarantee that we get from this a family of pairwise independent hash
functions. Our fix is to apply a different preliminary step that reduces the domain size, using the
construction of lossless condensers of [GUV09]. This leads to a weaker statement, that nonetheless
is good enough to derive the main result (Theorem 1.1).

Observe that there are two differences between Lemma 2.7 and Statement A.1. Firstly, there
is the term A · log 2s log log n, which was log 2s log log n in the original statement (i.e. A = 1 was
claimed). This slight change does not affect the main result as it only affects the o(1) term in the
exponent of n. This can be seen by redoing the computation of Nε on page 3510 of the original
manuscript (as we did here). Secondly, the order of quantifiers on t and h is reversed. This implies
the same change in the statement of Corollary 2.8 This does not affect the rest of the paper, because
the use of Corollary 2.8 in the proofs of Theorems 1.1 and 1.2 in [RS10] does not require the same
hash function h for all t, just a hash function h for a specific value of t.

B Perfect hashing

B.1 Lossless condensers

An important ingredient in the proof is the following construction of Guruswami, Umans, and
Vadhan [GUV09] (see also Chapter 6 in [Vad12]) of lossless condensers.

For completeness we first give some basic definitions and then discuss lossless condensers.
Definition B.1. Let D be a distribution on {0, 1}a. We say that D is a k-source if every point in the
hypercube has probability at most 2−k. We use Ud to denote the uniform distribution on {0, 1}d. We say
that two distributions D1, D2 are ε-close if their statistical distance (half their L1 distance) is at most ε. ♦

Definition B.2. A function Con : {0, 1}a×{0, 1}d → {0, 1}b is a k→ε k′ condenser iff for every k-source
X on {0, 1}a, there exists a k′-source Z on {0, 1}b such that Con(X, Ud) is ε-close to Z. The function Con
is lossless iff k′ = k + d. ♦

The main result that we shall need is Theorem 1.7 of [GUV09].13

Theorem B.3 (Theorem 1.7 of [GUV09]). There exists an absolute constant β > 0 such that: for all
positive k, all a ≥ k, where a is an integer, and all ε > 0, there is an explicit k →ε k + d lossless condenser
Con : {0, 1}a × {0, 1}d → {0, 1}b with d = d3(log a + log k + log(1/ε)) + βe and b ≤ 2(k + d).

B.2 Proof of Lemma 2.7

First, note that when s = 1 the statement of the claim is trivial and so we only consider the case
s ≥ 2 in the proof.

Our proof consists of three steps. In the first step we use the lossless condenser, of Theorem B.3,
to map [n] to [log(n) · poly(s)]. Then we use the oblivious implementation due to Schmidt and
Siegel [SS90] of the Fredman, Komlós, and Szemerédi (FKS) adaptive hashing scheme [FKS84].14

13We consider the special case α = 1/2 of Theorem 1.7 of [GUV09].
14For the construction of our hitting set we need the hash family to be fixed and to not depend on the input.

16

The Schmidt and Siegel implementation consists of two steps. In the first step (second step of our
proof), they use a universal family of pairwise-independent hash function to reduce the domain
size further to size O(s). The last step repairs the few collisions that may exist.

To ease the readability of the proof we shall assume that n is a power of 2. This has no effect
on the claim or the result.

Step 1 Let C : {0, 1}a × {0, 1}d → {0, 1}b be the condenser promised in Theorem B.3 for param-
eters a = log n, k = log(64s), ε = s−100, d = d3(log a + log k + log(1/ε)) + βe and b ≤ 2(k + d).
(Notice that if s > n/64 and hence k > a, we can simply skip Step 1.) For each seed y ∈ {0, 1}d

denote Cy(x) = C(x, y). We think of the family Cy as a family of hash functions from [n] to [2b].

We next show that for a random seed y ∈ {0, 1}d, with high probability, Cy is one to one on the
set Is.

Claim B.4. Let X ⊆ {0, 1}a be a k-source. Then for all but
√

ε of the seeds y ∈ {0, 1}d it holds that Cy(X)
is
√

ε-close to a k-source.

Proof. The proof is an easy application of Markov’s inequality.

Corollary B.5. Let I ⊆ [n] be a set of size |I| ≤ 2k. Then, except with probability
√

ε over y ∈ {0, 1}d,
the map Cy is injective on I.

Proof. Let X be a random variable that is uniformly distributed over a set of size exactly 2k that
contains I. Let y be such that Cy(X) is

√
ε-close to a k-source Z. Then,

∀z ∈ {0, 1}b , Pr[Cy(X) = z] ≤ Pr[Z = z] +
√

ε ≤ 2−k +
√

ε < 2 · 2−k ,

where the third inequality follows from the choice of ε. In particular, no two elements of I were
mapped to the same element z.

We next show that, with high probability, Cy distributes the weight “nicely”.

Claim B.6. For all but
√

ε fraction of y ∈ {0, 1}d the following holds. If for t ∈ [s − 1], we have that
v2

it+1
≤ 1

64s · ‖v[n]\It‖2
2, then for every z ∈ {0, 1}b,

‖vCy
−1(z)\It

‖2 ≤
(

1
64s

+
√

ε

)
· ‖v[n]\It‖

2
2 .

Proof. Consider the following distribution on [n]:

Pr[X = ij] =

v2

ij

‖v[n]\It
‖2

2
if j > t

0 otherwise
.

By our assumption, X is a log(64s)-source (k-source). Claim B.4 implies that except for a
√

ε
fraction of the seeds y, Cy(X) is

√
ε-close to a k-source Z (note that Z may depend on y). For such

17

a good y and for z ∈ {0, 1}b we have that

2−k +
√

ε ≥ Pr[Cy(X) = z] = ∑
j∈[n]\[t]:Cy(ij)=z

Pr[X = ij]

= ∑
j∈[n]\[t]:Cy(ij)=z

v2
ij

‖v[n]\It‖2
2

=
‖vC−1

y (z)\It
‖2

2

‖v[n]\It‖2
2

as claimed.

Corollary B.7. With probability at least 1− s
√

ε a random seed y satisfies that:

1. Cy is one-to-one on Is.

2. For every t ∈ [s− 1], if v2
it+1
≤ 1

64s · ‖v[n]\It‖2
2, then for every z ∈ {0, 1}b,

‖vCy
−1(z)\It

‖2 ≤
(

1
64s

+
√

ε

)
· ‖v[n]\It‖

2
2 .

Proof. Follows immediately from applying the union bound to Corollary B.5 and Claim B.6.

We say that a seed y is “good” if it is one of the 1− s
√

ε fraction of seeds in the statement of
Corollary B.7.

Fix such a good y. We now have that Cy has reduced the domain size to 2b ≤ 22d+2k =

(log(n) · s)O(1).

Step 2 We now proceed as in the construction of perfect hash families of Schmidt and Siegel [SS90].
We first apply a map f : [2b]→ [s], taken from a pairwise independent family of hash functions F .
There are known explicit constructions of F with |F | = 2b+log s+O(1) (see Theorem 3.26 in [Vad12]
and the historical discussion there).

A pairwise independent family of hash functions F has the following property. If f is chosen
uniformly at random from F , then for every x, y ∈ [2b], x 6= y, it holds that f (x) is distributed
uniformly in [s], even when conditioned on f (y). In particular, Pr[f (x) = f (y)] = 1

s .

Let S ⊆ [2b] be an arbitrary set of size |S| ≤ s. Consider the following event.

s

∑
j=1
| f−1(j) ∩ S|2 < 4s. (B.8)

We now show that the probability of this event, when f is chosen uniformly at random from F , is
more than 1

2 . Indeed, denoting by χp the indicator of an event p, we have that

EE

[
s

∑
j=1
| f−1(j) ∩ S|2

]
= EE

[
∑

x,x′∈S
χ f (x)= f (x′)

]
= ∑

x,x′∈S
EE
[
χ f (x)= f (x′)

]
= ∑

x 6=x′∈S
EE
[
χ f (x)= f (x′)

]
+ s = s · (s− 1) · (1/s) + s = 2s− 1 .

18

By applying Markov’s inequality we conclude that

Pr

[
s

∑
j=1
| f−1(j) ∩ S|2 ≥ 4s

]
<

1
2

. (B.9)

Thus, the average square of the number of pre-images of a bucket, is of size at most 4.

Step 3 The second phase of the Fredman, Komlós, and Szemerédi hashing scheme is adaptive,
and depends on the hashed set S. The idea is the following. If ci elements of S landed in bucket
i ∈ [s], then by mapping this bucket to c2

i buckets using a pairwise independent family of hash
functions, it is likely that no collision between the elements of S occurs. As the first phase guaran-
tees that ∑i∈[s] c2

i = O(s), we end up with a hash table of size O(s). Note that for this construction
to work, we need to know the values {ci} which is the reason for the adaptiveness. The Schmidt
and Siegel implementation proceeds as follows. It uses a pairwise independent family of hash
functions G. Here it will be convenient to assume that g ∈ G maps [2b] to bit vectors. So every
g ∈ G is a function g : [2b] → {0, 1}2+log s. We can take |G| = 2log s+b+O(1). The second phase uses
a selection of s (not necessarily distinct) hash functions from G. The hash functions are selected
and used as follows. Take a sequence of log s hash functions g1, g2, . . . , glog s ∈ G. Notice that there

are at most |G|log s = 2log2 s+b log s +O(log s) such sequences. In addition, take a sequence of s non-
negative integers c̄ = (c1, c2, . . . , cs) that satisfy ∑s

j=1 cj = s and ∑s
j=1 c2

j < 4s. There are at most 22s

such sequences (easily bounded by writing the sequence elements in unary notation, separated by
zeros). This sequence is our guess of the bucket loads due to S after the first phase. Finally, use
an assignment ρ : [s] → [log s], that assigns values from [log s] to elements of [s] in the following
way: 1 ∈ [log s] is assigned to s

2 elements of [s], 2 ∈ [log s] is assigned to s
4 elements of [s], and in

general i ∈ [log s] is assigned to s
2i elements of [s]. Exceptionally, log s is assigned to 2 elements of

[s], in order to cover the entire set. The number of such assignments is at most 2s·(1+∑
log s
i=1 2−i) < 22s

(write the s assigned values in unary, separated by zeros). The assignment ρ is our guess as to
which of the log s selected hash functions should be used for each bucket.

Each setting of y, f , ḡ, c̄ and ρ defines a hash function h ∈ H as follows. For every x ∈ [n],

h(x) =

 ∑
i< f (Cy(x))

2d2 log cie

+ ḡρ(f (Cy(x)))(Cy(x)),

where for i = f (Cy(x)), ḡρ(i)(Cy(x)) is the first d2 log cie bits of gρ(i)(Cy(x)). We shall also think of
ḡρ(i)(Cy(x)) as the binary expansion of an integer number. Notice that

|H| ≤ 2d · |F | · |G|log s · #{c̄} · #{ρ} ≤ 24s+O(log2 s)+O(log 2s log log n)+O(log s) , (B.10)

implying the claim in the lemma.15 Also notice that each h ∈ H maps [n] to

s

∑
i=1

2d2 log cie ≤ 2 ·
s

∑
i=1

c2
i < 8s,

as required.

15A careful calculation shows that the constant A in the statement of Lemma 2.7 is at most 5.

19

Wrapping up Recall that we still work with a fixed “good” y.

Claim B.11. For every vector v ∈ Sn−1, the probability that when we pick f at random there is a choice of
ḡ and ρ such that h = hy, f ,ḡ,ρ is injective on Is is at least 1

2 .

Proof. Let S = Is. Since y is good, Cy is injective on S. Denote Sy = Cy(S). For this set Sy,
Equation (B.8) holds for at least half of the choices of f (by Equation (B.9)). Fix any such choice f .
For i = 1, 2, . . . , s, let Ci = {x ∈ Sy : f (x) = i}. Consider the choice of ci = |Ci|, for i = 1, 2, . . . , s.
Fix i. For every g ∈ G and x ∈ [2b], let ḡ(x) denote the first d2 log cie bits of g(x). Consider the
“bad" event

Ai = Ai(g) = ∃x, x′ ∈ Ci, x 6= x′ : ḡ(x) = ḡ(x′) .

As G is a pairwise independent family of hash functions, if g is chosen uniformly at random in G,
then Pr [Ai] ≤ (ci

2) ·
1
c2

i
< 1

2 . Therefore, there exists a choice of g1 that is good for a set J1 ⊂ [s] of

buckets of cardinality |J1| = s
2 . Similarly, for j = 2, 3, . . . , log s− 1, there exists a choice of gj that is

good for a set Jj ⊂ [s] \⋃j′<j Jj′ of cardinality |Jj| = s
2j . Similarly, there exists a choice of glog s that

is good for both elements in [s] \ ⋃j<log s Jj. So, for every f that satisfies Equation (B.8), there is a
choice of g, c, and ρ such that the resulting hash function h is an injection on Is.

Claim B.12. For every t ∈ [s− 1], if t satisfies that v2
it+1
≤ 1

64s · ‖v[n]\It‖2
2, then with probability at least

2
3 , f satisfies that

∑
r∈[s]

min
{
‖v(f ◦Cy)−1(r)\It

‖2
2,

2
s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2. (B.13)

Observe that Equation (B.13) implies Equation (2.8), as the gi-s only further split hash buckets.
The intuition behind this claim is simple: If v2

it+1
≤ 1

64s · ‖v[n]\It‖2
2, then no i ∈ [n] \ It has v2

i very
large relative to ‖v[n]\It‖2

2, so ‖v[n]\It‖2
2 is spread roughly evenly on many coordinates. As f ◦ Cy is

likely to map the coordinates of v[n]\It roughly evenly, it also maps the weight ‖v[n]\It‖2
2 roughly

evenly.

Proof. To ease the reading, let us use the following notation. Let u ∈ R2b
be defined as follows.

For z ∈ {0, 1}b,
uz = ‖vC−1

y (z)\It
‖2

2 .

Let us also denote
W = ‖u‖1 = ‖v[n]\It‖

2
2 .

With these notations, what we wish to prove is that with probability at least 2
3 , over the choice of

f ,

∑
r∈[s]

min
{
‖u f−1(r)‖1,

2
s

W
}
≥ 1

2
W . (B.14)

Since y is good, Corollary B.7 guarantees that for all z,

uz ≤
(

1
64s

+
√

ε

)
· ‖v[n]\It‖

2
2 =

(
1

64s
+
√

ε

)
·W <

W
7.992s

.

20

Let Xi
z be the indicator random variable for the event that f (z) = i. As Pr[f (z) = i] = 1

s , we
have that

EE
[
‖u f−1(i)‖1

]
=

2b

∑
z=1

EE[Xi
z] · uz =

1
s
‖u‖1 =

1
s

W .

Moreover, as f comes from a pairwise independent family of hash functions, for fixed i the random
variables Xi

z are pairwise independent, so

σ2
[
‖u f−1(i)‖1

]
= Var

[
‖u f−1(i)‖1

]
= Var

[
2b

∑
z=1

Xi
z · uz

]

=
2b

∑
z=1

Var[Xi
z] · u2

z =

(
1− 1

s

)
· 1

s
· ‖u‖2

2 .

Thus, as uz ≤ W
7.992s , we get that

σ
[
‖u f−1(i)‖1

]
≤ 1√

s
· ‖u‖2 ≤

1√
s
·
√

W
7.992s

·
√
‖u‖1 =

W
7.99s

.

By Chebyshev’s inequality, for every r > 1,

Pr
[
‖u f−1(i)‖1 ≥

r
s

W
]
≤ 1

7.992(r− 1)2 . (B.15)

For each value of r, consider all values λ in the interval [2r, 2r+1] such that Pr
[
‖u f−1(i)‖1 = λ

s W
]
6=

0. Clearly there are finitely many such values. From Equation (B.15) we get that

∑
λ∈[2r ,2r+1]

λ · Pr
[
‖u f−1(i)‖1 =

λ

s
W
]
≤ 2r+1 Pr

[
‖u f−1(i)‖1 ≥

2r

s
·W
]

≤ 2r+1

7.992(2r − 1)2 .

Thus,

EE

[
max

{
0, ‖u f−1(i)‖1 −

2
s

W
}]

≤ W
7.992s

·
∞

∑
r=1

2r+1

(2r − 1)2

=
4W

7.992s
·

∞

∑
r=1

2r−1

(2r − 1)2

<
4W

7.992s
·

∞

∑
r=1

1
2r−1

=
8W

7.992s
.

Let Yi = max
{

0, ‖u f−1(i)‖1 − 2
s W
}

. We just showed that EE
[
∑i∈[s] Yi

]
< 8W

7.992 , so by Markov’s

Inequality, Pr
[
∑i∈[s] Yi > 1

2W
]
< 1

3 .

We next show that when ∑i∈[s] Yi ≤ 1
2W, Equation (B.14) holds, and thus it holds with proba-

bility at least 2
3 over the choice of f ∈ F , which is what we wanted to prove.

21

Let m be the number of i ∈ [s] such that Yi > 0. We now get that

1
2

W ≥ ∑
i∈[s]

Yi = ∑
i:Yi>0

(
‖u f−1(i)‖1 −

2
s

W
)
=

(
∑

i:Yi>0

‖u f−1(i)‖1

)
− 2m

s
W .

Hence,
s

∑
i=1

min
{
‖u f−1(i)‖1,

2
s

W
}

=

(
∑

i:Yi=0

‖u f−1(i)‖1

)
+

2m
s

W

=

(
W − ∑

i:Yi>0

‖u f−1(i)‖1

)
+

2m
s

W

≥ W − 1
2

W =
1
2

W ,

and Equation (B.14) holds.

To conclude the proof of Lemma 2.7 we recall that y is good with probability at least 1− s
√

ε >
0 and that for each good y, Claim B.11 holds for a random choice of f with probability at least 1

2 .
Furthermore, for a good y, we have that Equation (B.14) holds for at least 2

3 of the choices of f ∈ F .
As 2

3 +
1
2 > 1, we get that for each good y, there is a good choice of f , so that both Equation (B.14)

and the condition in the statement of Claim B.11 hold. This is exactly what Lemma 2.7 claims.

Acknowledgments

We thank Noga Alon and Avi Wigderson for helpful discussions and for bringing [SS90] to our
attention. We also thank Noga for sharing his proof of Corollary 1.3 with us.

We are grateful to William Hoza who found a mistake in our original argument. We also wish
to thank William Hoza and the anonymous reviewers for pointing out several other inaccuracies
and for comments that helped us significantly improve the presentation of the proof.

References

[AFWZ95] N. ALON, U. FEIGE, A. WIGDERSON, AND D. ZUCKERMAN, Derandomized graph prod-
ucts, Comput. Complexity, 5 (1995), pp. 60–75.

[AGK04] N. ALON, G. GUTIN, AND M. KRIVELEVICH, Algorithms with large domination ratio, J.
Algorithms, 50 (2004), pp. 118–131.

[AKN+08] N. ALON, H. KAPLAN, G. NIVASCH, M. SHARIR, AND S. SMORODINSKY, Weak ε-
nets and interval chains, in Proceedings of the 19th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), San Francisco, 2008, pp. 1194–1203.

[Alo08] N. ALON, private communication, 2008.

[AS08] N. ALON AND J. SPENCER, The Probabilistic Method, 3rd ed., Wiley, 2008.

[Ber97] B. BERGER, The fourth moment method, SIAM J. Comput., 26 (1997), pp. 1188–1207.

22

[Cha94] B. CHAZELLE, Computational geometry: A retrospective, in Proceedings of the 26th An-
nual ACM Symposium on Theory of Computing (STOC), Montreal, 1994, pp. 75–94.

[CM96] B. CHAZELLE AND J. MATOUSEK, On linear-time deterministic algorithms for optimization
problems in fixed dimension, J. Algorithms, 21 (1996), pp. 579–597.

[CT06] E. J. CANDÉS AND T. TAO, Near-optimal signal recovery from random projections: Univer-
sal encoding strategies, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406–5425.

[CW79] J. L. CARTER AND M. N. WEGMAN, Universal classes of hash functions, J. Comput. Sys-
tem Sci., 18 (1979), pp. 143–154.

[DGJ+09] I. DIAKONIKOLAS, P. GOPALAN, R. JAISWAL, R. A. SERVEDIO, AND E. VIOLA,
Bounded independence fools halfspaces, SIAM J. Comput., to appear.

[Don06] D. L. DONOHO, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289–
1306.

[DP09] D. P. DUBHASHI AND A. PANCONESI, Concentration of Measure for the Analysis of Ran-
domized Algorithms, Cambridge University Press, Cambridge, UK, 2009.

[EGL+92] G. EVEN, O. GOLDREICH, M. LUBY, N. NISAN, AND B. VELICKOVIC, Approximations
of general independent distributions, in Proceedings of the 24th Annual ACM Symposium
on Theory of Computing (STOC), Victoria, BC, 1992, pp. 10–16.

[EIO02] L. ENGEBRETSEN, P. INDYK, AND R. O’DONNELL, Derandomized dimensionality reduc-
tion with applications, in Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), San Francisco, 2002, pp. 705–712.

[FKS84] M. L. FREDMAN, J. KOMLÓS, AND E. SZEMERÉDI, Storing a sparse table with O(1) worst
case access time, J. ACM, 31 (1984), pp. 538–544.

[GLR08] V. GURUSWAMI, J. R. LEE, AND A. A. RAZBOROV, Almost Euclidean subspaces of ln
1 via

expander codes, in Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), San Francisco, 2008, pp. 353–362.

[GLW08] V. GURUSWAMI, J. R. LEE, AND A. WIGDERSON, Euclidean sections of `N
1 with sublinear

randomness and error-correction over the reals, in Approximation, Randomization and
Combinatorial Optimization: Algorithms and Techniques, Lecture Notes in Comput.
Sci. 5171, Springer, Berlin, Heidelberg, 2008, pp. 444–454.

[GUV09] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced expanders and randomness
extractors from Parvaresh–Vardy codes. J. ACM, 56(4):1–34, 2009.

[Ind07] P. INDYK, Uncertainty principles, extractors, and explicit embeddings of `2 into `1, in Pro-
ceedings of the 39th Annual ACM Symposium on Theory of Computing (STOC), San
Diego, 2007, pp. 615–620.

[JL84] W. B. JOHNSON AND J. LINDENSTRAUSS, Extensions of Lipschitz maps into a Hilbert
space, in Contemp. Math. 26, AMS, Providence, 1984, pp. 189–206.

[LLSZ97] N. LINIAL, M. LUBY, M. E. SAKS, AND D. ZUCKERMAN, Efficient construction of a
small hitting set for combinatorial rectangles in high dimension, Combinatorica, 17 (1997),
pp. 215–234.

23

[LPS88] A. LUBOTZKY, R. PHILLIPS, AND P. SARNAK, Ramanujan graphs, Combinatorica, 8
(1988), pp. 261–277.

[Mar88] G. A. MARGULIS, Explicit group-theoretic constructions of combinatorial schemes and their
applications in the construction of expanders and concentrators, Probl. Inf. Transm., 24
(1988), pp. 39–46.

[Mat02] J. MATOUSEK, Lectures on Discrete Geometry, Grad. Texts in Math. 212, Springer, New
York, 2002.

[MZ09] R. MEKA AND D. ZUCKERMAN, Pseudorandom generators for polynomial threshold func-
tions, in Proceedings of the 42nd Annual ACM Symposium on Theory of Computing
(STOC), Cambridge, MA, 2010, pp. 427–436.

[NN93] J. NAOR AND M. NAOR, Small-bias probability spaces: Efficient constructions and applica-
tions, SIAM J. Comput., 22 (1993), pp. 838–856.

[RS09] Y. RABANI AND A. SHPILKA, Explicit construction of a small epsilon-net for linear threshold
functions, in Proceedings of the 41st Annual ACM Symposium on Theory of Comput-
ing (STOC), Bethesda, MD, 2009, pp. 649–658.

[RS10] Y. Rabani and A. Shpilka. Explicit construction of a small ε-net for linear threshold
functions. SIAM J. on Computing, 39(8):3501–3520, 2010.

[Ser06] R. A. SERVEDIO, Every linear threshold function has a low-weight approximator, in Pro-
ceedings of the 21st Annual IEEE Conference on Computational Complexity (CCC),
Prague, 2006, pp. 18–32.

[Siv02] D. SIVAKUMAR, Algorithmic derandomization via complexity theory, in Proceedings of the
34th Annual ACM Symposium on Theory of Computing (STOC), Montreal, 2002, pp.
619–626.

[SS90] J. P. Schmidt and A. Siegel. The Spatial Complexity of Oblivious k-Probe Hash Func-
tions. SIAM J. on Computing, 19(5):775–786, 1990.

[Vad12] S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Sci-
ence, 7(1-3):1–336, 2012.

[Vio08] E. VIOLA, The sum of d small-bias generators fools polynomials of degree d, in Proceedings
of the 23rd Annual IEEE Conference on Computational Complexity (CCC), College
Park, MD, 2008, pp. 124–127.

24

	Introduction
	Proof technique
	Subsequent works

	Preliminaries
	k-wise independent distributions
	Expander graphs
	Perfect hash functions
	Concentration of threshold functions

	Construction of a covering code
	The main construction
	Construction of -nets for spherical caps
	Regarding an error in RabaniShpilka10
	Perfect hashing
	Lossless condensers
	Proof of Lemma 2.7

