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1. Overview of the mistakes in [RS10]. We first give an overview of the mistakes and
then give the proofs.

1.1. Lemma 2.7 in [RS10]. In a private communication, William Hoza pointed out a
mistake in the proof of Lemma 2.7 in [RS10].

The flawed proof in the appendix of [RS10] constructs H in two steps. The error is that
the first step uses known constructions of pairwise independent hash families mapping [n]
to [s]. However, the cardinality of such families is 2O(log(sn)), which is too large to give the
bounds stated in the lemma (in the paper we wrongly claimed that the size is much smaller). If
we were to use this bound in the construction of the hitting set then we would get a hitting set
of size (n/ε)O(log log 1/ε), which is larger than the claimed size (alternatively, in terms of seed
length, we get seed of length O(log(n/ε) log log 1/ε) instead of the optimal O(log(n/ε)). In
a footnote we also proposed to add a preliminary step that maps [n] to [s2] and then to map
[s2] to [s]. This, too, is a flawed construction as it does not guarantee that we get from this
a family of pairwise independent hash functions. Our fix is to apply a different preliminary
step that reduces the domain size, using the construction of lossless condensers of [GUV09].
This leads to a weaker statement, that nonetheless is good enough to derive the main result
(Theorem 1.1).

It was then pointed out to us that there is a second mistake in the original statement of
the lemma. We argued that there exists an h such that for all t ... but actually proved that for
every t there is a good h.

The following is a revised version of Lemma 2.7.
LEMMA 1.1 (New Lemma 2.7). There exists a universal constant A such that the fol-

lowing holds. For every integers s, n such that s ≤ n, there is an explicit family H of hash
functions h : [n] → [8s] of cardinality |H| = 2(4+o(1))·s+A·log 2s log logn+O(1) such that the
following holds for every unit vector v ∈ Sn−1. Let i1, i2, . . . , in be an enumeration of [n]
such that |vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let It denote the set {i1, i2, . . . , it}. For every
t ∈ [s− 1], there exists some h ∈ H such that

1. The map h is an injection on Is.
2. If v2

it+1
≤ 1

64s · ‖v[n]\It‖22, then

∑
r∈[8s]

min

{
‖vh−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2. (1.1)
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Furthermore, the o(1) term in the exponent of |H| depends only on s.
The main differences between the statement of Lemma 2.7 in [RS10] and Lemma 1.1 are

that we corrected the order of quantifiers and we now have the extra A factor in the exponent
(earlier we took A = 1). A similar modification was needed in the statement of Corollary
2.8. Another modification to that corollary is explained next.

1.2. “Case 3” in the proof of Theorem 1.1 and Corollary 2.8. Another mistake in the
proof of Theorem 1.1. in [RS10] is that in the analysis of “Case 3.” we used t in two different
meanings (in the fix below we replaced some of the appearances of t with q). This confusion
caused us to use the “wrong” t in Equation (5). The problem is that when using the “correct”
t the proof won’t work as is as that t can be small and so we cannot argue that

‖vIt‖1 +
√

2 log(2/ε) · ‖v[n]\It‖2 > θ ,

at the end of the proof of Theorem 1.1.
To fix the issue we had do slightly strengthen the statement of Corollary 2.8 in [RS10] to

guarantee that the “correct” t (which we now call q) is large enough.
COROLLARY 1.2. [New Corollary 2.8] Let 24 ≤ s ≤ n be integers and H the hash

family guaranteed by Lemma 1.1. There exists constants c1 and c2 such that one of the
following conditions holds (using the same notation as in Lemma 1.1):

1. either
∑s−1
q=d2s/3e |viq+1

| ≥
√
s

32 ‖v[n]\Is‖2 ;
2. or, there exists d2s/3e ≤ q ≤ s− 1 and h ∈ H such that h is an injection on Is and

for at least c1 · 8s buckets r it holds that ‖vh−1(r)\Iq‖22 ≥
c2
s · ‖v[n]\Iq‖22.

The difference of the version above to Corollary 2.8 is that in the second option we
guarantee that q is at least d2s/3e.

1.3. The size of Nε. As a consequence of the modification in Lemma 2.7 (Lemma 1.1
here) the calculation of the size of |Nε| in the proof of Theorem 1.1 slightly changed. The
end result is the same (except for a different small correction that we explain next) but the
justification is slightly different (due to the extra A factor from Lemma 1.1):

|Nε| = |H| · d8t−1 ·m = O
(

2(4+o(1))·t+A log 2t log logn · d7 · (2/ε)8c log d · nk/2
)

= O
(
na · (1/ε)b

)
,

for any constants a > k/2 and b > 4c+ 8c log d.
Observe that another small change in the estimate above is that we replaced the no(1) term

with (n/ε)
o(1), which is required when ε is extremely small. This only affects the constants

a and b that were earlier taken to be a = k/2 and b = 4c+ 8c log d.

1.4. Small corrections. Beside the major issues described above we slightly changed
the text in a few places to either correct typos or explain some of the new claims. Below we
give the details of the changes.

1.4.1. First paragraph of Section 2.3. The paragraph was changed to “A set H of
functions h : {1, 2, . . . , n} → {1, 2, . . . ,m} such that for every S ⊂ {1, 2, . . . , n} with
|S| = s there exists h ∈ H such that |h(S)| = s is called an (n,m, s)-perfect hash family.
For all n, s ∈ N, s ≤ n, there are explicit constructions of (n,O(s), s)-perfect hash families
H with |H| = 2O(s+log logn) (see Theorem 6 in [SS90]). Lemma 2.7 is strengthening of
the above requirement. Informally, the strengthened version says that we can construct H to
have the following property. For every vector v = (v1, . . . , vn) there is h ∈ H that maps
its “heaviest” s coordinates (in absolute value) to different locations, and furthermore, if the
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remaining coordinates have sufficient L2 mass, then it is distributed by h roughly evenly
among the O(s) locations.”

Most of the modification is the text starting with “Lemma 2.7 is a strengthening ...”
Another small change is that we give the relevant theorem number from the paper of [SS90].

1.4.2. Proof of Theorem 1.1, last line before “Case 1”. We removed the sentence “We
also define, for every i ∈ [8t], J ′h,i = h−1(i) \ It.” as it uses the “wrong” t. J ′hi

is defined
later in the analysis of “Case 3.”

1.4.3. Acknowledgments. Naturally, we revised this section to thank William Hoza and
the anonymous referees to which we are grateful for finding the mistakes in [RS10].

We thank Noga Alon and Avi Wigderson for helpful discussions and for bringing [SS90]
to our attention. We also thank Noga for sharing his proof of Corollary 1.3 with us.

We are grateful to William Hoza who found a mistake in our original argument. We
also wish to thank William Hoza and the anonymous reviewers for pointing out several other
inaccuracies and for comments that helped us significantly improve the presentation of the
proof.

2. Proof of Lemma 1.1.

2.1. Lossless condensers. An important ingredient in the proof is the following con-
struction of Guruswami, Umans, and Vadhan [GUV09] (see also Chapter 6 in [Vad12]) of
lossless condensers.

For completeness we first give some basic definitions and then discuss lossless con-
densers.

DEFINITION 2.1. Let D be a distribution on {0, 1}a. We say that D is a k-source if
every point in the hypercube has probability at most 2−k. We use Ud to denote the uniform
distribution on {0, 1}d. We say that two distributions D1, D2 are ε-close if their statistical
distance (half their L1 distance) is at most ε.

DEFINITION 2.2. A function Con : {0, 1}a × {0, 1}d → {0, 1}b is a k →ε k
′ con-

denser iff for every k-source X on {0, 1}a, there exists a k′-source Z on {0, 1}b such that
Con(X,Ud) is ε-close to Z. The function Con is lossless iff k′ = k + d.

The main result that we shall need is Theorem 1.7 of [GUV09].1

THEOREM 2.3 (Theorem 1.7 of [GUV09]). There exists an absolute constant β > 0
such that: for all positive k, all a ≥ k, where a is an integer, and all ε > 0, there is
an explicit k →ε k + d lossless condenser Con : {0, 1}a × {0, 1}d → {0, 1}b with d =
d3(log a+ log k + log(1/ε)) + βe and b ≤ 2(k + d).

2.2. Proof of Lemma 1.1 (the new version of Lemma 2.7). First, note that when s = 1
the statement of the claim is trivial and so we only consider the case s ≥ 2 in the proof.

Our proof consists of three steps. In the first step we use the lossless condenser, of
Theorem 2.3, to map [n] to [log(n) · poly(s)]. Then we use the oblivious implementation
due to Schmidt and Siegel [SS90] of the Fredman, Komlós, and Szemerédi (FKS) adaptive
hashing scheme [FKS84].2 The Schmidt and Siegel implementation consists of two steps. In
the first step (second step of our proof), they use a universal family of pairwise-independent
hash function to reduce the domain size further to size O(s). The last step repairs the few
collisions that may exist.

To ease the readability of the proof we shall assume that n is a power of 2. This has no
effect on the claim or the result.

1We consider the special case α = 1/2 of Theorem 1.7 of [GUV09].
2For the construction of our hitting set we need the hash family to be fixed and to not depend on the input.
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Step 1. Let C : {0, 1}a × {0, 1}d → {0, 1}b be the condenser promised in Theorem 2.3
for parameters a = log n, k = log(64s), ε = s−100, d = d3(log a+ log k + log(1/ε)) + βe
and b ≤ 2(k + d). (Notice that if s > n/64 and hence k > a, we can simply skip Step 1.)
For each seed y ∈ {0, 1}d denote Cy(x) = C(x, y). We think of the family Cy as a family
of hash functions from [n] to [2b].

We next show that for a random seed y ∈ {0, 1}d, with high probability, Cy is one to one
on the set Is.

CLAIM 2.4. LetX ⊆ {0, 1}a be a k-source. Then for all but
√
ε of the seeds y ∈ {0, 1}d

it holds that Cy(X) is
√
ε-close to a k-source.

Proof. The proof is an easy application of Markov’s inequality.
COROLLARY 2.5. Let I ⊆ [n] be a set of size |I| ≤ 2k. Then, except with probability√

ε over y ∈ {0, 1}d, the map Cy is injective on I .
Proof. Let X be a random variable that is uniformly distributed over a set of size exactly

2k that contains I . Let y be such that Cy(X) is
√
ε-close to a k-source Z. Then,

∀z ∈ {0, 1}b , Pr[Cy(X) = z] ≤ Pr[Z = z] +
√
ε ≤ 2−k +

√
ε < 2 · 2−k ,

where the third inequality follows from the choice of ε. In particular, no two elements of I
were mapped to the same element z.

We next show that, with high probability, Cy distributes the weight “nicely”.
CLAIM 2.6. For all but

√
ε fraction of y ∈ {0, 1}d the following holds. If for t ∈ [s− 1],

we have that v2
it+1
≤ 1

64s · ‖v[n]\It‖22, then for every z ∈ {0, 1}b,

‖vCy
−1(z)\It‖

2 ≤
(

1

64s
+
√
ε

)
· ‖v[n]\It‖

2
2 .

Proof. Consider the following distribution on [n]:

Pr[X = ij ] =

{
v2ij

‖v[n]\It‖
2
2

if j > t

0 otherwise
.

By our assumption, X is a log(64s)-source (k-source). Claim 2.4 implies that except for a√
ε fraction of the seeds y, Cy(X) is

√
ε-close to a k-source Z (note that Z may depend on

y). For such a good y and for z ∈ {0, 1}b we have that

2−k +
√
ε ≥ Pr[Cy(X) = z] =

∑
j∈[n]\[t]:Cy(ij)=z

Pr[X = ij ]

=
∑

j∈[n]\[t]:Cy(ij)=z

v2
ij

‖v[n]\It‖22

=
‖vC−1

y (z)\It‖
2
2

‖v[n]\It‖22

as claimed.
COROLLARY 2.7. With probability at least 1− s

√
ε a random seed y satisfies that:

1. Cy is one-to-one on Is.
2. For every t ∈ [s− 1], if v2

it+1
≤ 1

64s · ‖v[n]\It‖22, then for every z ∈ {0, 1}b,

‖vCy
−1(z)\It‖

2 ≤
(

1

64s
+
√
ε

)
· ‖v[n]\It‖

2
2 .
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Proof. Follows immediately from applying the union bound to Corollary 2.5 and Claim 2.6.

We say that a seed y is “good” if it is one of the 1−s
√
ε fraction of seeds in the statement

of Corollary 2.7.
Fix such a good y. We now have that Cy has reduced the domain size to 2b ≤ 22d+2k =

(log(n) · s)O(1).
Step 2. We now proceed as in the construction of perfect hash families of Schmidt and

Siegel [SS90]. We first apply a map f : [2b]→ [s], taken from a pairwise independent family
of hash functions F . There are known explicit constructions of F with |F| = 2b+log s+O(1)

(see Theorem 3.26 in [Vad12] and the historical discussion there).
A pairwise independent family of hash functions F has the following property. If f is

chosen uniformly at random from F , then for every x, y ∈ [2b], x 6= y, it holds that f(x)
is distributed uniformly in [s], even when conditioned on f(y). In particular, Pr[f(x) =
f(y)] = 1

s .
Let S ⊆ [2b] be an arbitrary set of size |S| ≤ s. Consider the following event.

s∑
j=1

|f−1(j) ∩ S|2 < 4s. (2.1)

We now show that the probability of this event, when f is chosen uniformly at random from
F , is more than 1

2 . Indeed, denoting by χp the indicator of an event p, we have that

E

 s∑
j=1

|f−1(j) ∩ S|2
 = E

 ∑
x,x′∈S

χf(x)=f(x′)

 =
∑
x,x′∈S

E
[
χf(x)=f(x′)

]
=

∑
x 6=x′∈S

E
[
χf(x)=f(x′)

]
+ s = s · (s− 1) · (1/s) + s = 2s− 1 .

By applying Markov’s inequality we conclude that

Pr

 s∑
j=1

|f−1(j) ∩ S|2 ≥ 4s

 < 1

2
. (2.2)

Thus, the average square of the number of pre-images of a bucket, is of size at most 4.
Step 3. The second phase of the Fredman, Komlós, and Szemerédi hashing scheme is

adaptive, and depends on the hashed set S. The idea is the following. If ci elements of
S landed in bucket i ∈ [s], then by mapping this bucket to c2i buckets using a pairwise
independent family of hash functions, it is likely that no collision between the elements of S
occurs. As the first phase guarantees that

∑
i∈[s] c

2
i = O(s), we end up with a hash table of

size O(s). Note that for this construction to work, we need to know the values {ci} which is
the reason for the adaptiveness. The Schmidt and Siegel implementation proceeds as follows.
It uses a pairwise independent family of hash functions G. Here it will be convenient to
assume that g ∈ G maps [2b] to bit vectors. So every g ∈ G is a function g : [2b] →
{0, 1}2+log s. We can take |G| = 2log s+b+O(1). The second phase uses a selection of s
(not necessarily distinct) hash functions from G. The hash functions are selected and used
as follows. Take a sequence of log s hash functions g1, g2, . . . , glog s ∈ G. Notice that there
are at most |G|log s = 2log2 s+b log s +O(log s) such sequences. In addition, take a sequence of
s non-negative integers c̄ = (c1, c2, . . . , cs) that satisfy

∑s
j=1 cj = s and

∑s
j=1 c

2
j < 4s.

There are at most 22s such sequences (easily bounded by writing the sequence elements in
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unary notation, separated by zeros). This sequence is our guess of the bucket loads due to S
after the first phase. Finally, use an assignment ρ : [s] → [log s], that assigns values from
[log s] to elements of [s] in the following way: 1 ∈ [log s] is assigned to s

2 elements of [s],
2 ∈ [log s] is assigned to s

4 elements of [s], and in general i ∈ [log s] is assigned to s
2i

elements of [s]. Exceptionally, log s is assigned to 2 elements of [s], in order to cover the
entire set. The number of such assignments is at most 2s·(1+

∑log s
i=1 2−i) < 22s (write the s

assigned values in unary, separated by zeros). The assignment ρ is our guess as to which of
the log s selected hash functions should be used for each bucket.

Each setting of y, f , ḡ, c̄ and ρ defines a hash function h ∈ H as follows. For every
x ∈ [n],

h(x) =

 ∑
i<f(Cy(x))

2d2 log cie

+ ḡρ(f(Cy(x)))(Cy(x)),

where for i = f(Cy(x)), ḡρ(i)(Cy(x)) is the first d2 log cie bits of gρ(i)(Cy(x)). We shall
also think of ḡρ(i)(Cy(x)) as the binary expansion of an integer number. Notice that

|H| ≤ 2d · |F| · |G|log s ·#{c̄} ·#{ρ} ≤ 24s+O(log2 s)+O(log 2s log logn)+O(log s) , (2.3)

implying the claim in the lemma.3 Also notice that each h ∈ H maps [n] to

s∑
i=1

2d2 log cie ≤ 2 ·
s∑
i=1

c2i < 8s,

as required.
Wrapping up. Recall that we still work with a fixed “good” y.
CLAIM 2.8. For every vector v ∈ Sn−1, the probability that when we pick f at random

there is a choice of ḡ and ρ such that h = hy,f,ḡ,ρ is injective on Is is at least 1
2 .

Proof. Let S = Is. Since y is good, Cy is injective on S. Denote Sy = Cy(S). For this
set Sy , Equation (2.1) holds for at least half of the choices of f (by Equation (2.2)). Fix any
such choice f . For i = 1, 2, . . . , s, let Ci = {x ∈ Sy : f(x) = i}. Consider the choice of
ci = |Ci|, for i = 1, 2, . . . , s. Fix i. For every g ∈ G and x ∈ [2b], let ḡ(x) denote the first
d2 log cie bits of g(x). Consider the “bad” event

Ai = Ai(g) = ∃x, x′ ∈ Ci, x 6= x′ : ḡ(x) = ḡ(x′) .

As G is a pairwise independent family of hash functions, if g is chosen uniformly at random
in G, then Pr [Ai] ≤

(
ci
2

)
· 1
c2i
< 1

2 . Therefore, there exists a choice of g1 that is good for a set
J1 ⊂ [s] of buckets of cardinality |J1| = s

2 . Similarly, for j = 2, 3, . . . , log s−1, there exists
a choice of gj that is good for a set Jj ⊂ [s] \

⋃
j′<j Jj′ of cardinality |Jj | = s

2j . Similarly,
there exists a choice of glog s that is good for both elements in [s] \

⋃
j<log s Jj . So, for every

f that satisfies Equation (2.1), there is a choice of g, c, and ρ such that the resulting hash
function h is an injection on Is.

CLAIM 2.9. For every t ∈ [s − 1], if t satisfies that v2
it+1
≤ 1

64s · ‖v[n]\It‖22, then with
probability at least 2

3 , f satisfies that∑
r∈[s]

min

{
‖v(f◦Cy)−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

}
≥ 1

2
· ‖v[n]\It‖

2
2. (2.4)

3A careful calculation shows that the constant A in the statement of Lemma 1.1 is at most 5.
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Observe that Equation (2.4) implies Equation (1.1), as the gi-s only further split hash
buckets.

The intuition behind this claim is simple: If v2
it+1
≤ 1

64s · ‖v[n]\It‖22, then no i ∈ [n] \
It has v2

i very large relative to ‖v[n]\It‖22, so ‖v[n]\It‖22 is spread roughly evenly on many
coordinates. As f ◦Cy is likely to map the coordinates of v[n]\It roughly evenly, it also maps
the weight ‖v[n]\It‖22 roughly evenly.

Proof. To ease the reading, let us use the following notation. Let u ∈ R2b

be defined as
follows. For z ∈ {0, 1}b,

uz = ‖vC−1
y (z)\It‖

2
2 .

Let us also denote

W = ‖u‖1 = ‖v[n]\It‖
2
2 .

With these notations, what we wish to prove is that with probability at least 2
3 , over the choice

of f , ∑
r∈[s]

min
{
‖uf−1(r)‖1,

2

s
W

}
≥ 1

2
W . (2.5)

Since y is good, Corollary 2.7 guarantees that for all z,

uz ≤
(

1

64s
+
√
ε

)
· ‖v[n]\It‖

2
2 =

(
1

64s
+
√
ε

)
·W <

W

7.992s
.

Let Xi
z be the indicator random variable for the event that f(z) = i. As Pr[f(z) = i] =

1
s , we have that

E
[
‖uf−1(i)‖1

]
=

2b∑
z=1

E[Xi
z] · uz =

1

s
‖u‖1 =

1

s
W .

Moreover, as f comes from a pairwise independent family of hash functions, for fixed i the
random variables Xi

z are pairwise independent, so

σ2
[
‖uf−1(i)‖1

]
= Var

[
‖uf−1(i)‖1

]
= Var

 2b∑
z=1

Xi
z · uz


=

2b∑
z=1

Var[Xi
z] · u2

z =

(
1− 1

s

)
· 1

s
· ‖u‖22 .

Thus, as uz ≤ W
7.992s , we get that

σ
[
‖uf−1(i)‖1

]
≤ 1√

s
· ‖u‖2 ≤

1√
s
·
√

W

7.992s
·
√
‖u‖1 =

W

7.99s
.

By Chebyshev’s inequality, for every r > 1,

Pr
[
‖uf−1(i)‖1 ≥

r

s
W
]
≤ 1

7.992(r − 1)2
. (2.6)
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For each value of r, consider all values λ in the interval [2r, 2r+1] such that
Pr
[
‖uf−1(i)‖1 = λ

sW
]
6= 0. Clearly there are finitely many such values. From Equa-

tion (2.6) we get that∑
λ∈[2r,2r+1]

λ · Pr

[
‖uf−1(i)‖1 =

λ

s
W

]
≤ 2r+1 Pr

[
‖uf−1(i)‖1 ≥

2r

s
·W
]

≤ 2r+1

7.992(2r − 1)2
.

Thus,

E
[
max

{
0, ‖uf−1(i)‖1 −

2

s
W

}]
≤ W

7.992s
·
∞∑
r=1

2r+1

(2r − 1)2

=
4W

7.992s
·
∞∑
r=1

2r−1

(2r − 1)2

<
4W

7.992s
·
∞∑
r=1

1

2r−1

=
8W

7.992s
.

Let Y i = max
{

0, ‖uf−1(i)‖1 − 2
sW

}
. We just showed that E

[∑
i∈[s] Y

i
]
< 8W

7.992 , so

by Markov’s Inequality, Pr
[∑

i∈[s] Y
i > 1

2W
]
< 1

3 .

We next show that when
∑
i∈[s] Y

i ≤ 1
2W , Equation (2.5) holds, and thus it holds with

probability at least 2
3 over the choice of f ∈ F , which is what we wanted to prove.

Let m be the number of i ∈ [s] such that Y i > 0. We now get that

1

2
W ≥

∑
i∈[s]

Y i =
∑
i:Y i>0

(
‖uf−1(i)‖1 −

2

s
W

)
=

( ∑
i:Y i>0

‖uf−1(i)‖1

)
− 2m

s
W .

Hence,

s∑
i=1

min

{
‖uf−1(i)‖1,

2

s
W

}
=

( ∑
i:Y i=0

‖uf−1(i)‖1

)
+

2m

s
W

=

(
W −

∑
i:Y i>0

‖uf−1(i)‖1

)
+

2m

s
W

≥W − 1

2
W =

1

2
W ,

and Equation (2.5) holds.
To conclude the proof of Lemma 1.1 we recall that y is good with probability at least

1 − s
√
ε > 0 and that for each good y, Claim 2.8 holds for a random choice of f with

probability at least 1
2 . Furthermore, for a good y, we have that Equation (2.5) holds for at

least 2
3 of the choices of f ∈ F . As 2

3 + 1
2 > 1, we get that for each good y, there is a good

choice of f , so that both Equation (2.5) and the condition in the statement of Claim 2.8 hold.
This is exactly what Lemma 1.1 claims.
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3. Proof of Corollary 1.2 (the new version of Corollary 2.8). We consider two cases.
Case 1. There is some d2s/3e ≤ q ≤ s− 1 such that v2

iq+1
≤ 1

64s · ‖v[n]\Iq‖22.
Case 2. For every d2s/3e ≤ q ≤ s− 1 we have that v2

iq+1
> 1

64s · ‖v[n]\Iq‖22.
Consider Case 1. By the assumption in Case 1 we get from Lemma 1.1 that there exists

h ∈ H such that Eq (1.1) is satisfied. We will show that for some constants c1, c2 at least
c1 · 8s buckets satisfy that ‖vh−1(r)\Iq‖22 ≥

c2
s · ‖v[n]\Iq‖22. Assume for a contradiction that

less than c1 · 8s buckets have high norm. Hence,

1

2
· ‖v[n]\Iq‖

2
2 ≤

∑
r∈[8s]

min

{
‖vh−1(r)\Iq‖

2
2,

2

s
· ‖v[n]\Iq‖

2
2

}
≤ c1 · 8s ·

2

s
· ‖v[n]\Iq‖

2
2 + 8s · c2

s
· ‖v[n]\Iq‖

2
2 = (16c1 + 8c2) · ‖v[n]\Iq‖

2
2.

Therefore, for c1 = 1
48 and c2 = 1

49 we get a contradiction, unless ‖v[n]\Iq‖22 = 0. However,
the claim is trivial if this is the case.

Let us now assume that we are in Case 2. It follows that

s−1∑
q=d2s/3e

|viq+1 | ≥
s−1∑

q=d2s/3e

1

8
√
s
· ‖v[n]\Iq‖2 ≥

s−1∑
q=d2s/3e

1

8
√
s
· ‖v[n]\Is‖2 ≥

√
s

32
‖v[n]\Is‖2,

where in the last inequality we used the assumption that s ≥ 24.

4. Analysis of “Case 3” from the proof of Theorem 1.1. Case 3. We now assume that∑t−1
r=d2t/3e |vir+1

| <
√
t

32 ‖v[n]\It‖2. Hence, Corollary 1.2 implies that there exist d2t/3e ≤
q ≤ t − 1 and some h ∈ H such that h is an injection on It, and for at least c1 · 8t buckets
r ∈ [8t] it holds that ‖vh−1(r)\Iq‖22 ≥

c2
t · ‖v[n]\Iq‖22 for two universal constants c1 and c2.

Denote the set of≥ c1 ·8t “good” buckets r with R ⊂ [8t]. We also define, for every i ∈ [8t],
J ′h,i = h−1(i) \ Iq . It follows that for every i ∈ R

‖vJ′h,i
‖2 ≥

√
c2
t
· ‖v[n]\Iq‖2.

By Lemma 2.5 (in [RS10]), specialized to k = 5, we get that for every i ∈ h(Iq)

Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥ ‖vIq∩Jh,i

‖1 +
1

7
‖vJ′h,i

‖2
]
≥ 4

5
· 2−5 =

1

40
, (4.1)

where we recall that by our assumption on h we have that |Iq ∩ Jh,i| = 1. In addition,
Lemma 2.4 (in [RS10]) implies that for i /∈ h(Iq) (this actually holds for every i)

Pr
s∈Sh,i

[〈
s, vJh,i

〉
≥
‖vJh,i

‖2
7

]
≥ 1

20
. (4.2)

For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i that belong to the “good” sets
defined in (4.1), (4.2), namely, those elements from Sh,i that have large inner product with
vJh,i

. Clearly, for every i we have that |Ai|/|Sh,i| ≥ min( 1
40 ,

1
20 ) = 1

40 . We will now show
that there exists a walk onG such that for every i,wi ∈ Ai. Indeed,G is an [m, d, λ]-expander
and so Theorem 2.6 (in [RS10]) guarantees that if 1

40 > 6λ/d, then there exists a walk that
hits all the Ai’s. As we picked a graph G with λ ≤ d/1000 we have the required property.
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Thus, there exists a walk w = (w1, . . . , w8t) such that for every i, wi ∈ Ai. Calculating, we
get that

〈
xh,w, v

〉
=

8t∑
i=1

〈
wi, vJh,i

〉
=

∑
i∈h(Iq)

〈
wi, vJh,i

〉
+

∑
i/∈h(Iq)

〈
wi, vJh,i

〉
≥

∑
i∈h(Iq)

(
‖vIq∩Jh,i

‖1 +
1

7
‖vJ′h,i

‖2
)

+
∑

i/∈h(Iq)

‖vJh,i
‖2

7

= ‖vIq‖1 +
1

7

∑
i∈[8t]

‖vJ′h,i
‖2 ≥ ‖vIq‖1 +

1

7

∑
i∈R
‖vJ′h,i

‖2

≥ ‖vIq‖1 +
1

7

∑
i∈R

√
c2
t
· ‖v[n]\Iq‖2

≥‡ ‖vIq‖1 +
8c1
√
c2

7
·
√
t · ‖v[n]\Iq‖2

≥ ‖vIq‖1 +
8c1
√
c · c2

7
·
√

log(2/ε) · ‖v[n]\Iq‖2

≥∗ ‖vIq‖1 +
√

2 log(2/ε) · ‖v[n]\Iq‖2 >
† θ,

where inequality (‡) follows from the fact that |R| ≥ c1 · 8t, inequality (∗) holds for a large
enough universal constant c, and inequality (†) holds from the same argument as in case 2
(for c large enough), recalling that q ≥ d2t/3e = d 2

3c log 2/εe. Thus, Lv,θ(xh,w) = 1 as
required.
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