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Abstract

Reed-Muller (RM) codes are among the oldest, simplest and perhaps most ubiquitous family of codes. They are used
in many areas of coding theory in both electrical engineering and computer science. Yet, many of their important
properties are still under investigation. This manuscript covers some of the developments regarding the weight enu-
merator and the capacity-achieving properties of RM codes, as well as some of the algorithmic developments. In
particular, it discusses connections established between RM codes, thresholds of Boolean functions, polarization the-
ory, hypercontractivity, and the techniques of approximating low weight codewords using lower degree polynomials
(when codewords are viewed as evaluation vectors of degree r polynomials in m variables). It then overviews some of
the algorithms for decoding RM codes, giving both algorithms with provable performance guarantees for every block
length, as well as algorithms with state-of-the-art performances in practical regimes, which do not perform as well for
large block length. Finally, some applications of RM codes in theoretical computer science and signal processing are
given.
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1 Introduction

A large variety of codes have been developed over the past 70 years. These were driven by various objectives,
in particular, achieving efficiently the Shannon capacity [16], constructing perfect or good codes in the
Hamming worst-case model [17], matching the performance of random codes, improving the decoding
complexity, the weight enumerator, the scaling law, the universality, the local properties of the code [18–24],
and more objectives in theoretical computer science such as in cryptography (e.g., secrete sharing, private
information retrieval), pseudorandomness, extractors, hardness amplification or probabilistic proof systems;
see [1] for references. Among this large variety of code developments, one of the first, simplest and perhaps
most ubiquitous code is the Reed-Muller (RM) code.

The RM code was introduced by Muller in 1954 [25], and Reed developed shortly after a decoding
algorithm decoding up to half its minimum distance [6]. The code construction can be described with a
greedy procedure. Consider building a linear code (with block length a power of two); it must contain the
all-0 codeword. If one has to pick a second codeword, then the all-1 codeword is the best choice under any
meaningful criteria. If now one has to keep these two codewords, the next best choice to maximize the code
distance is the half-0 half-1 codeword, and to continue building a basis sequentially, one can add a few more
vectors that preserve a relative distance of half, completing the simplex code, which has an optimal rate for
the relative distance half. Once saturation is reached at relative distance half, it is less clear how to pick the
next codeword, but one can simply re-iterate the simplex construction on any of the support of the previously
picked vectors, and iterate this after each saturation, reducing each time the distance by half. This gives the
RM code, whose basis is equivalently defined by the evaluation vectors of bounded degree monomials.

As mentioned, the first order RM code is the augmented simplex code or equivalently the Hadamard
code, and the simplex code is the dual of the Hamming code that is ‘perfect’. This strong property is
clearly lost once the RM code order gets higher, but RM codes preserve nonetheless a decent distance (at
root block length for constant rate). Of course this does not give a ‘good’ family of codes (i.e., a family
of codes with asymptotically constant rate and constant relative distance), and it is far from achieving the
distance that other combinatorial codes can reach, such as Golay codes, BCH codes or expander codes
[18]. However, once put under the light of random errors, i.e., the Shannon setting, for which the minimum
distance is no longer the right figure or merit, RM codes may perform well again. In [26], Levenshtein and
co-authors showed that for the binary symmetric channel, there are codes that improve on the simplex code
in terms of the error probability (with matching length and dimension). Nonetheless, in the lens of Shannon
capacity, RM codes seem to perform very well. In fact, more than well; it is plausible that they achieve the
Shannon capacity on any Binary-input Memoryless Symmetric (BMS) channel [1, 4, 5, 27–29] and perform
comparably to random codes on criteria such as the scaling law [30] or the weight enumerator [18, 31–35].

The fact that RM codes have good performance in the Shannon setting, and that they seem to achieve
capacity, has long been observed and conjectured. It is hard to track back the first appearance of this belief
in the literature, but [28] reports that it was likely already present in the late 60s. The claim was mentioned
explicitly in a 1993 talk by Shu Lin, entitled “RM Codes are Not So Bad” [36]. It appears that a 1994 paper
by Dumer and Farrell contains the earliest printed discussion on this matter [37]. Since then, the topic has
become increasingly prevalent1 [1, 27, 38–42].

But the research activity has truly sparked with the emergence of polar codes [38]. Polar codes are close
relatives of RM codes. They are derived from the same square matrix (the matrix whose rows correspond
to evaluations of multilinear monomials) but with a different rule of row selection. The more sophisticated
and channel dependent construction of polar codes gives them the advantage of being provably capacity-
achieving on any BMS channel, due to the polarization phenomenon. Even more impressive is the fact that

1 The capacity conjecture for the BEC at constant rate was posed as one of the open problems at the Information Theory
Semester at the Simons Institute, Berkeley, in 2015.
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they possess an efficient decoding algorithm down to the capacity.
Shortly after the polar code breakthrough, and given the close relationship between polar and RM codes,

the hope that RM codes could also be proved to achieve capacity on any BMS started to propagate, both
in the electrical engineering and computer science communities. A first confirmation of this was obtained
in extremal regimes of the BEC and BSC [1], exploiting new bounds on the weight enumerator [34], and
a first complete proof for the BEC at constant rate was finally obtained in [4]. The paper [5] presented
a major breakthrough proving that constant-rate RM codes indeed achieve capacity on all BMS channels
under bit-MAP decoding. While [5] comes close to proving the conjecture, the question of whether RM
codes achieve capacity under block-MAP decoding still remains open.

The papers mentioned in the previous paragraph however did not exploit the close connection between
RM and polar codes. This connection was studied in [29] where it was shown that the RM transform is also
polarizing and that a third variant of the RM code achieves capacity on any BMS channel. Further more,
[29] conjectured that this variant is indeed the RM code itself.

Polar codes and RM codes can be compared in different ways. In most performance metrics, and putting
aside the decoding complexity, RM codes seem to be superior to polar codes [29,42]. Namely, they seem to
achieve capacity universally and with an optimal scaling-law, while polar codes have a channel-dependent
construction with a suboptimal scaling-law [30, 43, 44]. However, RM codes seem more complex both in
terms of obtaining performance guarantees (as evidenced by the long standing conjectures) and in terms of
their decoding complexity.

Efficient decoding of RM codes is the second main outstanding challenge. Many algorithms have been
proposed since Reed’s algorithm [6], such as [7–13], and newer ones have appeared in the post polar code
period [14, 15, 45]. Some of these already show that at various block-lengths and rates that are relevant for
communication applications, RM codes are indeed competing or even superior to polar codes [14,42], even
compared to the improved versions considered for 5G [46].

This survey is meant to overview these developments regarding both the performance guarantees (in
particular on weight enumerator and capacity) and the decoding algorithms for RM codes. At the end of this
survey, we discuss a few applications of RM codes in the areas beyond communication, e.g., applications in
low degree testing, private information retrieval, and compressed sensing.

1.1 Outline of the survey and differences from a previous version

Part of this monograph was taken from a previous survey [47] written by the first author, the third author and
the fourth author. At the same time, we have added quite a few new elements and optimized the presentation
of the contents from [47]. Below we give the outline of this new survey and discuss the difference from [47].

We start in Section 2 with the main definitions and basic properties of RM codes. Most parts of this sec-
tion already appeared in [47], e.g., the code parameters, recursive structure, duality, automorphism group,
and local properties. We have, however, added two new subsections discussing the cyclic property of punc-
tured RM codes and the nonlinear subcodes of RM codes. In Section 3, we introduce some performance
measures and important quantities in channel coding. This is a new section that has not appeared in [47].
We then cover the bounds on the weight enumerator of RM codes in Section 4. In Section 5, we cover
the capacity-achieving results, using tools from the weight enumerator and sharp thresholds of monotone
Boolean functions. In Section 6, we explore the connection between RM codes and polar codes. Although
Sections 4–6 have appeared in [47], we have revised the organization of these 3 sections and added some
proofs to better explain the results as well as covered results that appeared between the publication time of
these two surveys. Section 7 is a new section that describes the finite-length scaling of random codes, RM
codes and polar codes. We then cover various decoding algorithms in Section 8, providing pseudo-codes for
them. This section is similar to the old version [47]. Finally, in Section 9, we discuss some applications of
RM codes beyond communication and channel coding, which were not covered in [47].
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2 Basic properties of RM codes

2.1 Definition and parameters

Codewords of binary Reed-Muller codes consist of the evaluation vectors of multivariate polynomials over
the binary field F2. The encoding procedure of RM codes maps the information bits stored in the polynomial
coefficients to the polynomial evaluation vector. Consider the polynomial ring F2[x1, x2, . . . , xm] with m
variables. For a polynomial f ∈ F2[x1, x2, . . . , xm] and a binary vector z = (z1, z2, . . . , zm) ∈ Fm2 , let
Evalz(f) := f(z1, z2, . . . , zm) be the evaluation of f at the vector z, and let Eval(f) := (Evalz(f) : z ∈
Fm2 ) be the evaluation vector of f whose coordinates are the evaluations of f at all 2m vectors in Fm2 . Reed-
Muller codes with parameters m and r consist of all the evaluation vectors of polynomials with m variables
and degree no larger than r.

Definition 1. The r-th order (binary) Reed-Muller code RM(m, r) code is defined as the following set of
binary vectors

RM(m, r) := {Eval(f) : f ∈ F2[x1, x2, . . . , xm], deg(f) ≤ r} .

Note that in later sections, we might use Eval(f) and f interchangeably to denote the codeword of RM
codes. For a subset A ⊆ [m] := {1, 2, . . . ,m}, we use the shorthand notation xA :=

∏
i∈A xi. Notice

that we always have xn = x in F2 for any integer n ≥ 1, so we only need to consider the polynomials in
which the degree of each xi is no larger than 1. All such polynomials with degree no larger than r are linear
combinations of the following set of monomials

{xA : A ⊆ [m], |A| ≤ r}.

There are
∑r

i=0

(
m
i

)
such monomials, and the encoding procedure of RM(m, r) maps the coefficients of

these monomials to their corresponding evaluation vectors. Therefore, RM(m, r) is a linear code with
code length n = 2m and code dimension

∑r
i=0

(
m
i

)
. Moreover, the evaluation vectors {Eval(xA) : A ⊆

[m], |A| ≤ r} form a generator matrix of RM(m, r). Here we give a few examples of generator matrices
for RM codes with code length 8:

RM(3, 0) :
[
Eval(1)

]
=
[
1 1 1 1 1 1 1 1

]
RM(3, 1) :


Eval(x1)
Eval(x2)
Eval(x3)
Eval(1)

 =


1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1



RM(3, 2) :



Eval(x1x2)
Eval(x1x3)
Eval(x2x3)
Eval(x1)
Eval(x2)
Eval(x3)
Eval(1)


=



1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


RM(3, 3) :



Eval(x1x2x3)
Eval(x1x2)
Eval(x1x3)
Eval(x2x3)
Eval(x1)
Eval(x2)
Eval(x3)
Eval(1)


=



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1


From this example, we can see that RM(m, 0) is the repetition code, and RM(m,m) consists of all the
binary vectors of length n = 2m, i.e., the evaluation vectors {Eval(xA) : A ⊆ [m]} form a basis of Fn2 .

Another equivalent way of defining RM codes is the Plotkin (u, u + v) construction, which we discuss
in detail below in Section 2.2. We also note that RM codes can be defined as geometry codes and refer to
[18, 48] for further details.
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code code length code dimension code distance dual code
RM(m, r) n = 2m k =

∑r
i=0

(
m
i

)
d = 2m−r RM(m,m− r − 1)

Tab. 1: Important parameters of RM(m, r).

2.2 Recursive structure and distance

For any polynomial f ∈ F2[x1, x2, . . . , xm], we can always decompose it into two parts, one part containing
xm and the other not containing xm:

f(x1, x2, . . . , xm) = g(x1, x2, . . . , xm−1) + xmh(x1, x2, . . . , xm−1). (1)

Here we use the fact that xnm = xm in F2 for any integer n ≥ 1.
We can also decompose the evaluation vector Eval(f) into two subvectors, one subvector consist-

ing of the evaluations of f at all z = (z1, . . . , zm)’s with zm = 0 and the other subvector consist-
ing of the evaluations of f at all z = (z1, . . . , zm)’s with zm = 1. We denote the first subvector as
Eval[zm=0](f) and the second one as Eval[zm=1](f). We also define their sum over F2 as Eval[/zm](f) :=
Eval[zm=0](f) + Eval[zm=1](f). Note that all three vectors Eval[zm=0](f),Eval[zm=1](f) and Eval[/zm](f)
have length 2m−1, and their coordinates are indexed by (z1, z2, . . . , zm−1) ∈ Fm−1

2 .
By (1), Eval[zm=0](f) is the evaluation vector of g(x1, x2, . . . , xm−1), and Eval[/zm](f) is the evalua-

tion vector of h(x1, x2, . . . , xm−1). Now assume that Eval(f) ∈ RM(m, r), or equivalently, assume that
deg(f) ≤ r. Then we have deg(g) ≤ r and deg(h) ≤ r−1. Therefore, Eval[zm=0](f) ∈ RM(m−1, r) and
Eval[/zm](f) ∈ RM(m− 1, r− 1). This is called the Plotkin (u, u+ v) construction of RM codes, meaning
that if we take a codeword c ∈ RM(m, r), then we can always divide its coordinates into two subvectors u
and u+ v of length 2m−1, where u ∈ RM(m− 1, r), v ∈ RM(m− 1, r − 1) and c = (u, u+ v).

A consequence of this recursive structure is that the code distance of RM(m, r) is d = 2m−r. We prove
this by induction. It is easy to establish the induction basis. For the inductive step, suppose that the claim
holds for m − 1 and all r ≤ m − 1. Then we only need to show that for any u ∈ RM(m − 1, r) and
v ∈ RM(m− 1, r − 1), the Hamming weight of the vector (u, u+ v) is at least 2m−r whenever (u, u+ v)
is not the all-zero vector, i.e., we only need to show that w(u) + w(u + v) ≥ 2m−r, where w(·) is the
Hamming weight of a vector. The proof is divided into two cases: Case (i) Suppose that v is the all-zero
vector. Then u can not be all zero because otherwise (u, u + v) is the all-zero vector. In this case, we
have w(u) + w(u + v) = 2w(u). By the induction hypothesis, w(u) ≥ 2m−1−r, so w(u) + w(u + v) =
2w(u) ≥ 2m−r. Case (ii) Suppose that v is not the all-zero vector. By the triangle inequality, we have
w(u) + w(u+ v) ≥ w(v). By the inductive hypothesis, w(v) ≥ 2m−r, so w(u) + w(u+ v) ≥ 2m−r. This
completes the proof of the code distance.

The Plotkin construction also implies a recursive relation between the generator matrices of RM codes.
More precisely, let G(m − 1, r − 1) be a generator matrix of RM(m − 1, r − 1) and let G(m − 1, r) be a
generator matrix of RM(m− 1, r). Then we can obtain a generator matrix G(m, r) of RM(m, r) using the
following relation:

G(m, r) =

[
G(m− 1, r) G(m− 1, r)

0 G(m− 1, r − 1)

]
,

where 0 denotes the all-zero matrix with the same size as G(m− 1, r − 1).

2.3 Connection between RM codes and polar codes

RM codes and polar codes with code length n = 2m share the same mother matrix. This mother matrix is an
n × n square matrix whose row vectors are the evaluation vectors of all monomials in F2[x1, x2, . . . , xm].
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We call it mother matrix because the generator matrices of both RM codes and polar codes are submatrices
of this matrix. The difference between these two codes lies in how to choose row vectors from the mother
matrix to form the generator matrix.

RM codes simply choose the row vectors corresponding to the lowest-degree monomials, or equivalently,
the row vectors with the largest Hamming weights. In contrast, the selection criterion of polar codes is
more complicated and depends heavily on the communication channel. In order to explain the polar code
construction, let us define

Gn :=

[
1 0
1 1

]⊗m
, (2)

where ⊗ is the Kronecker product and n = 2m. We first show that Gn is in fact the mother matrix, i.e., its
row vectors are precisely the evaluation vectors of all monomials in F2[x1, x2, . . . , xm]. This claim clearly
holds true for n = 2, and we will prove it for general values of n by induction. According to the definition,
Gn satisfying the following relation

G2n :=

[
Gn 0
Gn Gn

]
,

where 0 represents the all-zero n × n matrix. The first n columns of G2n correspond to the evaluation
points whose indices satisfy zm+1 = 1, and the last n columns of G2n correspond to the evaluation points
whose indices satisfy zm+1 = 0. Recall the shorthand notation xA :=

∏
i∈A xi for A ⊆ [m]. By the

induction hypothesis, the row vectors of Gn consists of the evaluation vectors of all monomials in the set
{xA : A ⊆ [m]} with evaluation points ranging over the vector space Fm2 . Therefore, the first n rows ofG2n

are evaluation vectors of all monomials in the set {xA∪{m+1} : A ⊆ [m]} with evaluation points ranging
over the vector space Fm+1

2 , and the last n rows of G2n are evaluation vectors of all monomials in the set
{xA : A ⊆ [m]} with evaluation points ranging over the vector space Fm+1

2 . This establishes the inductive
step and proves that Gn is indeed the mother matrix.

Next we describe how to choose rows from Gn to form the generator matrix of polar codes for a com-
munication channel W . Let U1, U2, . . . , Un be n i.i.d. Bernoulli-1/2 random variables. Define the random
vector (X1, . . . , Xn) = (U1, . . . , Un)Gn. For each i ∈ [n], let Yi be the random channel output after trans-
mitting Xi through the channel W . Define the conditional entropy Hi := H(Ui|U i−1, Y n). In the polar
code construction, we include the ith row of Gn in the generator matrix if Hi is close to 0. In the seminal
paper [38], Arıkan proved that when n → ∞, almost all Hi’s are very close to either 0 or 1, implying that
polar codes achieve capacity for any binary-input memoryless channel with symmetric outputs. Although
the construction of polar codes is not as straightforward as RM codes, efficient methods of calculating or
approximating Hi’s are well-known; see for example [38, 49–53].

A subset of row vectors in the generator matrix of polar codes also appears in the generator matrix of
RM codes, and one can in fact calculate the asymptotic size of this subset when the code length n goes to
infinity. More specifically, suppose that Cpolar is a polar code with code length n and code rateR constructed
for a BMS channel W . As mentioned above, the generator matrix of Cpolar is formed by certain row vectors
of Gn. We define a set Gpolar ⊆ {1, 2, . . . , n} as follows: For each 1 ≤ i ≤ n, i ∈ Gpolar if and only if
the ith row of Gn is included in the generator matrix of Cpolar. Let CRM be a Reed-Muller code with code
length n and code rate R′. We also define a set GRM ⊆ {1, 2, . . . , n} in a similar way: For each 1 ≤ i ≤ n,
i ∈ GRM if and only if the ith row of Gn is included in the generator matrix of CRM. By definition, we have
|Gpolar| = nR and |GRM| = nR′. Hassani et al. [54, Corollary 6] showed that

|Gpolar ∩ GRM| = nI(W ) ·min
( R

I(W )
, R′
)

+ o(n).

In particular, when R = R′, we have

|Gpolar ∩ GRM| = nI(W )R+ o(n),
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indicating that the difference between Gpolar and GRM is not negligible whenever I(W ) < 1.
We will give a more detailed discussion about polar codes and its relations to RM codes in Section 6.

2.4 Duality

The dual code of a binary linear code C ⊆ Fn2 is defined as2

C⊥ := {x ∈ Fn2 : 〈x, c〉 = 0 ∀c ∈ C}, where 〈x, c〉 =
n∑
i=1

xici.

By definition, the dual code C⊥ is also a linear code, and we have

dim(C) + dim(C⊥) = n. (3)

Next we will show that the dual code of RM(m, r) is RM(m,m − r − 1). First, observe that the
Hamming weight of every codeword in RM(m,m − 1) is even, i.e., for every f ∈ F2[x1, . . . , xm] with
deg(f) ≤ m − 1, we have

∑
z∈Fm2

Evalz(f) = 0, where the summation is over F2. This is because the

Hamming weight of Eval(xA) is 2m−|A|, so
∑

z Evalz∈Fm2 (xA) = 0 for all subsetsAwith size |A| ≤ m−1.
For every f ∈ F2[x1, . . . , xm] with deg(f) ≤ m − 1, we can write it as f =

∑
A⊂[m],|A|≤m−1 uAxA.

Therefore,∑
z∈Fm2

Evalz(f) =
∑
z∈Fm2

Evalz(
∑

A⊂[m],|A|≤m−1

uAxA) =
∑

A⊂[m],|A|≤m−1

(
uA

∑
z∈Fm2

Evalz(xA)
)

= 0.

Suppose that Eval(f) is a codeword of RM(m, r) and Eval(g) is a codeword of RM(m,m−r−1). Then
deg(f) ≤ r and deg(g) ≤ m − r − 1. Notice that 〈Eval(f),Eval(g)〉 =

∑
z∈Fm2

Evalz(f) Evalz(g) =∑
z∈Fm2

Evalz(fg). Since deg(fg) ≤ m − 1, we have 〈Eval(f),Eval(g)〉 =
∑

z∈Fm2
Evalz(fg) = 0.

Therefore, every codeword of RM(m,m− r− 1) belongs to the dual code of RM(m, r), i.e., RM(m,m−
r − 1) ⊆ RM(m, r)⊥.

Since

dim(RM(m,m− r − 1)) =

m−r−1∑
i=0

(
m

i

)
=

m−r−1∑
i=0

(
m

m− i

)
=

m∑
i=r+1

(
m

i

)
,

we have

dim(RM(m, r)) + dim(RM(m,m− r − 1)) =

r∑
i=0

(
m

i

)
+

m∑
i=r+1

(
m

i

)
=

m∑
i=0

(
m

i

)
= 2m = n.

Combining this with (3), we know that dim(RM(m,m− r − 1)) = dim(RM(m, r)⊥). Thus we conclude
that

RM(m,m− r − 1) = RM(m, r)⊥.

This in particular tells us that the parity check matrix of RM(m, r) is the generator matrix of RM(m,m −
r − 1). The important parameters of RM(m, r) are summarized in Table 1.

2 As we work over F2 all calculations are done in that field.
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2.5 Affine-invariance

The automorphism group of a code C is the set of permutations under which C remains invariant. More
precisely, the automorphism group of a code C with code length n is defined asA(C) := {π ∈ Sn : π(C) =
C}, where π(C) := {π(c) : c ∈ C}, and π(c) is vector obtained from permuting the coordinates of c
according to π. It is easy to verify that A(C) is always a subgroup of the symmetric group Sn.

RM codes are affine-invariant in the sense that A(RM(m, r)) contains a subgroup isomorphic to the
affine linear group. More specifically, since the codewords of RM codes are evaluation vectors and they
are indexed by the vectors z ∈ Fm2 , the affine linear transform gA,b : z 7→ Az + b gives a permutation
on the coordinates of the codeword when A is an m ×m invertible matrix over F2 and b ∈ Fm2 . Next we
show that such a permutation indeed belongs to A(RM(m, r)). For any codeword c ∈ RM(m, r), there is
a polynomial f ∈ F2[x1, . . . , xm] with deg(f) ≤ r such that c = Eval(f). Since gA,b(c) = Eval(f ◦ gA,b)
and deg(f ◦ gA,b) = deg(f) ≤ r, we have gA,b(c) ∈ RM(m, r). Therefore, gA,b ∈ A(RM(m, r)), and RM
codes are affine-invariant.

Recall that in Section 2.2 we showed that Eval[/zm](f) ∈ RM(m − 1, r − 1) if Eval(f) ∈ RM(m, r).
Using the affine-invariant property, we can replace zm in this statement with any linear combination of
z1, . . . , zm. More specifically, for any ` = b1z1 + · · · + bmzm with nonzero coefficient vector b =
(b1, . . . , bm) 6= 0, we define Eval[`=0](f),Eval[`=1](f),Eval[/`](f) in the same way as Eval[zm=0](f),
Eval[zm=1](f),Eval[/zm](f). For any such `, one can always find an affine linear transform mapping zm to
`. Since RM codes are invariant under such affine transforms, we have Eval[/`](f) ∈ RM(m − 1, r − 1)
whenever Eval(f) ∈ RM(m, r). This observation will be used in several decoding algorithms in Section 8.

2.6 Punctured RM codes are cyclic codes

A cyclic code C is a linear code satisfying the following property: If (C1, C2, . . . , Cn) ∈ C is a codeword,
then its cyclic shift (Cn, C1, C2, . . . , Cn−1) is also a codeword in C.

Reed-Muller codes themselves are not cyclic codes. However, if we remove any coordinate of a Reed-
Muller code with length n = 2m and rearrange the remaining (n − 1) coordinates in a specific order, then
the resulting code is a cyclic code with length n− 1. The procedure of removing one coordinate of a code is
called puncturing, and the code obtained from puncturing a RM code is called a punctured RM code. As a
concrete example, let us consider the code RM(m, r). Every codeword in RM(m, r) is an evaluation vector
Eval(f) = (Evalz(f) : z ∈ Fm2 ) for some polynomial f with degree deg(f) ≤ r. Suppose that we puncture
the coordinate with the all-zero index z = 0. Then the punctured codeword is (Evalz(f) : z ∈ Fm2 \ {0})
and the punctured RM(m, r) code is

{(Evalz(f) : z ∈ Fm2 \ {0}) : f ∈ F2[x1, x2, . . . , xm],deg(f) ≤ r} .

Next we prove that if we arrange the coordinates of the punctured codewords (Evalz(f) : z ∈ Fm2 \{0})
in a specific order, then the punctured RM codes are cyclic codes. We start with the simplest case of r = 1,
i.e., the first-order punctured RM codes. A generator matrix of punctured RM(m, 1) is

G =


(Evalz(x1) : z ∈ Fm2 \ {0})

...
(Evalz(xm) : z ∈ Fm2 \ {0})
(Evalz(1) : z ∈ Fm2 \ {0})

 .
The first m rows of G are evaluation vectors of degree-1 monomials, and the last row is the all-one vector.
Consider the matrix G̃ consisting of the first m rows of G. The (2m − 1) columns of G̃ are all distinct from
each other, and these column vectors are precisely all the nonzero vectors in Fm2 . On the other hand, it is
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well known that Hamming code with length (2m−1) has a parity check matrix consisting of all the nonzero
column vectors in Fm2 . Therefore, G̃ is in fact the generator matrix of the simplex code, the dual code of
Hamming code [18, Chapter 1.9]. Both Hamming codes and simplex codes are cyclic codes [18, Theorem 2
and Theorem 4 of Chapter 7], so the row space of G̃ is invariant under cyclic shifts. Since the generator
matrix G is obtained by appending the all-one vector to G̃, we conclude that the punctured RM(m, 1) code
is indeed a cyclic code.

Now we move on to prove that the punctured RM(m, r) code is a cyclic code for general values of r.
Consider a generator matrix G(m, r) of RM(m, r), consisting of the evaluation vectors of all monomials
with degree no larger than r. Note that the evaluation vector of a monomial with degree s is the coordinate-
wise product of s distinct rows of G̃. Therefore, the order of columns in G̃ completely determines the order
of columns in the generator matrix G(m, r). As a consequence, the cyclic invariance of the row space of
G̃ implies that the row space of G(m, r) is also invariant under cyclic shifts, i.e., the punctured RM(m, r)
code is a cyclic code.

We have shown that by puncturing the coordinate with the all-zero index z = 0 from a RM code, we
obtain a cyclic code. The affine-invariant property of RM codes then immediately implies that a cyclic code
can be obtained by puncturing any coordinate of a RM code.

The above arguments are based on the classic paper [55]. As a final remark, cyclic codes are usually
defined by their generator polynomials and/or check polynomials. A detailed discussion on generator poly-
nomials and check polynomials of punctured RM codes (or general cyclic codes) is beyond the scope of this
monograph. Interested readers may consult Chapter 13.5 of [18] for results on this subject.

2.7 Nonlinear subcodes of RM codes: Nordstrom–Robinson code and Kerdock
codes

In this section we briefly review some nonlinear subcodes of second-order RM codes, including the Nord-
strom–Robinson code [56] and the Kerdock codes [57]. These nonlinear codes are important because they
contain more codewords than any known linear codes with the same code length and the same code distance.

A Kerdock code has a parameterm ≥ 4, which is required to be an even number, and the code is denoted
as K(m). The code length of K(m) is n = 2m; the number of codewords in K(m) is 22m = n2; the code
distance of K(m) is d = 2m−1 − 2m/2−1 = 1

2(n−√n). The Nordstrom–Robinson code is simply K(4).
Kerdock codes contain all the codewords from the first-order RM codes, and all codewords of Ker-

dock codes are contained in the second-order RM codes. In other words, we have RM(m, 1) ⊆ K(m) ⊆
RM(m, 2). In addition to RM(m, 1) itself, K(m) contains 2m−1 − 1 cosets of RM(m, 1) in RM(m, 2).
Since the number of codewords in RM(m, 1) is 2m+1, the number of codewords in K(m) is 2m−1 · 2m+1 =
22m. To better describe Kerdock codes, we associate each quadratic function in F2[x1, x2, . . . , xm] with a
coset of RM(m, 1): For each f ∈ F2[x1, x2, . . . , xm] with deg(f) = 2, define its corresponding coset as

Coset(f) = {Eval(f + g) : g ∈ F2[x1, x2, . . . , xm], deg(g) ≤ 1}.

Let us consider a special choice of the quadratic function f . When m is even, let f∗ = x1x2 + x3x4 +
x5x6 + · · · + x2m−1x2m. For this particular choice, one can show that the Hamming weights of all the
codewords in Coset(f∗) can only take two values, either 1

2(n−√n) or 1
2(n+

√
n). Moreover, the number

of codewords with Hamming weight 1
2(n − √n) is the same as the number of codewords with Hamming

weight 1
2(n+

√
n), both equal to 2m. The function f∗ is not the only quadratic function whose corresponding

coset has this particularly nice weight distribution. For example, we can obtain another quadratic function
with this property by simply performing a permutation on x1, x2, . . . , xm in the definition of f∗. Denote
f0 = 0 as the zero polynomial. The construction of Kerdock codes requires finding 2m−1 − 1 distinct
quadratic functions f1, f2, . . . , f2m−1−1 such that the weight distribution of Coset(fi − fj) is the same as
the weight distribution of Coset(f∗) for all 0 ≤ i < j ≤ 2m−1 − 1. We will not discuss how to find such
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quadratic functions since it is complicated and beyond the scope of this monograph. Here we only record one
consequence of the weight distribution of these cosets. That is, we can completely characterize the weight
distribution of K(m). Indeed, RM(m, 1) has 1 codeword with weight 0, 1 codeword with weight n and
2m+1− 2 codewords with weight n/2. For every 1 ≤ i ≤ 2m−1− 1, the coset Coset(fi) has 2m codewords
with weight 1

2(n − √n) and 2m codewords with weight 1
2(n +

√
n). Therefore, the weight distribution of

K(m) is as follows: It has 1 codeword with weight 0, 1 codeword with weight n, 2m+1 − 2 codewords with
weight n/2, 2m(2m−1 − 1) codewords with weight 1

2(n−√n) and 2m(2m−1 − 1) codewords with weight
1
2(n+

√
n).

Delsarte and Goethals extended the construction of Kerdock codes to obtain a new family of codes called
Delsarte-Goethals codes [58]. This family of codes is also nonlinear, and it sits between Kerdock codes and
second-order RM codes, i.e., it is a subcode of second-order RM codes and it contains all codewords of
Kerdock codes.

Finally, we note that although Nordstrom–Robinson code, Kerdock codes and Delsarte-Goethals codes
are all nonlinear codes over the binary field, they can all be constructed as binary images under the Gray
map of linear codes over Z4, the integer ring mod 4 [59]. We first use a simple example to explain how to
map a Z4-linear code to a binary code using the Gray mapping. Consider the following 4 × 8 matrix over
Z4: 

2 2 2 2 0 0 0 0
2 2 0 0 2 2 0 0
2 0 2 0 2 0 2 0
1 1 1 1 1 1 1 1

 . (4)

The row space of this matrix contains the following 32 linear combinations over Z4:

{a0(1, 1, 1, 1, 1, 1, 1, 1) + a1(1, 1, 1, 1, 0, 0, 0, 0) + a2(1, 1, 0, 0, 1, 1, 0, 0)

+ a3(1, 0, 1, 0, 1, 0, 1, 0) : a0 ∈ {0, 1, 2, 3}, a1, a2, a3 ∈ {0, 2}}.
(5)

These 32 vectors form a Z4-linear code with code length 8. The Gray mapping φ maps a symbol in Z4 to
two symbols in F2 as follows: φ(0) = (0, 0), φ(1) = (0, 1), φ(2) = (1, 1), φ(3) = (1, 0). The mapping
φ naturally induces a sequence of mappings φn that maps from a Z4 vector with length n to an F2 vector
with length 2n as follows: φn((a1, a2, . . . , an)) = (φ(a1), φ(a2), . . . , φ(an)), where a1, . . . , an ∈ Z4.
As a concrete example, φ8((3, 3, 1, 1, 2, 2, 0, 0)) = (1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0). If we apply
the mapping φ8 to each of the 32 vectors in (5), then we obtain a binary code with code length 16 that
contains 32 codewords. It is easy to check that this binary code is the first-order RM code of length 16. In
other words, RM(4, 1) is the binary image of the Z4-linear code with generator matrix (4) under the Gray
map. The remarkable results of [59] show that all the nonlinear codes mentioned in this section can also be
constructed as binary images of Z4-linear codes under the Gray map. For example, the Nordstrom–Robinson
code is the binary image of the Z4-linear code with generator matrix

1 1 3 1 0 0 0 2
1 3 2 2 1 1 0 2
1 0 3 2 1 0 1 0
1 1 1 1 1 1 1 1

 .
If we multiply the first three rows of this matrix by 2 (mod 4), then we obtain the matrix (4), indicating that
the Nordstrom–Robinson code contains all the codewords in RM(4, 1), as we already mentioned earlier.
Readers who want to further explore these codes may consult [60] and Chapter 15 of [18], among many
other references.
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2.8 General finite fields and locality

The definition of binary RM codes above can be naturally extended to more general finite fields Fq. Let us
consider the polynomial ring Fq[x1, x2, . . . , xm] of m variables. For a polynomial f ∈ Fq[x1, x2, . . . , xm],
we again use Eval(f) := (Evalz(f) : z ∈ Fmq ) to denote the evaluation vector of f . Since xq = x in Fq, we
only need to consider the polynomials in which the degree of each xi is no larger than q− 1, and the degree
of such polynomials is no larger than m(q − 1).

Definition 2. Let n := qm and r ≤ m(q − 1). The r-th order q-ary Reed-Muller code RMq(m, r) code is
defined as the following set of vectors in Fnq :

RMq(m, r) := {Eval(f) : f ∈ Fq[x1, x2, . . . , xm],deg(f) ≤ r}.

A locally decodable code (LDC) is an error-correcting code that allows a single bit of the original
message to be decoded with high probability by only examining (or querying) a small number of bits of a
possibly corrupted codeword. RM codes over large finite fields are the oldest and most basic family of LDC.
When RM codes are used as LDC, the order r of RM codes is typically set to be smaller than the field size q.
At a high level, local decoding of RM codes requires us to efficiently correct the evaluation of a multivariate
polynomial at a given point z from the evaluation of the same polynomial at a small number of other points.
The decoding algorithm chooses a set of points on an affine line that passes through z. It then queries the
codeword for the evaluation of the polynomial on the points in this set and interpolates that polynomial to
obtain the evaluation at z. We refer the readers to [24] for more details on this topic.
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3 Performance measures and important quantities in channel coding

3.1 Information measures of a channel

We consider a discrete memoryless channel (DMC) W : X → Y with input alphabet X and output alphabet
Y . The transition probability W (y|x) is the conditional probability of obtaining the channel output y ∈ Y
when the channel input is x ∈ X .

Let PX be a probability distribution on X and let X,Y be distributed according to P(X = x, Y = y) =
PX(x)W (y|x), for all x ∈ X , y ∈ Y . The entropy of X , the conditional entropy of Y given X = x, and
the conditional entropy of Y given X are defined as

H(X) = −
∑
x∈X

PX(x) log2 PX(x)

H(Y |X = x) = −
∑
y∈Y

W (y|x) log2W (y|x)

H(Y |X) =
∑
x∈X

H(Y |X = x)PX(x).

Note that for a channel W and an input distribution PX we have the induced ‘reverse’ channel which we
denote by W̃ (y|x) = W (y|x)PX(x)/PY (y) where PY (y) =

∑
x∈X W (y|x)PX(x).

The mutual information of the channel W for the input distribution PX is defined by

I(PX ,W ) = I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

The channel capacity of W is I(W ) := supPX I(PX ,W ) and the symmetric capacity of W is defined as
I(UX , Y ) where UX is the uniform distribution on X .

In this monograph, we focus on binary-input memoryless symmetric (BMS) channels, i.e., channels
with input alphabet X = {0, 1} that satisfy the following property: There is a permutation π on the output
alphabet Y satisfying i) π−1 = π and ii) W (y|1) = W (π(y)|0) for all y ∈ Y . The binary erasure channel
(BEC), the binary symmetric channel (BSC), and the binary input additive white Gaussian noise channel
(BIAWGN) are all BMS channels. An important feature of BMS channels is that the mutual information
I(X;Y ) is maximized when the input random variable X takes the Bernoulli-1/2 distribution. Therefore,
for a BMS channel W , we have I(W ) = 1−H(X|Y ), where H(X|Y ) is the conditional entropy.

We define the Bhattacharyya parameter of a BMS channel W as

Z(W ) = Z(X|Y ) :=
∑
y∈Y

√
W (y|0)W (y|1) = 2

∑
y∈Y

√
PX,Y (0, y)PX,Y (1, y), (6)

where PX,Y (0, y) = 1
2W (y|0) and PX,Y (1, y) = 1

2W (y|1), i.e., PX,Y is joint distribution ofX and Y when
we assume X is a Bernoulli-1/2 random variable and Y is the corresponding channel output. The following
relation holds for H(X|Y ) and Z(X|Y ):

(Z(X|Y ))2 ≤ H(X|Y ) ≤ log(1 + Z(X|Y )). (7)

This inequality was proved in [61, Proposition 2]. Since X only takes two possible values 0 and 1, we have
0 ≤ H(X|Y ) ≤ 1 and 0 ≤ Z(X|Y ) ≤ 1. Both H(X|Y ) and Z(X|Y ) measure the uncertainty of X given
Y . Inequality (7) implies that these two uncertainty measures are highly correlated in the following sense:
(i) Z(X|Y ) ≈ 0 if and only if H(X|Y ) ≈ 0, (ii) Z(X|Y ) ≈ 1 if and only if H(X|Y ) ≈ 1.

Finally, we define the error probability when guessing a random variable X from the marginal distribu-
tion or from the conditional distribution given Y as

err(X) = 1−max
x∈X

PX(x) ≤ H(X),
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err(X|Y ) =
∑
y∈Y

(
1−max

x∈X
PX|Y (x|y)

)
PY (y) ≤ H(X|Y ).

These two inequalities are proved in Section 6.1.

3.2 Error probabilities of a code over a channel

In the previous section, we considered information measures on a ‘one-shot’ or ‘single-letter’ channel. In
particular, we considered the minimal error probability of guessing the input on a such channel, without any
coding involved. We now consider codes, the induced channel for a given blocklength, and the bit and block
error probabilities.

Consider a binary code C ⊆ Fn2 of block length n and a BMS channelW . This channel has a memoryless
extension to vectors of blocklength n which we denote as Wn, i.e., Wn(y|c) =

∏n
i=1W (yi|ci) for c ∈ Fn2

and y ∈ Yn. Then the block error probability of the code C over the channel W under the maximum
a posteriori (MAP) decoding is defined as the probability that a randomly chosen codeword in C is not
correctly decoded by the decoder that minimizes the block error probability, i.e., the decoder that declares
the most likely codeword after observing the output Y of the channel. In this monograph, we use ML
(maximum likelihood) decoding and MAP decoding interchangeably because we always assume that the
codeword is uniformly chosen from the codebook. Formally speaking, we denote the block error probability
of a code C over a channel W under the MAP decoding by

err(W,C) = EC∼UC
P(C 6= ĈMAP)

where ĈMAP = arg maxc∈CW
n(Y |c), Y ∼ Wn(·|C), and UC is the uniform distribution over the code-

book C. In particular, for RM(m, r) codes over BEC(p) or BSC(p) channels, we denote this block error
probability as err(BEC(p),RM(m, r)) or err(BSC(p),RM(m, r)).

Given a code C of code length n and a channel W , we now define the bit-MAP decoding

x̂i
MAP(y) = argmaxxi∈{0,1} PXi|Y (xi|y) , (8)

where the random vector X is chosen uniformly from C, and the random vector Y is the corresponding
channel output distributed according toWn(·|X). The tie is broken arbitrarily if PXi|Y (0|y) = PXi|Y (1|y).
The bit-MAP decoding error probability is then given by

biterr(W,C) =
1

n
EX,Y

( n∑
i=1

P(x̂i
MAP(Y ) 6= Xi)

)
. (9)

3.3 Weight enumerator of a code

An important parameter of error correcting codes, closely related to the error probability of the ML decoder,
is the weight enumerator of a code. Here we give the definition of the weight enumerator for RM codes.
Below we will use f and Eval(f) interchangeably, i.e., we use f to denote both the polynomial and its
evaluation vector.

Definition 3. We denote with Pm,r the set of all polynomials f ∈ F2[x1, . . . , xm] of degree at most r.

With this definition we have RM(m, r) = {Eval(f) | f ∈ Pm,r}.

Definition 4 (Support, Weight, bias). We denote with supp(f) the set of nonzero coordinates of a code-
word Eval(f) ∈ RM(m, r). Namely, supp(f) = {z ∈ Fm2 | f(z) 6= 0}. We denote its hamming weight
by wt(f) = |{z ∈ Fm2 | f(z) = 1}| = |supp(f)|, and its relative-weight, with wtn(f) = wt(f)/2m =
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wt(f)/n. When a codeword is of weight close to 1/2 it will sometimes be more convenient to speak of its
bias: bias(f) =

∣∣EZ [(−1)f(Z)]
∣∣ = |1− 2wtn(f)|, where Z is a random vector uniformly distributed in

Fm2 .

Definition 5 (Weight enumerator). We let Am,r (·) denote the relative-weight enumerator function of
RM(m, r). Specifically, for β ∈ [0, 1] we define Am,r (β) , |{f ∈ Pr,m | wtn(f) = β}|. We also abuse
notation and denote Am,r (≤ β) , |{f ∈ Pr,m | wtn(f) ≤ β}|.

In general, for a code C ⊆ Fn2 which is not necessarily a Reed-Muller code, we define AC(β) , |{c ∈
C | wtn(c) = β}| and AC(≤ β) , |{c ∈ C | wtn(c) ≤ β}| for β ∈ [0, 1], where wtn(c) = wt(c)/n is the
relative-weight of the codeword c, and wt(c) is the Hamming weight of c.

Besides being a very natural parameter of a code, the weight enumerator plays an important role in
understanding the amount of random or worst-case errors (or erasures) that the code can be decoded from.
For example, if the minimum relative-weight of a nonzero codeword is δ, then for every 0 < β < δ there
are no codewords of weight β, so the code can be decoded from δ fraction of worst-case erasures and δ/2
fraction of worst-case errors. In addition, the Bhattacharyya parameter (see Theorem 2) bounds the error
probability of the ML decoder for decoding from random errors or erasures, using the weight enumerator.

In the remainder of this subsection, we show that if the weight enumerator of a linear code is similar
to that of a random code, of the same rate, then the code achieves capacity on BMS channels, including,
among others, the BEC and the BSC.

Definition 6 (Random code ensemble). A binary equiprobable random code ensemble of length n and rate
R consists of 2nR random codewords {c(i) = (c

(i)
1 , c

(i)
2 , . . . , c

(i)
n ) : 1 ≤ i ≤ 2nR}, where the n · 2nR binary

random variables {c(i)
j : 1 ≤ i ≤ 2nR, 1 ≤ j ≤ n} are i.i.d. Bernoulli-1/2 random variables.

By definition, we have

EC∼RCE(n,R)[AC(β)] = 2nR ·
(
n

nβ

)
/2n, (10)

where C ∼ RCE(n,R) means that the code C is randomly chosen from the random code ensemble.
Let us first prove that if C ∼ RCE(n,R), then C achieves the capacity of BEC. Indeed, suppose that the

erasure probability of BEC is p, and its capacity is 1− p. Let ε > 0 be an arbitrarily small positive number,
and letR = 1−p−ε. We use E ⊆ {1, 2, . . . , n} to represent the set of erased coordinates. Then the number
of erasures |E| satisfies |E| ≤ n(p + ε/2) with probability 1− o(1). Without loss of generality, we assume
that the transmitted codeword is c(1). We define a set D(E) as

D(E) = {(x1, . . . , xn) ∈ {0, 1}n : xj = c
(1)
j for all j /∈ E}.

It is clear that we can successfully decode if and only if there are no other codewords (apart from c(1)) in the
set D(E), i.e., (C \ {c(1)}) ∩ D(E) = ∅. Since the random codeword c(i) is independent of c(1) and E for
every i > 1, we have P(c(i) ∈ D(E)) = |D(E)|/2n = 2|E|−n. By union bound,

P(∃i > 1 such that c(i) ∈ D(E)) ≤ (2nR − 1)2|E|−n < 2|E|+nR−n = 2|E|−np−nε.

Therefore, when |E| ≤ n(p+ ε/2), the decoding error probability is upper bounded by

P((C \ {c(1)}) ∩ D(E) 6= ∅) = P(∃i > 1 such that c(i) ∈ D(E)) < 2−nε/2 → 0.

Combining this with P(|E| ≤ n(p+ ε/2)) = 1− o(1), we conclude that C achieves the capacity of BEC.
Next we show that if C ∼ RCE(n,R), then C achieves the capacity of BSC. Suppose that the crossover

probability of BSC is p, so its capacity is 1−H(p), where H(p) = −p log2 p− (1− p) log2(1− p) is the
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binary entropy function. Let ε > 0 be an arbitrarily small positive number, and let R = 1−H(p)− ε. We
again assume that c(1) is the transmitted codeword, and we use y ∈ {0, 1}n to denote the channel output
vector. Then dH(c(1), y) ≤ n(p+ δ) with probability 1− o(1) for any positive constant δ, where dH(·, ·) is
the Hamming distance between two vectors. We pick a positive δ such that

H(p+ δ) < H(p) + ε/2. (11)

It is clear that if dH(c(i), y) > n(p + δ) for all i > 1, then we can successfully decode. We define a
Hamming ball B(x, r) with center x ∈ {0, 1}n and radius r as

B(x, r) = {z ∈ {0, 1}n : dH(x, z) ≤ r}.

The volume of a Hamming ball only depends on its radius, and it has the following well-known approxima-
tion:

vol(B(x, nβ)) =

nβ∑
i=0

(
n

i

)
= 2nH(β)+o(n).

Since the random codeword c(i) is independent of c(1) and y for every i > 1, we have

P(dH(c(i), y) ≤ n(p+ δ)) = P
(
c(i) ∈ B(y, n(p+ δ))

)
=

vol(B(y, n(p+ δ)))

2n
= 2n(H(p+δ)−1)+o(n) < 2n(H(p)−1+ε/2)+o(n),

where the last inequality follows from (11). Then by union bound,

P(∃i > 1 such that dH(c(i), y) ≤ n(p+ δ)) < 2nR2n(H(p)−1+ε/2)+o(n) = 2−nε/2+o(n) → 0,

where the last equality follows from the assumptionR = 1−H(p)−ε. Combining this with P(dH(c(1), y) ≤
n(p+ δ)) = 1− o(1), we conclude that C achieves the capacity of BSC.

The capacity-achieving proofs above, especially the one for BSC, are based on the analyses in [62, 63].
It is worth mentioning that [62, 63] went beyond the capacity-achieving proof and further calculated the
error exponents of random codes.

Next, we will analyze the performance of specific codes whose weight enumerators are close to that of
random codes. To that end, we introduce some functions to measure the similarity of weight enumerators
between a specific code and random codes.

Definition 7. Let C be a binary code with length n and rate R. For 1 ≤ i ≤ n, we define

αi(C) =
AC(i/n)

2nR−n
(
n
i

) ,
where the quantity in the denominator is the expected weight enumerator of random codes; see (10). We
further define

α(C) = max
1≤i≤n

αi(C).

If α(C) is small, then the weight enumerator of C is close to that of random codes.

Theorem 1. Let C be a binary linear code with length n and rate R. If logα(C) = o(n), then C achieves
the capacity of BEC and BSC.
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A more rigorous way to state this theorem is to say that a family of linear codes {C(n)} with increasing
code length n achieves capacity when n → ∞. Here we only consider a code C instead of a whole code
family because we want to simplify the notation.

There are several ways to prove this theorem. The most straightforward way is to analyze the error
probability of every pair of codewords, which only depends on their Hamming distance, and then apply the
union bound using the pairwise error probability and the weight distribution of the code. One may consult
[62, Section III] for the details of this proof method. Another proof method was given in [64]: We apply
random permutations on the codewords and then show that the randomized code, which has the same error
probability as the original code, achieves capacity. In fact, under the conditions in Theorem 1, one can
further show that the code C has a positive error exponent as long as R is strictly smaller than the channel
capacity. The methods of calculating the error exponent were also given in [62, 64].

3.4 Sequential entropy of a code on a channel

LetX = (X1, . . . , Xn) be a codeword drawn uniformly at random in some code C and let Y = (Y1, . . . , Yn)
be the output random vector when transmitting X through a BMS channel W . We can decompose the
conditional entropy of X given Y using the chain rule of the Shannon entropy:

H(X|Y ) =
∑
i∈[n]

H(Xi|Y,Xi−1),

where Xi−1 is the shorthand notation for the random vector (X1, X2, . . . , Xi−1). Note that the above sum
can be carried in any order of the indices, not necessarily from 1 to n, but any ordering covering all n indices.

The quantityH(Xi|Y,Xi−1) is the uncertainty on the i-th coordinate of the codeword given the channel
output Y and the previous i − 1 coordinates in the codeword. It is therefore a quantity relevant for the
successive decoding of a codeword, which is a weaker decoder than the block-MAP decoder in terms of the
decoding error probability. We will formally connect these “sequential entropies” to the successive decoder
in Section 6.

3.5 EXIT function of a code on a channel

In this section we briefly introduce the extrinsic information transfer (EXIT) function of binary linear codes
and its properties. Let C ⊆ Fn2 be a binary linear code of length n. A natural question is how much
information is stored in a given subset of the coordinates. That is, given a random codeword X ∈ C and a
subset of the coordinates S ⊆ [n], how much information does XS reveal on X . Since the code is linear,
restricting the code to a subset of the coordinates

CS = {xS | x ∈ C}

yields a linear subspace. If the rank of this subspace is equal to the code dimension of C, then this subset of
coordinates completely determines the entire codeword. In general, suppose that we can only look at a subset
of the coordinates S ⊆ [n] of a codeword X ∈ C, then this tells us that X belongs to an affine subspace of
dimension dim(C)−dim(CS). Moreover, if X is chosen uniformly at random then, conditioned on XS , X
is distributed uniformly on that affine subspace. Thus we have

H(X|XS) = dim(C)− dim(CS) .

In order to motivate the study of dim(CS) we explain its relation to decoding erasures. Let X ∈ C be a
random codeword, and erase the coordinates outside of a set S ⊆ [n] to get a word Y (i.e., Yi =? for i 6∈ S
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and Yi = Xi for i ∈ S). Then, we can decode X from Y if and only if dim(CS) = dim(C). In particular,
the code C can be decoded over BEC(p) if and only if dim(CS) = dim(C) with high probability over the
choice of a random subset S, where the distribution on subsets is such that

P (i ∈ S) = 1− p

independently for every i ∈ [n].
It seems that trying to directly determine the probability in which dim(CS) = dim(C) is incredibly

difficult. However, a similar quantity, which we shall now present, is evidently better behaved and easier to
analyze.

Definition 3.1 (EXIT Function). Let C ⊆ Fn2 be a binary linear code of length n. The EXIT function of C is
a function h : [0, 1]→ [0, 1] defined by

h(p) =
1

n
·
n∑
i=1

H(Xi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn)),

where X = (X1, . . . , Xn) is a uniformly random codeword in C, and Y = (Y1, . . . , Yn) is the channel
output when transmitting X over BEC(p).

Recall the definitions of bit-MAP decoding and bit-MAP decoding error probability from (8)–(9). The
EXIT function is closely related to the bit-MAP decoding error probability over BEC channels. Let us first
consider the quantity H(Xi|Y1, . . . , Yn). For every realization y1, . . . , yn of the random vector Y1, . . . , Yn,
the conditional entropy H(Xi|Y1 = y1, . . . , Yn = yn) is either 0 or 1. More precisely, let S ⊆ [n] be the set
of coordinates that are not erased in y1, . . . , yn. Then

H(Xi|Y1 = y1, . . . , Yn = yn) =

{
0 dim(CS) = dim(CS∪{i})

1 dim(CS) 6= dim(CS∪{i})

In the latter case, the bit-MAP decoding error probability for the ith coordinate is 1/2 because Xi takes
values 0 and 1 with equal probability. As a consequence, we have

biterr(BEC(p),C) =
1

2n

n∑
i=1

H(Xi|Y1, . . . , Yn).

Since

H(Xi|Y1, . . . , Yn) = (1− p)H(Xi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn), Yi = Xi)

+ pH(Xi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn), Yi =?)

= pH(Xi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn)),

we obtain that
biterr(BEC(p),C) =

1

2
ph(p). (12)

Apart from the connection with bit-MAP decoding error probability, the function h(p) has many other
useful properties, some of which we list below. Interested readers are referred to chapter 3 in [22] for a
detailed exposition of the EXIT function.

Lemma 3.2. Let C ⊆ Fn2 be a binary code of length n. Then,
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1. Monotonicity: h is increasing. h(1) = 1. If dim(CS) = dim(C) for every subset S ⊆ [n] with size
|S| = n− 1, then h(0) = 0.

2. Area Theorem:
∫ 1

0 h(λ)dλ = rate (C).

3. Duality: Denote by h⊥(p) the EXIT function of C⊥. Then

h⊥(p) = 1− h(1− p).

4. LetX be a uniformly random codeword in C, and let Y be the channel output vector after transmitting
X over BEC(p). Then

H(X|Y ) = n ·
∫ p

0
h(λ)dλ

5. For every λ ∈ (0, 1)

n ·
∫ λ

0
h(λ′)dλ′ = λ · n− ES∼λ[dim(C⊥S )]

= dim(C)− ES∼λ[dim(CS)],

where S ∼ λ means that each i belongs to S with probability λ independently for every i ∈ [n], C⊥

is the dual code of C, and S = [n] \ S is the complement of S .

6. The EXIT function h(p) equals the bit-MAP decoding error, i.e., biterr(BEC(p),C) = 1
2ph(p).

Proof. 1. Monotonicity follows directly from the definition. For each i ∈ [n], the ith summand in h(p) is
a conditional entropy H(Xi|(Y1, . . . , Yi−1, Yi+1, . . . , Yn)), which measures the uncertainty of Xi given the
channel output of the BEC channel. The uncertainty clearly increases with the erasure probability p of the
BEC channel, so h(p) is an increasing function.
2. Instead of standard BEC channels, let us now consider the following variation: Suppose that each Xi

is erased independently with probability pi for i ∈ [n], and we denote the corresponding channel output as
Yi(pi). In this variation we allow the erasure probabilities p1, p2, . . . , pn to take different values while in
standard BEC channels they must be equal to each other. Then we have

H(X1, . . . , Xn|Y1(p1), . . . , Yn(pn))

=H(Xi|Y1(p1), . . . , Yn(pn)) +H(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi, Y1(p1), . . . , Yn(pn))

=H(Xi|Y1(p1), . . . , Yn(pn))

+H(X1, . . . , Xi−1, Xi+1, . . . , Xn|Xi, Y1(p1), . . . , Yi−1(pi−1), Yi+1(pi+1), . . . , Yn(pn)).

Since the term in the last line is independent of pi, we obtain that

∂H(X1, . . . , Xn|Y1(p1), . . . , Yn(pn))

∂pi
=
∂H(Xi|Y1(p1), . . . , Yn(pn))

∂pi
.

The partial derivative on the right-hand side can be calculated as follows.

H(Xi|Y1(p1), . . . , Yn(pn))

=(1− pi)H(Xi|(Y1(p1), . . . , Yi−1(pi−1), Yi+1(pi+1), . . . , Yn(pn)), Yi(pi) = Xi)

+ piH(Xi|(Y1(p1), . . . , Yi−1(pi−1), Yi+1(pi+1), . . . , Yn(pn)), Yi(pi) = erasure)

=piH(Xi|(Y1(p1), . . . , Yi−1(pi−1), Yi+1(pi+1), . . . , Yn(pn))).
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Therefore,

∂H(X1, . . . , Xn|Y1(p1), . . . , Yn(pn))

∂pi

=
∂H(Xi|Y1(p1), . . . , Yn(pn))

∂pi
= H(Xi|(Y1(p1), . . . , Yi−1(pi−1), Yi+1(pi+1), . . . , Yn(pn))).

Thus we obtain that

dH(X1, . . . , Xn|Y1(p), . . . , Yn(p))

dp
=

n∑
i=1

∂H(X1, . . . , Xn|Y1(p1), . . . , Yn(pn))

∂pi

∣∣∣
p1=···=pn=p

=
n∑
i=1

H(Xi|(Y1(p), . . . , Yi−1(p), Yi+1(p), . . . , Yn(p))) = nh(p).

(13)

Therefore,

n

∫ 1

0
h(λ)dλ = H(X1, . . . , Xn|Y1(1), . . . , Yn(1))−H(X1, . . . , Xn|Y1(0), . . . , Yn(0))

=H(X1, . . . , Xn)− 0 = dim(C).

This proves the area theorem.
3. Let C⊥ be the dual code of C. One can show that

H(Xi|(Y1(p), . . . , Yi−1(p), Yi+1(p), . . . , Yn(p)))

=
∑

S⊆[n]\{i}

pn−1−|S|(1− p)|S|(dim(CS∪{i})− dim(CS))

=
∑

S⊆[n]\{i}

(1− p)n−1−|S|p|S|(1 + dim(C⊥S )− dim(C⊥S∪{i})).

The relation h⊥(p) = 1− h(1− p) follows from this equality.
4. Follows directly from (13).
5. Follows from 4.
6. Already proved in (12).

Remark 1. EXIT charts were introduced by ten Brink in the context of turbo decoding as a visual tool for
understanding iterative decoding [65]. The area theorem was originally proven by Ashikhmin, Kramer, and
ten Brink in [66] and further generalized by Méasson, Montanari, and Urbanke in [67].

An important application of the area theorem lies in the capacity-achieving proofs. The first step of such
proofs is to show that the EXIT function exhibits a sharp transition from 0 to 1. Then the area theorem is
used to pin down the transition threshold. This proof method is discussed in detail in Section 4.3.2 for RM
codes, and the sharp threshold phenomenon is illustrated in Fig. 2.

The EXIT function defined in this subsection is associated with the BEC channel. Later in Section 5.4,
we will introduce the generalized EXIT (GEXIT) function, which satisfies another version of the area theo-
rem and can be used to analyze the performance of codes over general BMS channels; see (25)–(27).
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3.6 Connecting the performance measures

The main objective in coding theory is to control the block error probability of data transmission over noisy
channels. Recall that the block error probability of a code C over a channel W is denoted err(W,C). We
have the following bounds between the quantities defined in previous subsections and err(W,C). First, we
have a bound involving the Bhattacharyya parameter and the weight enumerator3.

Theorem 2 (Bhattacharyya Bound). Let W be a BMS channel and let C ⊆ Fn2 be a binary linear code of
length n. Then, the block-MAP error probability is bounded via

err(W,C) ≤
n∑
i=1

Z(W )i ·AC(i/n).

where AC(·) is the weight enumerator defined in Definition 5, and Z(W ) is the Bhattacharyya parameter
defined in (6). In particular, for the BEC and the BSC we have Z(BEC(p)) = p and Z(BSC(p)) =
2
√
p(1− p), so we obtain

err(BEC(p),C) ≤
n∑
i=1

pi ·AC(i/n),

err(BSC(p),C) ≤
n∑
i=1

(
2
√
p(1− p)

)i ·AC(i/n).

Proof. Since C is a linear code, we can simply assume that the all-zero codeword is transmitted. Then the
block-MAP decoder makes an error if there is a non-zero codeword c = (c1, . . . , cn) ∈ C such that the
channel output vector (y1, . . . , yn) satisfies

n∏
i=1

W (yi|ci) ≥
n∏
i=1

W (yi|0).

Define the set N (c) = {i ∈ [n] | ci = 1}. Then the above inequality is equivalent to∏
i∈N (c)

W (yi|1) ≥
∏

i∈N (c)

W (yi|0).

Let Y be the output alphabet of W . We define the following set of channel output vectors

B(c) = {(y1, . . . , yn) ∈ Yn |
∏

i∈N (c)

W (yi|1) ≥
∏

i∈N (c)

W (yi|0)}.

By definition, the block-MAP decoder makes an error when the output vector falls into the set B(c) for some
non-zero codeword c. The probability of obtaining an output vector in the set B(c) can be upper bounded as
follows:

P((Y1, . . . , Yn) ∈ B(c))

=
∑

(y1,...,yn)∈B(c)

n∏
i=1

W (yi|0) =
∑

(y1,...,yn)∈B(c)

(( ∏
i∈N (c)

W (yi|0)
)( ∏

i/∈N (c)

W (yi|0)
))

≤
∑

(y1,...,yn)∈B(c)

(( ∏
i∈N (c)

W (yi|0)
)( ∏

i/∈N (c)

√
W (yi|0)W (yi|1)

))
3 Other variants can be used; see [1, 68]
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Block error probability

err(C)
<latexit sha1_base64="kX3w1ctSw3o2/aeaA2thVy4lxtA=">AAACJHicbVDLSgMxFM34ah1fo67ETbAIdVNmKqLLQjcuW7APaIeSyWTa0MyDJFMsw+DX6FJ/xJ24cONS/AA/wEynC9t6IXByzr03J8eJGBXSND+0tfWNza1CcVvf2d3bPzAOj9oijDkmLRyykHcdJAijAWlJKhnpRpwg32Gk44zrmd6ZEC5oGNzJaURsHw0D6lGMpKIGxknfR3LE/YRwnpZnF4xYUk8vBkbJrJizgqvAmoNSDTa/v4qFq8bA+Om7IY59EkjMkBA9y4yknSAuKWYk1fuxIBHCYzQkPQUD5BNhJ7MvpPBcMS70Qq5OIOGM/TuRIF+Iqe+ozsyjWNYy8j+tF0vvxk5oEMWSBDh/yIsZlCHM8oAu5QRLNlUAYU6VV4hHiCMsVWr6wip3QiMxt32f+9Z1FZO1HMoqaFcr1mWl2lR51UBeRXAKzkAZWOAa1MAtaIAWwOABPIJn8KI9aa/am/aet65p85ljsFDa5y8UZagu</latexit>
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Fig. 1: Relation between different performance measures and different methods to bound the error proba-
bility

≤
∑

(y1,...,yn)∈Yn

(( ∏
i∈N (c)

W (yi|0)
)( ∏

i/∈N (c)

√
W (yi|0)W (yi|1)

))
=
∏

i∈N (c)

( ∑
yi∈Y

W (yi|0)
) ∏
i/∈N (c)

( ∑
yi∈Y

√
W (yi|0)W (yi|1)

)
=
∏

i/∈N (c)

( ∑
yi∈Y

√
W (yi|0)W (yi|1)

)
=

∏
i/∈N (c)

Z(W ) = (Z(W ))wt(c).

The upper bound on the block-MAP error probability is then obtained from applying the union bound on all
non-zero codewords:

err(W,C) ≤
∑

c∈C,c 6=0

(Z(W ))wt(c) =
n∑
i=1

Z(W )i ·AC(i/n).

This completes the proof of the theorem.

In Section 4 we prove bounds on the weight enumerator of RM-codes. Specifically, in Section 4.1 we
discuss the combinatorial approach for bounding the weight enumerator. This approach was initiated in the
work of Kaufman et al. [34], and was later strengthened in [1, 2]. In Section 4.3 we discuss the analytical
approach of [35] and the subsequent improvements in [69, 70]. These bounds are then used in Section 5 to
prove upper bounds on the error probability of the ML decoder.

We then have a bound using the sequential entropies,

err(W,C) ≤ H(X|Y ) =
∑
i∈[n]

H(Xi|Y,Xi−1),
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where X = (X1, . . . , Xn) is a random codeword uniformly chosen from C, and Y = (Y1, . . . , Yn) is
the channel output vector after transmitting X over the channel W . We refer to Section 6.1 for a proof.
Moreover, the above bound is often used by embedding the code in full dimension and taking advantage of
the conservation of the entropy to show that the conditional entropies polarize and to obtain capacity results;
this is discussed in Section 6.

Finally, we also have the following bound for the bit error probability

err(BEC(p),C) ≤ n

d
biterr(BEC(p),C).

We refer to Proposition 10 in Section 5.3 for a proof. This bound is often used with the Area theorem (which
uses the entropy interpolation), and exploits the fact that for the BEC, biterr(BEC(p),C) corresponds to
the probability of a monotone Boolean property, and thus to show that threshold phenomena holds and
conclude capacity results. For non-BEC channels, this approach does not apply directly. One may still use
the Area Theorem and show that the bit error rate satisfies a threshold phenomenon, but these no longer rely
on general results from monotone Boolean properties. In particular, a recent paper [5] used this method to
prove that RM codes achieve capacity of general BMS channels under the bit-MAP decoder, and this result
is explained in Section 5.4.

Fig. 1 shows the relation between different performance measures and different methods to bound the
error probability. It also gives an outline of the next three sections.
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4 Bounds on the weight enumerator

In this section we survey known results on the weight distribution of binary RM codes. We first discuss the
results in chronological order and then give some proofs. Recall from Section 3.3 that the weight enumerator
of a code is a function that for every weight 0 ≤ β ≤ 1 returns the number of codewords of relative-weight
β. Thus, Am,r (≤ β) counts the number of codewords of (relative) weight at most β. In particular, for
β < 2−r, Am,r (≤ β) = 1.

As mentioned in Section 3.3, if the weight enumerator of a code is similar to that of a random code,
of the same rate, then the code achieves capacity on the BEC and the BSC. Clearly, RM codes are quite
different than random codes, e.g. we expect the relative-weight of every non-zero codeword of a random
code to be roughly (1/2± ε) (where ε is a constant depending on the rate), whereas RM codes contain many
codewords of small weight. Nevertheless, as we shall see, if one can show that the weight enumerator drops
quickly for β < 1/2 then this may be sufficient for proving that the code achieves capacity. Thus, proving
strong upper bound on the weight enumerator for weights slightly smaller than 1/2 is an interesting and in
some cases also a fruitful approach to proving that RM codes achieve capacity.

Computing the weight enumerator of RM codes is a hard problem that is open in most ranges of pa-
rameters. The case of RM codes of degree 1 is very simple as codewords are linear functions and so any
nonconstant codeword is completely balanced. The case of degree two RM codes was completely solved by
Sloane and Berlekamp [71]. However, for larger degrees it is quite difficult to exactly calculate the number
of codewords of a given weight and so we try to give upper and lower estimates on this number. In 1970
Kasami and Tokura [32] characterized all codewords of weight less than twice the minimum distance. This
was later improved in [33] to all codewords of weight less than 2.5 times the minimal distance. For degrees
larger than 3 they obtained the following result.

Theorem 3 (Theorem 1 of [33]). If r ≥ 3 and f ∈ Pm,r satisfies wtn(f) < 2.5·2−r then, up to an invertible
linear transformation,

f = x1g(x3, . . . , xm) + x2h(x3, . . . , xm) + x1x2s(x3, . . . , xm) ,

where deg(g) = deg(h) = r − 1 and deg(s) = r − 2.

By counting the number of such representations one can get a good estimate (from above) on the number
of codewords of such relative-weight. No significant progress was made for over thirty years until in [34]
Kaufman, Lovett and Porat gave, for any constant degree r = O(1), asymptotically tight bounds on the
weight enumerator of RM codes of degree r. Unfortunately, as the degree gets higher, the estimate in
Theorem 3.1 of [34] becomes less and less tight. Building on the techniques of [34], Abbe, Shpilka and
Wigderson [1] managed to get better bounds for degrees up to m/4, which they used to show that RM codes
achieve capacity for the BEC and the BSC for degrees r = o(m).

Sberlo and Shpilka [2] polished the techniques of [1] and managed to obtain good estimates for every
degree.

Theorem 4 (Theorem 1.2 of [2]). Let γ = r/m. Then, for every integer `,

Am,r

(
≤ 2−`

)
≤ 2

(∑r
j=` 17m(j−1)(j+2)+17(j+2)(m−(j−1)

≤r−(j−1))
)

≤ 2

(
O(m4)+17(cγ`+dγ)(m−(`−1)

≤r−(`−1))
)

≤ 2

(
O(m4)+17(cγ`+dγ)γ`−1(m≤r)

)
,

where cγ = 1
1−γ and dγ = 2−γ

(1−γ)2
.
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To better understand the upper bound, note that the leading term in the exponent is O
(
`γ`−1

(
m
≤r
))

(when 0 < γ < 1 is a constant). In contrast, if we were to calculate the same quantity in Theorem 3.3 of
[1], its leading term would be O

(
`4γ`−1

(
m
≤r
))

. This is what prevented the authors of [1] from extending
their results beyond degree r = m/4.

As mentioned in Section 3.3, the proofs in [1, 2] use the technique developed in [34], which we call
the combinatorial approach for bounding the weight enumerator. In [35] Samorodnitsky presented a new
technique, building on log-Sobolev type inequalities, and proved a remarkable general result regarding the
weight enumerator of codes that either they or their dual code achieve capacity for the BEC. The results of
[35] were later improved in [69, 70, 72], where the new proofs used information about the EXIT function of
RM codes (see Section 3.5) to get tighter bounds on the relevant estimates in [35]. The results of [35,69,70,
72] hold for codes that are invariant under a doubly transitive permutation group, but when specialized for
RM codes they yield slightly tighter results than for general codes.

Theorem 5 (Propositions 1.1 and 1.3 in [72]). Let C = RM(m, r) be the binary RM code of positive rate
0 < R < 1. There exists R∗ such that |R−R∗| = o(1)√

n
and such that for all 0 ≤ b ≤ n it holds that

Am,r (b/n) ≤ O
(

(1−R∗)−2b·ln 2
)
.

When b/n is close to 1/2 we get a stronger result: For 0 ≤ b ≤ n, let b∗ = min{b, n− b}. Let θ = R2 ln 2.
If 1−θ

2 · n ≤ b∗ then

Am,r (b/n) ≤ 2o(n) ·
(
n

b∗

)
· |C|

2n
.

We note that the second of these bounds implies that the weight distribution of RM(m, r) of rate R, is
essentially upper-bounded by that of a random code of the same rate in the band of widthR2 ln 2 around 1/2.

On the other hand, for small rates, e.g. when r/m = (1 − ε)/2 for 0 < ε < 1, Theorem 4 gives
better bounds than Theorem 5. Observe that, for small R (but not smaller than 1/

√
n), the bound in the first

inequality of Theorem 5 is roughly |C|2b/n, obtained as follows: Since R (and hence R∗) is small, we have
(1−R∗)−2b·ln 2 ≈ e−R·(−2b·ln 2) = 22R·n·b/n = 2Rn·2b/n = |C|2b/n. If b/n = 2−`, then the upper bound is
|C|(1/2)`−1

, whereas Theorem 4 gives an upper bound of |C|O(`·(r/m)`−1) = |C|O(`·(1−ε)`−1·(1/2)`−1), which
may be much smaller.

Note, however, that the bound in Theorem 4 is not so good when the relative-weight is close to 1/2.
As most codewords have weight close to n/2 it is interesting to understand the weight distribution at that
regime. In particular, it is interesting to know how many codewords have weight smaller than (1 − ε)n/2
for small ε. To the best of our knowledge, the first such result was obtained by Ben Eliezer, Hod and Lovett
[73], who proved the following.

Theorem 6 (Lemma 2 in [73]). Let m, r ∈ N and δ > 0 such that r ≤ (1− δ)m. Then there exist positive
constants c1, c2 (which depend solely on δ) such that,

Am,r

(
≤ 1− 2−c1

m
r

2

)
≤ 2

(
(1−c2)(m≤r)

)
.

This result was later extended to other prime fields in [74]. Theorem 6 does not give information about
the number of codewords of weight 1−o(1)

2 n. Such a result was obtained in [2], and it played an important
role in their results on the capacity of RM codes. [2] first proved a result for the case that r < m/2 and then
for the general case (with a weaker bound).
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Theorem 7 (Proposition 3.15 of [2]). Let m, r, s, ` ∈ N such that r ≤ m and write γ = r/m. Then,

Ar,m

(
1− 2−`

2

)
≤ exp2

(
O(m4) +

(
1− (1− γ̃)2`+s+1 + 17(cγ(s− 1) + dγ)γs−2

)
·
(
m

≤ r

))
,

where γ̃ = γ
(

1 + 2`+s+1
m−(2`+s+1)

)
, cγ = 1

1−γ , dγ = 2−γ
(1−γ)2

.

For a given r,m, ` one has to choose s to minimize the expression. In Theorem 1.4 of [2] the authors
slightly weakened the bound in order to get a simpler expression. Namely, in Theorem 1.4 of [2] they proved

Am,γm

(
≤ 1− 2−`

2

)
≤ 2

(
O(m4)+(1−2−c(γ,`))(m≤r)

)
, (14)

where c(γ, `) = O
(
γ2`+γ log(1/1−2γ)

1−2γ + γ
)

.
As even after the simplification the form of the bound is a bit complicated, the following remark was

made in [2].

Remark 2. To make better sense of the parameters in the theorem we note the following.

• When γ < 1/2 is a constant, the exponent is essentially 2
(1−exp(−`))(m≤r).

• The bound is meaningful up to degrees r ≤
(

1
2 − Ω

(√
logm√
m

))
m, but falls short of working for

constant rate RM codes.

• For γ approaching 1/2, i.e γ = 1/2 − o(1), there is a trade-off between how small the o(1) is and

the largest ` for which the bound is applicable to. Nevertheless, even if γ = 1/2− Ω

(√
logm
m

)
the

statement still holds for ` = Ω(logm) (i.e, for a polynomially small bias).

A later work by Rao and Sprumont [75] proved a more general bound that improves earlier works for a
certain range of parameters. Specifically, they obtained the best results for RM codes of non-constant rate
and sub-constant bias, or when γ = r/m is larger than some constant and the relative-weight is also larger
than some constant. Calculating the exact constants is a bit cumbersome and requires a delicate optimization
and comparison of the expressions in Theorems 4, 5 and 8.

Theorem 8 (Theorem 1 in [75], restated). For every 0 < β < 1

Am,r (β) ≤ 2
H(β)·(m≤r) ,

where H(β) = −β log2 β − (1− β) log2(1− β) is the binary entropy function4.

Although the exact constants are not mentioned in Theorem 6, one can verify that Theorem 8 subsumes
the result in Theorem 6. As the proof of Theorem 8 is short and elegant we give it here.

Proof of Theorem 8. In our argument we can rearrange the coordinates of the codeword so let us assume,
without loss of generality, that the first Rn =

(
m
≤r
)

coordinates are linearly independent.
Fix 0 < β < 1 and let Cβ be the set of all codewords of relative-weight β. Let (Z1, . . . , Zn) be a

codeword sampled uniformly at random from Cβ . Since the code is transitive, we have for every i, j that

4 When we write H(β) or H(p), we refer to the binary entropy function. When we write H(X) or H(X|Y ) for random
variables/vectors X and Y , we refer to the entropy or conditional entropy of these random variables/vectors.
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H(Zi) = H(Zj). As the weight is fixed to be β · n symmetry (transitivity) implies that PZi (Zi = 1) = β
and hence H(Zi) = H(β). We now get by the chain rule that

log |Cβ| = H(Z1, . . . , Zn)

= H(Z1) +H(Z2|Z1) + . . .+H(ZRn|Z1, . . . , zRn−1) +H(ZRn+1, . . . , Zn|Z1, . . . , ZRn)

≤ H(Z1) + . . .+H(ZRn) + 0 = RnH(β) = H(β) ·
(
m

≤ r

)
,

where we have used the fact that, by our assumption, the first Rn =
(
m
≤r
)

coordinates are linearly indepen-
dent and hence span the rest of the coordinates.

As the proof shows, the result of Rao and Spurmont actually holds for codes that are invariant under the
action of a transitive group.

We summarize the best upper bound results proved on the weight distribution of RM codes in Table 2.

Rate R /
degree r

Weight Am,r (·) Comment Reference

0 < R < 1
constant

β ∈ [1
2 −R2 ln 2, 1

2 ] 2o(n) ·
(
n
b

)
· |RM(m,r)|

2n As in a random code
Thm. 5 [72]

β < 1
2 −R2 ln 2 O

(
(1−R∗)−2b·ln 2

)
|R−R∗| = o(1)√

n

0 < γ = r
m < 1 β ≤ 2−` 2

(
Oγ(`)·γ`−1(m≤r)

)
Am,r (≤ β) Thm. 4 [2]

0 < γ < 1
2 −O

(√
logm√
m

)
β ≤ 1−2−`

2 2

(
(1−2−Oγ (`))(m≤r)

)
Am,r (≤ β) Thm. 7 [2]

Any r any β 2
H(β)·(m≤r) Thm. 8 [75]

Tab. 2: Known upper bounds on the weight enumerator

To complete the picture we state two lower bounds on the weight enumerator. The first is a fairly
straightforward observation.

Observation 1.
1

2
· 2(m−`+1

≤r−`+1) ≤ Am,r
(
≤ 2−`

)
.

Comparing to Theorems 4 and 5, we see that for ` = O(1) the lower bound in Observation 1 is roughly

of the form 1
22

(r/m)`−1·(m≤r). Thus, for r = m/2 it is similar to what Theorem 5 gives, except that it has a
smaller constant in the exponent: 1 versus 2 ln 2. For r = γm Observation 1 gives a much smaller constant
in the exponent compared to Theorem 4: 1 versus 17(cγ` + dγ). The main difference is for very small
weights, say ` = (1− ε)r. In that case, the estimate in Observation 1 is much smaller than what Theorem 4
gives. This is mainly due to the fact that Theorem 4 heavily relies on estimates of binomial coefficients that
become less and less good as (r − `) gets smaller.

The second lower bounds was given in [2] and it concerns weights around 1/2, i.e. codewords with
small bias.
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Theorem 9 (Theorem 1.8 of [2]). Let 20 ≤ r ≤ m ∈ N. Then for any integer ` < r/3 and sufficiently large
m it holds that

1

2
· 2
(∑`−1

j=1 (m−j≤r−1)
)
≤ Am,r

(
≤ 1− 2−`

2

)
.

Comparing the upper bound in Theorem 7 to Theorem 9 we see that there is a gap between the two
bounds. Roughly, the lower bound on the number of polynomials that have bias at least ε matches the upper
bound corresponding to bias at least

√
ε. This may be a bit difficult to see when looking at Theorem 4 but

we refer the reader to Remark 3.16 in [2] for a qualitative comparison.

The rest of the section is organized as follows. In Section 4.1 we discuss combinatorial approaches for
bounding the weight enumerator of RM codes following the influential paper of Kaufmann, Lovett and Porat
[34]. In Section 4.3 we give another approach for bounding the weight enumerator using the approach of
Samorodnitsy [35] and the techniques developed in Section 3.5.

Using the results that we survey in these sections we prove in Section 5 results about the ability of RM
codes to decode from random errors and erasures. Namely, that constant rate RM codes can decode from
a constant fraction of random errors and that RM codes achieve capacity for the BEC and BSC in certain
parameter regimes.

4.1 The combinatorial approach

In this section we give the proofs of Theorems 4 and 7 as they share a similar structure. The proofs follow
the strategy of Kaufman et al. [34] and its later refinements in [1,2]. The approach as presented in [34] is as
follows:

[34].1 Prove that if a degree r polynomial has “small” weight then it can be expressed as a function
F (g1, . . . , gt) of “few” polynomials of lower degree {gi} ⊂ Pm,r−1.

[34].2 Use a counting argument to bound the number of such expressions F (g1, . . . , gt) and deduce an
upper bound estimate on the number of polynomials of “small” weight.

In [1] this approach was strengthened in the following way.

[1].1 Prove that if a degree r polynomial has “small” weight then it can be approximated by a function
of the form F (g1, . . . , gs), where the {gi} ⊂ Pm,r−1.

The main difference between [34].1 and [1].1 is that instead of exactly computing the polynomial, as in
[34].1, in [1].1 we compute a function that is close in hamming distance to the low-weight polynomial.
This allows the parameter s in [1].1 (the number of gis) to be much smaller compared to the parameter t in
[34].1. On the other hand, now that we only have approximations of low-weight codewords, it is not clear
how to bound their number. The main idea of [1] is that all codewords that are ε close to F (g1, . . . , gs) are
at distance at most 2ε from each other and therefore, we can bound their number by Am,r (≤ 2ε), which we
compute recursively.

More abstractly, this approach can be summarized as follows: in order to upper bound the number of
polynomials, of certain weight, we should find a relatively small set, in the space of all functions Fm2 → F2,
such that all low weight polynomials are contained in balls of radius at most ε (in relative Hamming distance)
around the elements of the set (thisis the set of all functions F (g1, . . . , gs) described above). We call such
a set an ε-net for RM(m, r). Assuming we have found such a net, we can upper bound the number of
low weight codewords by the number of codewords in each ball times the size of the net. The crux of the
argument is to note that the number of codewords in each ball is upper bounded by Am,r (≤ 2ε). This gives
rise to a recursive approach whose base case is when the radius of the ball is smaller than half the minimum
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distance (and then there is at most one codeword in the ball). Formally, this idea is captured by the next
simple observation.

Observation 2. Let S ⊆ Pm,r be a subset of polynomials with an ε-net N. Then,

|S| ≤ |N| ·Am,r (≤ 2ε) .

Thus, to get strong upper bounds on the number of low weight/bias polynomials we would like the ε-net
to be as effective as possible. This means that on the one hand we would like the ε-net to be small and on
the other hand that no ball around an element of the net should contain too many codewords.

We now explain the main idea of Kaufman et al. for constructing the ε-net. For this we will need the
notion of discrete derivative. The discrete derivative of a function f : Fm2 → F2 at direction y ∈ Fm2 is the
function

∆yf : x 7→ ∆yf(x) , f(x+ y) + f(x) . (15)

It is not hard to see that if f(x) is a degree r polynomial then, for every y, ∆yf(x) has degree at most r− 1
as a polynomial in x. Another basic observation, that follows immediately from Equation (15), is that if a
function f : Fm2 → F2 has relative-weight β, then, for each x,

PY
(
∆Y f(x) = f(x)

)
= 1− β ,

where by Y we mean a random variable that is distributed uniformly over Fm2 . Thus, if β < 1/2 then if
we fix x and pick a random Y then with good probability ∆Y f(x) gives a (somewhat) good estimate for
f(x). We are next going to use the Chernoff bound to move from a reasonable estimate to a very good
approximation.

Theorem 4.1 (Chernoff’s inequality). Let X1, . . . , Xn ∈ {0, 1} independent random variables such that
P (Xi = 1) = p. Then, for 0 < ε < 1

P

(∑
i

Xi ≤ (1− ε)pn
)
≤ exp

(
−pnε2/2

)
.

For proofs see e.g. [76]. Hence, if for any t directions y1, . . . , yt ∈ Fm2 we define

Fy1,...,yt(x) , Majority (∆y1f(x), . . . ,∆ytf(x)) ,

then we get from the Chernoff bound that

EX,Y1,...,Yt [1[FY1,...,Yt(X) 6= f(X)]] ≈ exp(−t) .

Picking t = O(log 1/ε) we see that for each codeword Eval(f) ∈ RM(m, r) there is some Fy1,...,yt at
hamming distance at most ε. Thus, the set of all such Fy1,...,yt forms an ε-net for polynomials of weight at
most β in RM(m, r). All that is left to do is to count the number of such functions Fy1,...,yt to obtain a bound
on the size of the net. In fact, one can carry the same approach further and rather than approximating f by
its first order derivatives, use instead higher order derivatives. For a set of k directions Y = {y1, . . . , yk},
where each yi ∈ Fm2 , we define5

∆Yf(x) = ∆yk∆yk−1
· · ·∆y1f(x) .

The following version of Lemma 2.2 of [34] appeared in [2].
5 It is not hard to see that the order of derivatives does not matter.
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Lemma 1. Let f : Fm2 → F2 be a function such that wtn(f) ≤ 2−k−1 for k ≥ 2 and let ε > 0. Then, there
exist sets of k directions Y1, . . . ,Yt such that6

P (f(X) 6= Majority (∆Y1f(X), . . . ,∆Ytf(X))) ≤ ε ,

where t = d17 log(1/ε)e.

Proof sketch. The proof is based on the following proposition that can be proved by induction

Proposition 1. Let f : Fn2 → Fn2 be a function with bias(f) ≤ 2−k. Then,

(−1)f(x) = EY ∈(Fm2 )k−1

[
αY · (−1)∆Y f(x)

]
, (16)

where,

αY =
1

bias(f) · bias ∆y1f · · · bias ∆yk−2
· · ·∆y1f

.

This implies the following approximation scheme for f : sample from the distribution αY · (−1)∆Y f(x)

independently and take the sign of the average. Noting that αY < 3.5, the upper bound then follows from
Hoeffding’s inequality that is given below.

Theorem 4.2 (Hoeffding’s Inequality). Let X1, . . . , Xt independent random variables where each Xi is
supported on the interval [ai, bi]. Then,

P

(
1

t

t∑
i=1

Xi − µ ≥ ε
)
≤ exp

(
2ε2t2∑t

i=1(bi − ai)2

)
,

with µ = E
[

1
t

∑t
i=1Xi

]
.

Denote
FY1,...,Yt , Majority (∆Y1f, . . . ,∆Ytf)

and
Nk,t ,

{
FY1,...,Yt | Y1, . . . ,Yt ∈ (Fm2 )k , f ∈ Pm,r and wtn(f) ≤ 2−k−1

}
.

Combining Observation 2 with recursive applications of Lemma 1, we obtain the following bound on
the weight enumerator.

Corollary 1. Let r,m, ` ∈ N such that r ≤ m. Then,

Am,r

(
≤ 2−`

)
≤ |N`−1,t| ·Am,r

(
2−`−1

)
,

where t = 17(`+ 2). Consequently,

Am,r

(
≤ 2−`

)
≤

r∏
j=`

∣∣Nj−1,17(j+2)

∣∣ .
6 Actually, we have to take a weighted majority, but for sake of clarity we ignore this detail in our presentation.
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The way that Kaufman et al. bounded the size ofNk,t was simply to say that each FY1,...,Yt is an explicit
function of t polynomials of degree r−k and hence the size of the net is at most |RM(m, r − k)|t. One idea
in the improvement of [1] over [34] is that derivatives of polynomials can be represented as polynomials in
fewer variables. Specifically, one can think of ∆Yf as a polynomial defined on the vector space span(Y)⊥.
This allows for some saving in the counting argument, namely,

|Nk,t| ≤ 2mkt · |RM(m− k, r − k)|t ,

where the term 2mkt comes from the fact that now we need to explicitly specify the sets Y1, . . . ,Yt. The
proof of Theorem 4 follows by using the bound from Lemma 2 in Corollary 1.

Lemma 2 (Implicit in the proof of Theorem 3.3 of [1]). For any k, t ∈ N we have,

|Nk,t| ≤ exp2

(
mtk + t

(
m− k
≤ r − k

))
.

Proof Sketch. Each derivative ∆Yf can be expressed as a degree r− k polynomial in m− k variables. This
is easy to see when Y is the first k coordinate vectors, but it is also true in general. The bound follows from
simple counting.

When k = 1, [2] further improved the upper bound by noting that different derivatives contain informa-
tion about each other. I.e., they share monomials. This allowed them to get a better control of the amount of
information encoded in the list of derivatives and as a result they obtained a better bound on the size of the
net. This proved significant for bounding the number of codewords having small bias. See Lemma 4 below.

The discussion above relied on Lemma 1 that works for weights at most 1/4. For weights closer to
1/2 Kaufman et al. changed their approach and instead of considering independent directions, they picked
highly dependent directions, forming a subspace. Specifically, they pick a random subspace of dimension t
and consider all 2t − 1 first order derivatives according to all nonzero directions in the subspace. As before
each directional derivative gives a somewhat good approximation of the codeword but we can no longer use
Chernoff’s bound as the derivatives are not independent. Instead they observed that the directions are 2-wise
independent and therefore they could use the Chebyshev bound to bound t as a function of the minimum
distance of the RM code. Lemma 2.4 of [34] as stated in [2]7 gives:

Lemma 3 (Lemma 3.11 in [2], Lemma 2.4 in [34]). Let f : Fn2 → F2 be a function such that bias(f) ≥
δ > 0 and let ε > 0. Then, for t = dlog(1/ε) + 2 log(1/δ) + 1e, there exist directions y1, . . . , yt ∈ Fm2 such
that,

PX
(
f(X) = Majority

(
∆∑

i∈I yi
f(X) : ∅ 6= I ⊆ [t]

))
≥ 1− ε .

Proof sketch. The proof goes along similar lines to the proof of Lemma 1 only now we use Chebyshev’s
inequality rather than Chernoff’s.

Corollary 2. For any t ∈ N define,

Bt =
{

Majority
(

∆∑
i∈I yi

f(x) | ∅ 6= I ⊆ [t]
)

: f ∈ Pm,r , y1, . . . , yt ∈ Fm2
}
.

Then, for t = dlog(1/ε) + 2 log(1/δ) + 1e, Bt is an ε-net for {Eval(f) ∈ RM(m, r) | bias(f) ≥ δ}.
To upper bound |Bt| we note that first order derivatives in directions y1, . . . , yt determine the derivatives

in every direction within span {y1, . . . , yt}. Hence, |Bt| ≤ |N1,t|. Earlier we computed |Nk,t| for k ≥ 2 so
we need the following estimate.

7 [34] only gave a rough upper bound on t and [2] did a more careful analysis to obtain this result.
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Lemma 4. Let m, r, t ∈ N such that t, r ≤ m and write γ = r/m. Then,

|N1,t| ≤ exp2

mt+
t∑

j=1

(
m− j
≤ r − 1

) ≤ exp2

(
mt+

(
1− (1− γ̃)t

)( m

≤ r

))
,

where γ̃ = γ
(

1 + t
m−t

)
.

Proof sketch. For simplicity, after applying a linear transformation, we may assume without loss of gener-
ality that yi = ei and so ∆yif is just the formal derivative with respect to xi. Therefore the sequence,

(∆y1f,∆y2f, . . . ,∆ytf)

is determined only by the monomials of f containing xi for some i = 1, . . . , t. Thus, if we count the number
of monomials containing x1, then those that contain x2 but not x1 etc. we get that there are exactly,

t∑
j=1

(
m− j
≤ r − 1

)
=

(
m

≤ r

)
−
(
m− t
≤ r

)

such monomials. Hence, there are at most exp2

((
m
≤r
)
−
(
m−t
≤r
))

such distinct sequences. This estimate
holds for fixed directions y1, . . . , yt ∈ Fm2 . In order to get an upper bound on |N1,t|, we need to take the
union over all directions which gives another factor of 2mt. The bound now follows from a careful estimate
of binomial coefficients.

Proof Sketch of Theorem 7. Observation 1 and Corollary 2 (with parameters ε = 2−` and δ = 2−s) imply
that

Ar,m

(
1− 2−`

2

)
≤ |Bt| ·Ar,m

(
2−s+1

)
.

As |Bt| ≤ |N1,t| the theorem follows from combining the estimate above with Lemma 4 and Theorem 4
(and a lot of calculations).

To conclude, the ε-net approach works as follows. We first show that each polynomial of relative-weight
at most β can be approximated by an explicit function of some of its derivatives. We then count the number
of such possible representations and then continue recursively to bound the number of codewords that are
close to each such function.

4.2 Lower bounds on the weight enumerator

The proofs of both Observation 1 and Theorem 9 are based on exhibiting a large set of polynomials having
the claimed weight.

Observation 1 follows from the simple fact that, with probability 1/2, for a polynomial g(x`, . . . , xm)
sampled uniformly from Pm−`,r−`+1, the degree r polynomial f(x1, . . . , xm) = x1 · x2 · · ·x`−1 · g will
have relative-weight at most 2−` (as half of the polynomials g have weight at most 1/2).

Proof sketch of Theorem 9. To prove Theorem 9 we consider all polynomials of the form

g(x1, . . . , xm) =
∑̀
i=1

xifi(xi+1, . . . , xm−i) ,
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where fi ∈ Pm−i,r−1. It is not hard to see that different choices of (f1, . . . , f`) yield different polynomials
g(x) ∈ Pm,r. The main idea is proving that with probability at least 1/2, over the choice of {fi}, it holds

that bias g ≥ 2−`+1. As there are exp2

(∑`
j=1

(
m−j
≤r−1

))
such different polynomials g, the lower bound

follows.
For (a1, . . . , a`) ∈ F`2 define

g
∣∣
(a1,...,a`)

(x`+1, . . . , xm) =
∑̀
i=1

aifi(ai+1, . . . , a`, x`+1, . . . , xm) .

Note that

bias g = 2−` + E(Y1,...,Y`) 6=(0,...,0)[bias g
∣∣
(Y1,...,Y`)

] , (17)

where the 2−` term comes from the case (a1, . . . , a`) = (0, . . . , 0). Observe that for any (a1, . . . , a`) 6=
(0, . . . , 0), g

∣∣
(a1,...,a`)

is a uniformly random polynomial, over the variables x`+1, . . . , xm, of degree at most
r − 1. From Theorem 8 and the union bound we get that with probability at least

1− 2` · 2m exp

((
−1 +H

(
1− 2−`−1

2

))(
m− `
≤ r − 1

))
> 1/2 ,

it holds that bias g
∣∣
(a1,...,a`)

> −2−`−1 for every (a1, . . . , at) 6= (0, . . . , 0). Hence,

P
(

bias g ≥ 2−`−1
)
≥ P

(
bias g

∣∣
(a1,...,a`)

≤ −2−`−1 ∀(a1, . . . , a`) 6= (0, . . . , 0)
)
> 1/2 .

4.3 The analytical approach

4.3.1 Boolean Analysis

Boolean analysis is the study of functions from the boolean hypercube to the complex numbersψ : {0, 1}n →
C. One of the most useful tools in studying boolean functions is the discrete Fourier transform.

Definition 8 (Character Functions). For S ⊆ [n] denote the character function χS(x) = (−1)
∑
i∈S xi .

Definition 9 (Fourier Decomposition). Let ψ : {0, 1}n → C be a boolean function. Denote its Fourier
transform via ψ̂(S) = 1

2n ·
∑

x∈{0,1}n [f(x)χS(x)].

We identify that collections of subsetsP([n]) = {S | S ⊆ [n]}with the boolean hypercube in the natural
way and so the Fourier transform is also a boolean function.

As the characters form an orthonormal basis to the space of functions from the boolean cube to C with
respect to the inner product 〈ψ1, ψ2〉 = Ex∈{0,1}nψ1(x)ψ2(x) we have that:

Proposition 1. Let ψ1, ψ2 : {0, 1}n → C. Then,

ψ1(x) =
∑
S⊆[n]

ψ̂1(ψ)χS(x) ,

〈ψ1, ψ2〉 =
∑

S⊆{0,1}n
ψ̂1(S)ψ̂2(S) .

A very special and important class of boolean functions for which the theory of boolean analysis is
particularly useful is that of indicators of monotone sets.
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Definition 10 (Monotone Sets). Let x, y ∈ {0, 1}n. We say that x ≤ y if xi ≤ yi for all i ∈ [n]. A subset
Ω ⊆ {0, 1}n is monotone if x ∈ Ω and x ≤ y imply that y ∈ Ω.

Definition 11 (Biased Measure). We defined the p-biased measure of a vector

µp(x) = p
∑n
i=1 xi(1− p)n−

∑n
i=1 xi .

For a subset Ω ⊆ {0, 1}n we define µp(Ω) =
∑

x∈Ω µp(x).

One of the key concepts in the analysis of boolean functions is that of pivotality or influence. Intuitively
speaking, the influence of a variable quantifies its influence on the value of the function. For simplicity, we
shall define these concepts only for monotone sets. In that case, the influence can be described in terms of
the boundary of a set.

Definition 12 (Boundary). Let Ω ⊆ {0, 1}n be a monotone set. Define the boundary sets

∂jΩ = {x | (x1, . . . , xj−1, 0, xj+1, . . . , xn) 6∈ Ω and (x1, . . . , xj−1, 1, xj+1, . . . , xn) ∈ Ω}

Given the characteristic function ψ : {0, 1}n → C of a monotone set Ω ⊆ {0, 1}n, the influence of
the variable xj , with respect to the p-biased distribution, is defined I(p)(ψ) = µp(∂jΩ). In probabilistic
terms, µp(∂jΩ) equals the probability that flipping the variable xj of a random input changes the value of
the function (when x is chosen according to the p-biased measure). Since we only consider monotone sets,
we shall use the more explicit notation µp(∂jΩ) rather than I(p)(ψ).

Finally, we state and prove a lemma by Russo and Margulis.

Proposition 2 (Russo-Margulis Lemma). For any monotone set Ω ⊆ {0, 1}n

dµp(Ω)

dp
=

n∑
i=1

µp(∂iΩ).

Proof. Since Ω is a monotone set, we have xi = 1 for all x ∈ Ω ∩ ∂iΩ. Now let us consider a different
measure µp1,...,pn defined by

µp1,...,pn(x) =

n∏
i=1

(pxii (1− pi)1−xi)

for x = (x1, . . . , xn) ∈ {0, 1}n. If we set p1 = · · · = pn = p, then µp1,...,pn is the same as µp. The measure
µp1,...,pn(Ω) can be decomposed as follows:

µp1,...,pn(Ω) =
∑

x∈Ω∩∂iΩ
µp1,...,pn(x) +

∑
x∈Ω\∂iΩ

µp1,...,pn(x)

=pi
∑

x∈Ω∩∂iΩ

∏
j 6=i

(p
xj
j (1− pj)1−xj ) +

1

2

∑
x∈Ω\∂iΩ

∏
j 6=i

(p
xj
j (1− pj)1−xj ).

The last equality holds because (i) xi = 1 for all x ∈ Ω ∩ ∂iΩ; (ii) the set Ω \ ∂iΩ can be partitioned into
disjoint pairs such that the two elements in each pair only differ in the ith coordinate. Since the second term
in the last line does not contain pi, we have

∂µp1,...,pn(Ω)

∂pi
=

∑
x∈Ω∩∂iΩ

∏
j 6=i

(p
xj
j (1− pj)1−xj )

=pi
∑

x∈Ω∩∂iΩ

∏
j 6=i

(p
xj
j (1− pj)1−xj ) + (1− pi)

∑
x∈Ω∩∂iΩ

∏
j 6=i

(p
xj
j (1− pj)1−xj )
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=µp1,...,pn(∂iΩ).

The last equality follows from the definition of the boundary ∂iΩ. Therefore,

dµp(Ω)

dp
=

n∑
i=1

∂µp1,...,pn(Ω)

∂pi

∣∣∣
p1=···=pn=p

=

n∑
i=1

µp(∂iΩ).

This completes the proof of the lemma.

A thorough and comprehensive introduction to the analysis of boolean functions can be found at [77,78].

4.3.2 On the EXIT Function of RM Codes

In [4], Kudekar, Kumar, Mondelli, Pfister, Şaşoğlu, and Urbanke proved the following estimate on the EXIT
function of RM codes with constant rate.

Theorem 10. Let h(p) denote the EXIT function of the RM code RM(m, r) code with constant rate R.
Then,

h(1−R− o(1)− ε) ≤ 2−Ω(εm log(m)).

Theorem 10 asserts that for values of p slightly smaller than 1−R the EXIT function h(p) is asymptoti-
cally 0. Also, for values of p larger than 1−R the EXIT function h(p) is asymptotically 1. The latter follows
from the channel capacity limit of the BEC and the fact that h(p) is associated with the bit-error probability
over the BEC (See Lemma 3.2). Thus, Theorem 10 suggests that the EXIT function of RM codes behaves
like a step function jumping from 0 to 1 at p = 1 − R. This phenomenon is known as sharp threshold and
is illustrated in Fig. 2 for short block-lengths of RM codes.

Fig. 2: The average EXIT function of the rate-1/2 Reed-Muller code with blocklength n. This is originally
Fig. 1 in [4].

We now proceed with a proof of Theorem 10. The following proposition gives a condition under which
a monotone function has a sharp threshold.

Proposition 3 (Lemma 34 in [4]). Assume a monotone function h : [0, 1]→ [0, 1] satisfies

∀p ∈ [a, b]
dh

dp
≥ c · h(p)(1− h(p)). (18)
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Then for any 0 < ε1 < ε2 ≤ 1

h−1(ε2)− h−1(ε1) ≤ 1

c
ln

(1− ε1)ε2
ε1(1− ε2)

+ δ(ε1, ε2)

where δ(ε1, ε2) = max
{
a− h−1(ε1), 0

}
+ max

{
h−1(ε2)− b, 0

}
. In particular if [a, b] = [δ, 1− δ] then

h(h−1(1/2)− ε) ≤ exp(−c(ε− 2δ)), and h(h−1(1/2) + ε) ≤ exp(−c(ε− 2δ)).

Proof Sketch. The idea is to consider the function g(p) = log h(p)
1−h(p) . One can easily verify that

g′(p) = h(p)(1− h(p))

so g′(p) ≥ c · h(p)(1− h(p)) for all p ∈ [a, b]. The first assertion is obtained by integrating g′(p) along ε1
to ε2. For the second assertion, use ε1 = h(h−1(1/2)− ε) and ε2 = 1/2.

To apply this to RM codes, Kudekar et al. proved that the EXIT function of RM codes satisfies the
requirement in the proposition. For this they also needed the following claim concerning monotone sets.

Theorem 11. Let Ω ⊆ {0, 1}n be a monotone set with equal influences µp(∂j1Ω) = µp(∂j2Ω). Then,

dµp(Ω)

dp
≥ (c(p)− on(1)) · ln(n) · µp(Ω)(1− µp(Ω)),

where8 c(p) = 1−2p

p(1−p) ln
(

1−p
p

) .

Remark 3. In [79] Theorem 11 was proved with a different constant. The tighter bound using c(p) was
obtained in [80].

We can now prove that the EXIT function of RM codes satisfies the condition of Proposition 3. From
this point on we shall restrict ourselves to the EXIT function of RM(m, r), and abusing notation, denote it
by h : [0, 1]→ [0, 1] suppressing the dependence on m and r.

Proposition 4. Let h(p) denote the EXIT function of the RM code RM(m, r). Then,

dh(p)

dp
≥ (c(p)− o(1)) · ln(n) · h(p)(1− h(p)),

where c(p) is as in Theorem 11.

Proof. For each z ∈ Fm2 define the set

Ωz =
{
y ∈ {0, 1}n−1 | ∃f ∈ Pm,r such that (Eval(f) ≤ yz→1) and f(z) = 1

}
, (19)

where yz→1 is a vector that equals y except that its z’th coordinate is set to 1 (it may be the case that
y = yz→1), and In terms of erasures, the set Ωz consists of all erasure patterns over F2 \ {z} for which the
z’th coordinate cannot be decoded (given that the z’th coordinate is erased). Indeed, this follows from the
following simple observation.

Observation 3. Let C ⊂ Fn2 be a linear code. Then, an erasure pattern S ⊆ [n] can be corrected if and
only if no codeword is supported on the pattern. I.e., there is no codeword x ∈ C such that supp(x) ⊆ S.

8 At p = 1/2 the function c(p) has a removable discontinuity and so we define c(1/2) = limp→1/2 c(p) = 2.
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The last item in Lemma 3.2 implies that

h(p) = Ezµp(Ωz)

and by linearity of differentiation we see that

dh

dp
= Ez

[
dµp(Ωz)

dp

]
.

The proof is concluded using the following two claims.

Lemma 5. For any z1 6= z2 we have µp(Ωz1) = µp(Ωz2).

Lemma 6. For any z1 6= z2 and z we have µp(∂z1Ωz) = µp(∂z2Ωz).

Proof of Lemma 5. Let T : Fm2 → Fm2 be a linear transformation satisfying T (z1) = z2. As composing
a degree r polynomial with a linear transformation gives another degree r polynomial, it follows that the
mapping

(xz)z∈Fm2 7→ (xT (z))z∈Fm2

induces a bijection between ∂z1Ωz and ∂z2Ωz . This bijection also preserves the measure of the set as
µp((xz)z∈Fm2 ) = µp((xT (z))z∈Fm2 ).

Proof of Lemma 6. Similar to the proof of Lemma 5, this time using an affine transformation T satisfying
T (z) = z, T (z1) = z2.

Lemma 5 implies that dh
dp = µp(Ωz) for any choice of z ∈ Fm2 . Using an arbitrary z, Lemma 6 implies

that Ωz satisfies the assumption of Theorem 11, which concludes the proof.

From Propositions 3 and 4 it follows that the EXIT function of RM codes has a sharp threshold. The
area theorem now implies that the threshold point must be around 1 − R. This is made quantitative in the
following corollary (see e.g. Theorem 19 in [4]).

Corollary 3 (Implicit in [4]). For any ε ≤ 1/2

h−1(1/2) ≥ 1−R− (2εR+ g(ε)),

where g(ε) = h−1(1− ε)− h−1(ε).

Proof. Using the Area theorem (Lemma 3.2) we get h−1(1− ε) ≥ 1−R+ εR
1−ε as

R =

∫ 1

0
h(p)dp ≥

∫ 1

h−1(1−ε)
h(p)dp ≥ (1− h−1(1− ε)) · (1− ε).

Also, by the definition of g(ε) we have

h−1(ε) = h−1(1− ε)− g(ε).

Putting the two together we get
h−1(ε) ≥ 1−R− (2εR+ g(ε))

Using the monotonicity of the EXIT function (Lemma 3.2) the claim follows.

Putting it altogether we obtain the following.
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Corollary 4. Let h(p) denote the EXIT function of the RM code RM(m, r) with constant rate R and c(p)
as in Theorem 11. Then,

h(1−R− o(1)− ε) ≤ n−k(1−R)·ε,

where k(p) =

{
c(p)− o(1) p < 1/2

c(1/2)− o(1) p ≥ 1/2
.

In particular, h(1−R− o(1)− ε) = n−Ω(1).

Proof. Combining Proposition 3 and Proposition 4 we get

g(ε) = h−1(1− ε)− h−1(ε) ≤ 2

ln(n)
ln

(
1

ε

)
Using Corollary 3 with ε = ln ln(n)

ln(n) we get

h−1(1/2) ≥ 1−R−O
(

ln lnn

lnn

)
.

The result follows from Proposition 3, and the ’in particular’ part follows since k(p) = Ω(1).

Note that Corollary 4 is weaker than Theorem 10. We proceed by giving the more sharper bound of
Theorem 10. Let us start by highlighting the key property of RM codes underlying the preceding arguments
- their symmetry group.

Definition 13. The symmetry group of a set Ω ⊆ {0, 1}n is

Sym(Ω) =
{
π ∈ Sn | ∀x π(x1, . . . , xn) ∈ Ω ⇐⇒ (xπ(1), . . . , xπ(n)) ∈ Ω

}
.

The proof of Proposition 4 used that the symmetry group of Ωz satisfies the following property: For
any given indices i1, i2, j1, j2 ∈ Fm2 with i1 6= i2 there exists a permutation π ∈ Sym(Ωz) satisfying
π(i1) = j1 and π(i2) = j2. This property is called double-transitivity. The improvement of Theorem 10
over Corollary 4 follows by utilizing a more refined symmetry property of Sym(Ωz): It contains a subgroup
isomorphic to GLm(F2).

Claim 1. Let Ωz be as in Equation (19) then Sym(Ωz) has a subgroup isomorphic to GLm(F2) the group
of all linear transformations.

Proof. Without the loss of generality z = 0 the zero vector. Any transformation T ∈ GLm(F2) fixes the
zero vector and T ∈ Sym(RM(m, r)). Thus, Ωz is invariant under permuting the coordinates by T .

In [81] Bourgain and Kalai proved a sharper estimate than the one in Theorem 11 that enables us to
leverage this symmetry property.

Theorem 12 (Theorem 1 & Corollary 4.1 in [81]). Let Ω ⊆ {0, 1}n be a monotone set that its symmetry
group contains a subgroup isomorphic to GLm(F2) where n = 2m. Then,

∀p ∈ [δ(m), 1− δ(m)]
dµp(Ω)

dp
≥ c ·m ln(m) · µp(Ω)(1− µp(Ω)),

for some universal constant c > 0 and δ(m) = m−Ω(1).

Applying Theorem 12 to the case of RM codes, [4] obtained an asymptotic improvement over Corol-
lary 4.

Corollary 5. Let h(p) denote the EXIT function of the RM code RM(m, r) of constant rate R. Then,

h(1−R− o(1)− ε) ≤ 2−Ω(m log(m)·ε).
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Vanishing Rates The statements of Theorem 10 and Corollary 4 are only meaningful for constant rate
RM codes since otherwise the o(1) might be larger than the rate R. A careful look at the analysis reveals
that this o(1) term can be replaced with O(m−1 lnm) in the case of Corollary 4, and m−Ω(1) in the case of
Theorem 10. Therefore, it is possible to derive similar statements for RM codes with the appropriate rates.

4.3.3 The approach of Samorodnitsky

In [35] Samorodnitsky used boolean analysis to argue about the weight enumerator of certain error correcting
codes, and particularly RM codes. For brevity we describe the result for arbitrary binary linear codes and
then continue with RM codes.

Samorodnitsky’s argument is based upon an inequality on boolean functions. In order to state this
inequality, we shall need a few definitions.

Definition 4.3 (Norm). We define the `q norm of a boolean function ψ : {0, 1}n → C by

||ψ||q = (Ex |ψ(x)|q)1/q .

Definition 14 (Noise Operator). For x ∈ {0, 1}n and −1 ≤ ρ ≤ 1, let y ∼ Nρ(x) be a random element of
{0, 1}n with each coordinate yi being i.i.d equal to xi with probability (1+ρ)/2 and flipped with probability
(1− ρ)/2. Let ψ : {0, 1}n → R and ρ ∈ [−1, 1]. Define the function Tρψ : {0, 1}n → R by

Tρψ(x) = Ey∼Nρ(x)ψ(y).

Definition 15 (Conditional Expectation Operator). Let ψ : {0, 1}n → C and S ⊆ [n] be a subset of
coordinates. We define another function E[ψ|S](x) = EyS=xSψ(y). That is, we take the expectation of the
value of ψ on inputs that are equal to x on the coordinate set S.

Theorem 13. Let ψ : {0, 1}n → R≥0 be a non-negative function, and ρ ∈ (0, 1). Then,

log ‖Tρψ‖2 ≤ ES∼λ(ρ) log ‖E[ψ|S]‖2 ,

where λ(ρ) = log(1 + ρ2) and S ∼ λ is a random subset S of [n] in which each element is included
independently with probability λ.

Applying the inequality for the special case in which ψ = 1C is the indicator function of a binary linear
code C ⊆ Fn2 Samoronitsky obtained the following.9

Theorem 14 ([35, 69, 70]). Let C ⊆ Fn2 be a linear code, 0 ≤ λ ≤ 1 and Ai = Am,r (i/n) denote the
number of codewords of weight exactly i. Then,

log

(
n∑
i=0

Ai · (2λ − 1)i

)
≤ H(X|Y ) .

Here X and Y are random variables such that X is a random uniform codeword in C, and Y is the result
of transmitting X over the channel BEC(λ).

We now briefly explain how Theorem 14 is derived from Theorem 13. Let us start by stating three
elementary claims on boolean functions and linear subspaces.

9 This statement first appeared in [70], which is obtained via the original inequality in [35,69] and standard algebraic manipula-
tions.
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Proposition 5 (See Chapter 2 in [77]). For any boolean function ψ : {0, 1}n → R we have T̂ρψ(S) =

ρ|S| · ψ̂(S).

Proposition 6 (See Chapter 3 in [77]). For any linear subspace C ⊆ Fn2 we have that 1̂C(S) =
1
C⊥ (S)

|C⊥| .

Proposition 7 (See Proof of Proposition 1.3 in [35]). Let C ⊆ Fn2 be a binary linear code and S ⊆ [n]

E[1C|S](x) =

{
2|S|−dim(C⊥S ) ∃y ∈ C⊥ such that xS = yS

0 otherwise

Proof of Theorem 14. Let ψ = |C| ·1C⊥ and (A0, . . . , An) the weight enumerator of C. Using Proposition 5
and Proposition 6 we get (for λ = λ(ρ) = log(1 + ρ2))

‖Tρψ‖22 =
n∑
i=0

Ai · (2λ − 1)i.

Using Proposition 7 and Lemma 3.2 we get

ES∼λ(ρ) log ‖E[ψ|S]‖2 = H(X|Y ).

The claim now follows from Theorem 13.

We now focus on RM codes C = RM(m, r) with constant rate. It immediately follows from Theo-
rem 14 that sufficiently strong bounds on H(X|Y ) imply bounds on the weight distribution. Recall that by
Lemma 3.2

H(X|Y ) = n ·
∫ λ

0
h(p)dp

where h(p) is the EXIT function, which means that we can use the upper bounds from Section 4.3.2. As
before we denote Ai = Am,r (i/n).

Corollary 6. Let RM(m, r) with constant rate R ∈ (0, 1). Then for sufficiently large m

2m∑
i=1

Ai(2
1−R−o(1) − 1)i ≤ 1.

In particular,
Ai ≤ (21−R−o(1) − 1)−i.

Proof. Apply Corollary 5 with ε = log logm
logm to obtain

2m∑
i=0

Ai(2
1−R−o(1) − 1)i ≤ 2m · h(1−R− o(1)) ≤ 2−ω(m).

Removing the first term A0 = 1 we get

2m∑
i=0

Ai(2
1−R−o(1) − 1)i = o(1).

Thus, for sufficiently large m the RHS is bounded by 1.
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By combining Theorem 14 with MacWilliams identity – an identity that relates the weight enumerator
of a code with that of its dual – and using the fact that the dual code of an RM code is another RM code (See
Section 2.4), we get another estimate for the weight enumerator.

Proposition 8 (MacWilliams Identity [82]). Let (a0, . . . , an) be the weight enumerator of a binary code C
and (b0, . . . , bn) the weight enumerator of its dual C⊥ (i.e., there are exactly ai codewords in C of weight i
etc.). Then, for every θ ∈ R

n∑
i=0

aiθ
i =

1

|C⊥| ·
n∑
i=0

bi(1− θ)i(1 + θ)n−i.

Proof. Use Parseval’s identity (Proposition 1) with the functions 1C and θ
∑n
i=1 xi .

Proposition 9. Let RM(m, r) with constant rate R ∈ (0, 1). Then,

Am,r (i/n) ≤ 2(R+H(i/n)−1)n.

for i ∈ [(1− 2R−1−o(1))n, 2R−1−o(1)n].

Proof. We start with the dual code RM(m, r)⊥ = RM(m− r − 1,m) which has rate 1 − R. It follows
from Corollary 6 that for any λ ≤ R− o(1) the weight distribution of the dual code satisfies

2m∑
i=1

Am,m−r−1 (i/n) · (2λ − 1)i ≤ 1.

Applying MacWilliams identity (Proposition 8), and using the fact that the dual code of an RM code is
another RM code, we obtain that for all θ ≤ 2λ − 1

2m∑
i=1

Am,r (i/n) (1− θ)i(1 + θ)n−i ≤ |RM(m, r)|,

and so in particular

Am,r (i/n) ≤ |RM(m, r)|
max0≤θ≤2R−o(1)−1(1− θ)i(1 + θ)n−i

,

Using elementary calculus we find that the optimal value of θ is

max
0≤θ≤2R−o(1)−1

(1− θ)i(1 + θ)n−i =

{
2n(1−H(i/n)) θ ≥ 2R−o(1) − 1

(2− 2R−o(1))i(2R−o(1))n−i θ < 2R−o(1) − 1
.

This completes the proof. Note that the bound obtained for θ < 2R−o(1)−1 matches the bound in Corollary 6
and so omitted.

We remark an astonishing qualitative consequence of Proposition 9 – the weight enumerator of a constant
rate RM code for weights sufficiently close to n/2 is as that of a random code. A random binary code C

have roughly |C|2n ·
(
n
i

)
codewords of weight i. Using the well-known estimate (e.g., by Stirling’s formula)

2n·H(i/n) ≤ O(
√
n) ·

(
n

i

)
we see that

Ar,m (i) ≤ 2O(m) ·
(

2m

i

)
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Fig. 3: Samorodnitsky’s Weight Distribution Bounds for RM code of rate 1
2 .

for i ∈ [(1− 2−R−o(1)) · 2m, 2−R−o(1) · 2m].
The estimates in Corollary 6 amd Proposition 9 are illustrated in Figure 3. For readability, we plot the

points (α, β) for which we have the bound Ar,m (α) ≤ 2βn where n is the block-length. The solid blue
curve is the upper bound of Proposition 9, and matches the weight distribution of random codes (the dashed
curve is a continuation of the solid blue curve, capturing the weight distribution of random graphs in the
range where Proposition 9 does not apply). This bound holds roughly until weight α = 2R−1, from which
we have the bound of Corollary 6 illustrated by the solid red curve.
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5 Bounding the error probability to obtain capacity-achieving results

In this section we survey results concerning the performance of RM codes on BMS channels, with a focus
on the BEC and the BSC, at certain ranges of parameters. In particular we cover the result of [4] that prove
that constant-rate RM codes achieve capacity for the BEC; the results of [1, 2] showing that RM codes
of low- and high- rates achieve capacity for the BEC and BSC; and the results of [70, 72] that show that
constant-rate RM codes can correct a constant fraction of random errors. Finally, we discuss a recent paper
[5] which showed that constant-rate RM codes achieve capacity on all BMS channels under the bit-MAP
decoding.

5.1 RM codes achieve capacity at low rate [1,2]

The results on the weight enumerator that were described in Section 4 and the bounds of Theorem 2 can be
combined to prove that law- and high-rate RM codes achieve capacity for the BEC and the BSC. Moreover,
it can show that, in many regimes of parameters, RM code can decode a number of errors that is close to
(but does not match) the number of errors that capacity achieving codes of the same rate can decode from.

Note that in the case of rates close to 0 achieving capacity means the following: for the BEC achieving
capacity means that we can correct a fraction p ≥ 1−R(1 + ε) of random erasures (with high probability),
and for the BSC achieving capacity means that we can correct a fraction p of random errors (with high
probability) for p satisfying H2(p) ≥ 1 − R(1 + ε). See [1] for a discussion of achieving capacity in
extremal regimes.

5.1.1 BEC

In this section we relate the weight distribution of RM codes to the probability of correctly decoding from
random erasures. In [1, 2] this was used to conclude that RM codes achieve capacity for the BEC at certain
parameter range.

Theorem 15 (Theorem 1.9 from [2]). For any r ≤ m/50, RM(m, r) achieves capacity on the BEC.

Proof sketch. We need to prove that for any δ > 0 it holds that err(BEC(p),RM(m, r)) = o(1), where for
R =

(
m
≤r
)
/2m, p = (1− δ)R. According to Lemma 2,

err(BEC(p),RM(m, r)) ≤
∑
β 6=0

pβ2m ·Am,r (β) . (20)

Thus, it is enough to show that Am,r (β) decays faster than pβ2m . In order to estimate the sum in Equa-
tion (20), [2] considered three different regimes:

• The typical case: Polynomials with an extremely small bias (including negative bias), i.e. all polyno-
mials f satisfying bias(f) ≤ δ/8.

• Relatively small bias: Polynomials with a not too large bias: δ/8 ≤ bias(f) ≤ 3/4.

• Low weight: Polynomials of weight wtn(f) ≤ 1/8.

For “typical” polynomials it is not hard to see (since the bias is so small) that Am,r (β) decays quickly
(for β ∈ [1−δ/8

2 , 1+δ/8
2 ]) and hence their contribution to the sum in Equation (20) is negligible.

In the third case they partitioned the summation over β to the dyadic intervals [2−k−1, 2−k] (for k ≥ 3)
and using the estimate from Theorem 4 proved that each such interval contributes to the overall sum a small
quantity.
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To bound the contribution of the polynomials satisfying the “relatively small bias” condition they again
partitioned the interval to sub-intervals of the form 2−k ≤ bias(f) ≤ 2−k+1, and used Theorem 7 to bound
the contribution to the overall sum. In this case the calculations are more delicate but still give the required
result.

In addition, [2] shows that RM codes of higher degrees, specifically, RM codes of rate≤ 1/poly(log n),
can correct a fraction 1 − o(1) of random erasures. The proof is essentially the same only now we don’t
strive to achieve capacity and so we can take p to be a bit smaller, which makes the calculation work.

Theorem 16. For any r < m/2− Ω
(√
m logm

)
, RM(m, r) can efficiently correct a fraction of 1− o(1)

random erasures (as m increases).

While this result is not enough to deduce that the code achieves capacity, it shows that it is very close to
doing that.

5.1.2 BSC

Similarly to what we did in Section 5.1.1, we shall bound the sum

err(BSC(p),RM(m, r)) ≤
∑
β 6=0

(2
√
p(1− p))β2m ·Am,r (β) . (21)

As in the case of the BEC, Sberlo and Shpilka partition the sum to small interval around weight 1/2 and
then to dadic interval of the form [2−k−1, 2−k] and bound the contribution of each individual interval to the
overall sum using Theorems 7 and 4, respectively. This leads the the following result.

Theorem 17 (Theorem 1.10 of [2]). For any r ≤ m/70, RM(m, r) achieves capacity on the BSC.

Similarly to the BEC case, they show that up to degrees close to m/2, RM codes can correct a fraction
1/2− o(1) of random errors.

Theorem 18. For any r < m/2 − Ω
(√
m logm

)
the maximum likelihood decoder for RM(m, r) can

correct a fraction of 1/2− o(1) random errors.

As in Theorem 16, this is not enough to show that RM codes achieve capacity at this range of parameters
(as the o(1) term is not the correct one), but it gives a good indication that it does.

5.2 RM codes achieve capacity on the BEC at high rate [1,3]

In this section we explain the high level idea of the proof of [1,3] that RM codes of very high degree achieve
capacity for the BEC. Similarly to the case of R→ 0, we say that a family of codes of rate R→ 1 achieves
capacity for the BEC if it can correct (with high probability) a fraction p ≥ (1 − ε)(1 − R) of random
erasures. Thus, for such a code to achieve capacity for the BEC it must hold that, with high probability,
(1− (1− ε)(1−R))n random rows of the generating matrix span the row space. This is equivalent to
saying that a random subset of (1− ε)(1−R)n columns of the parity check matrix of the code has full rank
(i.e. the columns are linearly independent) with high probability.

When dealing with very high rates (i.e. very high degrees) it is more convenient to use the notation
RM(m,m− r − 1) (i.e. RM code of degree m− r− 1). As the parity check matrix of RM(m,m− r − 1)
is the generating matrix of RM(m, r), the discussion above gives rise to the question that we consider next.

For an input z ∈ Fm2 and degree r denote with zr the column of Rn corresponding to the evaluation
point z (recall Equation (41)). In other words, zr contains the evaluation of all multilinear monomials of
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degree at most r at z. Thus, the code RM(m,m− r − 1) achieves capacity for the BEC if it holds with
high probability that a random subset Z ⊂ Fm2 , generated by adding each vector to the set uniformly and
independently at random with probability p = (1− ε)(1−R), satisfies that the set {zr | z ∈ Z} is linearly
independent. This claim can be equally stated in terms of the dimension of the dual space. Indeed, a set
{zr1, . . . , zrK} is linearly independent, if and only if the dual space has dimension

(
m
≤r
)
− K. As one can

think of vectors in the dual space as coefficient vectors of degree r multilinear polynomials, we introduce
the following notation. For a set Z = {z1, . . . , zK} ⊆ Fm2 let Ir(Z) denote the set of degree r multilinear
polynomials that vanish on all points in Z . Thus, the set {zr | z ∈ Z} is linearly independent if and only if
dim(Ir(Z)) =

(
m
≤r
)
−K.

Abbe et al. [1] showed that for r = o(
√
m/ logm) and K = (1− ε) ·

(
m
≤r
)

it holds that dim(Ir(Z)) =(
m
≤r
)
−K. Bhandari et al. [3] improved the results of [1] by proving the following theorem.

Theorem 19 (Theorem 1.1 of [3]). There exists a constant γ0 > 0 such that for all ε > 0 the following is
true. Let K = (1− ε) ·

(
m
≤r
)

where r < γ0m. Then

PZ
[
dim(Ir(Z)) =

(
m

≤ r

)
−K

]
= 1− o(1),

where Z is a a uniformly random set of K distinct points in Fm2 .

The corollary below follows immediately from Theorem 19 and the discussion above.

Theorem 20 ([3]). Let γ0 be the constant in Theorem 19. For r < γ0m, RM(m,m− r − 1) achieves
capacity on the BEC.

The idea behind the proof of Theorem 19 is to argue that with high probability, |Ir(Z)| = 2(m≤r)−K(1 +
o(1)). It is not hard to see that the probability that a uniformly random polynomial f ∈ Pm,r belongs to
Ir(Z) is exactly (1− wt(f))K . We thus have

E [|Ir(Z)|] =
∑

f∈Pm,r

(1− wt(f))K . (22)

As an overwhelming majority of the polynomials f ∈ Pm,r have weight close to 1/2, we expect that the sum

is close to 2(m≤r)−K as required. To make this intuition work, [3] use the upper bounds proved in Theorem 4
and Theorem 7. As in the proof of Theorem 15, they partition the set of polynomials to polynomials with
small bias and polynomials with large bias, and bound the contribution of each set separately to the sum in
Equation (22), to conclude that the expectation is

E [|Ir(Z)|] = 2(m≤r)−K(1 + o(1)).

Finally, we note that it is enough to bound the expectation. Indeed, as Ir(Z) is a vector space de-
fined by K linear equations, its dimension is always at least

(
m
≤r
)
− K. Thus, if we denote q =

PZ
[
dim(Ir(Z)) =

(
m
≤r
)
−K

]
then

E [|Ir(Z)|] ≥ q · 2(m≤r)−K + (1− q) · 21+(m≤r)−K .

Hence,
q · 2(m≤r)−K + (1− q) · 21+(m≤r)−K ≤ E [|Ir(Z)|] = 2(m≤r)−K(1 + o(1))

and it follows that

PZ
[
dim Ir(Z) =

(
m

≤ r

)
−K

]
= q = 1− o(1)

as claimed.
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5.3 RM codes achieve capacity on the BEC at constant rate [4]

In [4] the authors proved that constant rate RM codes achieve capacity for the BEC. The main technical
effort in their work is to show that the EXIT function of constant rate RM codes admits a sharp threshold at
the point of capacity. These bounds were already covered previously in Section 4.3.2, and we now conclude
that constant rate RM codes achieve capacity for the BEC using these estimates.

At first, it seems that both bounds provided in Corollary 5 and Corollary 4 suffice to conclude that
constant rate RM codes achieve capacity. However, there is a slight technicality - the EXIT function does
not capture the error probability over the BEC in the classical sense of ML decoding, but rather bit-MAP
decoding (See Section 3.5).

Proposition 10. We have the following inequality:

biterr(BEC(p),RM(m, r)) ≤ err(BEC(p),RM(m, r)) ≤ 2m

d
biterr(BEC(p),RM(m, r))

where d = 2r is the distance of RM(m, r).

Proof Sketch. The first inequality is immediate as if the ML decoder fails than at least one bit was not
decoded. We proceed with the second inequality. If all but at most d− 1 coordinates were decoded then the
codeword is uniquely determined. By Markov’s inequality this does not occur with probability at most

E[#bits not decoded]

d
.

Recall that the expected number of bits that cannot be decoded is exactly

2m · biterr(BEC(p),RM(m, r))

by definition. This completes the proof.

Theorem 21. Constant rate RM codes achieve capacity for the BEC.

Proof. Recall that biterr(BEC(p),RM(m, r)) = ph(p) where h is the EXIT function of the RM code
RM(m, r) (See Lemma 3.2). Thus, we can bound h(p) using Corollary 5 and then the result follows from
the inequality in Proposition 10.

The above proof crucially depends on the sharp estimate of Bourgain-Kalai (Theorem 12) rather than
the standard sharp threshold theorem (Theorem 11) as otherwise the bounds on the EXIT function are
insufficient. While Theorem 11 is a “textbook result” in the field of boolean functions, Theorem 12 is
considered to be notoriously difficult. Thus, it is desirable to have a proof that relies on Theorem 11 without
resorting to the heavy machinery of the Bourgain-Kalai result. Such alternate proof was given in [83]. The
proof is especially interesting because it utilizes both the combinatorial and analytical approach - the weight
enumerator bounds from Section 4.1, and the EXIT function bounds from Section 4.3.2.

The following can be though of as a hybrid between Proposition 10 and the Bhattacharyya bound for the
BEC.

Proposition 11. Let p ∈ (0, 1), k a positive integer which is at most 2m and h(p) the EXIT function of
RM(m, r). Then,

err(BEC(p),RM(m, r)) ≤
∑

1≤i<k
Ar,m (i) pi +

2m

k
· biterr(BEC(p),RM(m, r))
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Proof Sketch. Without the loss of generality we may focus on the zero codeword. We shall analyze the prob-
ability in which the MAP decoder decodes to a nonzero f ∈ Pm,r in the case awt(f) ≤ k and awt(f) > k.
If awt(f) ≤ k then it is not hard to see that the probability in which the MAP decoder decodes to f is at most
pawt(f). Let us analyze the event in which the MAP decoder decodes to some g ∈ {f ∈ Pm,r | awt(f) ≥ k}.
In that case, it has to be that least k coordinates were not decoded successfully. By Markov’s inequality this
occurs with probability at most

E[#bits not decoded]

k
.

Recall that the expected number of bits that cannot be decoded is exactly 2m · biterr(BEC(p),RM(m, r))
then this event is bounded by

2m

k
· biterr(BEC(p),RM(m, r)).

The error probability is then bounded by the sum of these events which concludes the proof.

Lemma 7 (Lemmas 3,4 in [83]). Let RM(m, r) RM code with constant R ∈ (0, 1) rate. Then, for any
constants z, β ∈ (0, 1) ∑

2−r≤α≤2−βm

z2mαAr,m (α) = o(1) (23)

Proof Sketch. Write α = 2−` and z2mα = 2− log(1/z)2m−` , and recall the estimate Theorem 4 on the weight
distribution

Ar,m

(
2−`
)
≤ 2

O(m4)+O(`)·(m−`≤r−`).

Since β is constant, and the assumption on the rate we have r−`
m−` ≤ 1/2 − Ω(β) so we can use the bound(

m−`
≤r−`

)
≤ 2(m−`)H2( r−`m−`). Thus, a single summand in Equation (23) is upper bounded by

2− log(1/z)2m−`+O(m4)+2
(m−`)H2( r−`m−`)+log(`)+O(1)

.

Applying the Taylor series of the binary entropy around 1/2 we have

H2

(
r − `
m− `

)
≤ 1− 1

2 ln 2

(
1− 2(r − `)

m− `

)2

Neglecting the O(m4) and log(`) + O(1) terms, and noting that H2

(
r−`
m−`

)
< 1 − Ω(β2) we get that the

term − log(1/z)2m−` dominates the exponent. Taking into account that there are at most 2m terms in the
summand, then a trivial estimate for Equation (23) is

2m · z2m−r .

Using the constant rate assumption m− r ≥ m/2 + o(1), and as z is constant the above is clearly o(1).

We now put it altogether to obtain an alternate proof for Theorem 21 that does not rely on the Bourgain-
Kalai sharp threshold estimate [81] but rather on the more conservative estimate in Theorem 11.

Alternate Proof for Theorem 21. First, recall that ph(p) equals the bit-MAP error probability where h(p)
is the EXIT function of RM(m, r) (See Lemma 3.2). Applying Proposition 11 with k = 2(1−β)m for
sufficiently small constant β that will be determined later

err(BEC(p),RM(m, r)) ≤
∑

1≤i<k
Ar,m (i) pi +

2m

k
h(p). (24)
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The first term can be estimated using Equation (23). For the second term, Corollary 4 implies that assuming
RM(m, r) has constant rate R

h(1−R− o(1)) = n−Ω(1)

where n = 2m is the block-length. Therefore, the second term is bounded by 2(β−Ω(1))m and so for suffi-
ciently small β this term is o(1) as well. Together this shows that Equation (24) is o(1) as required.

5.4 RM codes achieve capacity on BMS channels at constant rate under bit-MAP
decoding [5]

Recently, Reeves and Pfister proved that constant-rate RM codes achieve capacity on all BMS channels
under bit-MAP decoding [5]. Before explaining their proof, we would like to point out two differences
between the result in [5] and the results discussed in previous subsections. The first difference is that the
result in [5] holds for all BMS channels while the results in previous subsections only hold for some specific
channels—either BEC or BSC. However, the generality of the result in [5] was obtained at the expense of
a weaker bound on the decoding error probability. In all the previous subsections, when we say ‘achieving
capacity’ we mean the classical definition of ‘achieving capacity under block-MAP decoding’, i.e., the code
rate approaches channel capacity and the block error probability approaches 0. In contrast, [5] proved that
RM codes ‘achieve capacity under bit-MAP decoding’, which means that the code rate approaches channel
capacity and the bit error probability approaches 0. Achieving capacity under bit-MAP decoding is weaker
than achieving capacity under block-MAP decoding, as one usually needs biterr(W,C) = o(1/n) to show
that err(W,C) = o(1), where n is the code length of C.

We first introduce some notation for general BMS channels. Rather than focusing on a specific BMS
channel W , we consider a family of channels {W (t)} indexed by a parameter t ∈ [0, 1], where each W (t)
is a channel from a common input alphabet X to a common output alphabet Y . We assume throughout
that t = 0 is the perfect channel (i.e., I(W (0)) = 1) and t = 1 is the completely noisy channel (i.e.,
I(W (1)) = 0). We still use X = (X1, . . . , Xn) to denote a codeword chosen uniformly at random from
some code C. The channel output random vector Y = (Y1, . . . , Yn) is obtained as follows: Suppose that
each Xi is transmitted through the channel W (ti) for some ti ∈ [0, 1], and Yi is the corresponding channel
output. Below we use the notation Y (t1, . . . , tn) to make the dependence on the channel parameters explicit.
If t1 = t2 = · · · = tn = t, then we simply write Y (t1, . . . , tn) as Y (t).

Since H(X|Y (0)) = 0 (the perfect channel) and H(X|Y (1)) = H(X) = dim(C) (the completely
noisy channel), we have

dim(C) =

∫ 1

0

{
d

ds
H(X | Y (s))

}
s=t

dt

=

n∑
i=1

∫ 1

0

{
∂

∂si
H (X | Y (s1, . . . , sn))

}
s1=···=sn=t︸ ︷︷ ︸

GEXIT function of entry i

dt,
(25)

where the generalized EXIT (GEXIT) function of the ith entry is defined as

GEXITi(t) =
∂

∂si
H (X | Y (s1, . . . , sn))

∣∣∣
s1=···=sn=t

for t ∈ [0, 1]. (26)

For the rest of this subsection we suppose that the code C is a RM code. Then the symmetry and transitivity
of RM codes imply that GEXIT1(t) = GEXIT2(t) = · · · = GEXITn(t). In this case, equation (25) becomes∫ 1

0
GEXITi(t) dt =

dim(C)

n
= rate (C) (27)
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for all i ∈ [n]. This equality is known as the GEXIT area theorem.
The analysis of the GEXIT function is difficult due to its complicated definition. Instead, paper [5]

chose to analyze the extrinsic MMSE function and proved that this function transitions quickly from 0 to 1
as n → ∞. Since the extrinsic MMSE function is closely related to the GEXIT function, the GEXIT area
theorem allows us to pin down the transition point of the the extrinsic MMSE function, which is precisely
the capacity of the underlying BMS channel.

In order to define the extrinsic MMSE function, we need a slight modification on the code C. Previously,
we have always assumed that C ⊆ {0, 1}n, i.e., each coordinate in a codeword takes value in {0, 1}. In
this subsection we will assume that C ⊆ {−1, 1}n. More precisely, we start with a standard binary code
C ⊆ {0, 1}n. Then for every codeword in C, we apply the following mapping to each of its coordinates:

0 7→ 1 and 1 7→ −1.

In this way, we obtain a code C ⊆ {−1, 1}n. Readers familiar with communication systems would recognize
that the above mapping is simply the BPSK modulation.

We still useX to denote a random codeword, but this time eachXi takes value in {−1, 1}. The extrinsic
MMSE function of the ith coordinate is defined as

Mi(t) := E
[
(Xi − E [Xi | Y∼i(t)])2

]
, t ∈ [0, 1],

where Y∼i(t) is the vector obtained from discarding the ith coordinate in Y (t). Again by the symmetry
and transitivity of RM codes, we have M1(t) = · · · = Mn(t). Sometimes we will omit the subscript i and
simply denote the extrinsic MMSE by M(t). The main technical contribution of [5] is the proof of the sharp
threshold property of the extrinsic MMSE function. More precisely, for the code RM(m, r), [5] proved that∫ 1

0
M(t)(1−M(t))dt = O

(
lnm√
m

)
(28)

which implies that M(t) cannot be too different from a step function that jumps from 0 to 1.
The proof of (28) starts with the following equality

Mi(t) (1−Mi(t)) =
1

2
E
[(
E [Xi | Y∼i(t)]− E

[
Xi | Y ′∼i(t)

])2]
, (29)

where Y ′(t) is an independent second use of the channel with the same input X . For a subset S ⊆ [n],
define

∆S
i (t) =

1

2
E
[(
E [Xi | Y∼i(t)]− E

[
Xi |, Y S

∼i(t)
])2]

where Y S(t) is a modified version of Y (t) in which the entries indexed by S have been resampled according
to the same input X . For a set with a single element, we simply write ∆j

i (t) instead of ∆
{j}
i (t). An

application of the Efron-Stein inequality to the right-hand side of (29) gives us

Mi(t) (1−Mi(t)) ≤ ∆B
i (t) +

∑
j∈A

∆j
i (t), where A = [n] \ (B ∪ {i}).

The term ∆B
i (t) is bounded as follows: One can show that if the random codeword X in the definitions

of Mi(t) and ∆B
i (t) is chosen uniformly at random from the code RM(m, r), then for all integers k ≤ m,

there exists for each i ∈ [n] a set B ⊂ [n]\i of size 2m − 2m−k − 1 such that∫ 1

0
∆B
i (t)dt ≤ 4 ln(2)(R(m, r)−R(m+ k, r)), (30)
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where R(m, r) is the rate of the RM(m, r) code. This inequality is proved via a clever use of the nesting
property of RM codes, i.e., there are more than one copy of RM(m, r) codes embedded inside the longer
code RM(m+ k, r). The difference of code rates can be upper bounded by

R(m, r)−R(m+ k, r) ≤ 3k + 4

5
√
m
.

Therefore, the right-hand side of (30) approaches 0 if we set k = o(
√
m).

The term ∆j
i (t) is bounded as follows: One can show that if the input distribution has a doubly transitive

symmetry group, then the following bound holds for all i 6= j,∫ 1

0
∆j
i (t)dt ≤

4 ln 2

n− 1

Finally, the bound (28) is obtained by setting k = d1
2 log2(m)e in (30), where k is the parameter that

determines the size of the set B.
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6 Polarization

Previous chapters were concerned with estimating the weight enumerator of RM codes, using the analytical
or combinatorial approach. In both cases, this is then used for the problem of evaluating the capacity of
RM codes on a given channel by relying on upper-bounds on the error probability in terms of the weight
enumerator. Therefore, the weight enumerator is used as a proxy to upper-bound the error probability of
the code. We now switch to a different type of proxy to bound the error probability, namely, information
measures.

6.1 Information inequalities, entropy conservation and polarization

We start by recalling a few basic properties. Consider a random variable X taking value in a finite set X . If
one had to guess the outcome ofX , and if the benchmark is to minimize the probability of getting the wrong
guess, which we denote err(X), then the optimal rule is obviously to declare the most likely outcome of X ,
i.e.,

x̂MAP = argmaxx∈X PX(x).

The tie is broken arbitrarily if there are multiple maximizers. This leads to the error probability

err(X) = 1− PX(x̂MAP) = 1−max
x∈X

PX(x).

Lemma 8. Let X be a discrete random variable taking values in a finite set X . Then err(X) ≤ H(X).

Proof. The proof is divided into two cases. Case (i): Suppose that err(X) ≤ 1/2. Then

H(X) =
∑
x∈X

PX(x) log2

1

PX(x)
≥

∑
x∈X ,x 6=x̂MAP

PX(x) log2

1

PX(x)

≥
∑

x∈X ,x 6=x̂MAP

PX(x) log2

1

1− PX(x̂MAP)

=(1− PX(x̂MAP)) log2

1

1− PX(x̂MAP)

=err(X) log2

1

err(X)
≥ err(X),

where the last inequality follows from the assumption err(X) ≤ 1/2. Case (ii): Suppose that err(X) >
1/2. Then

H(X) =
∑
x∈X

PX(x) log2

1

PX(x)
≥
∑
x∈X

PX(x) log2

1

PX(x̂MAP)

= log2

1

PX(x̂MAP)
= log2

1

1− err(X)
> 1 ≥ err(X).

This completes the proof of the lemma.

Consider now two random variables X,Y taking values in the set X × Y according to the joint distri-
bution PX,Y . Suppose that Y is observed and we want to guess the value of X given the observation of Y .
When we observe Y = y, the optimal guess is

x̂MAP(y) = argmaxx∈X PX|Y (x|y).
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The tie is broken arbitrarily if there are multiple maximizers. The corresponding error probability is

err(X|Y = y) = 1− PX|Y (x̂MAP(y)|y) = 1−max
x∈X

PX|Y (x|y).

We further define
err(X|Y ) =

∑
y∈Y

err(X|Y = y)PY (y).

Lemma 8 immediately implies that err(X|Y = y) ≤ H(X|Y = y) for all y ∈ Y . Therefore,

err(X|Y ) ≤ H(X|Y ). (31)

This inequality also holds when X and Y are random vectors.
Now we can apply this to the setting where Xn = (X1, . . . , Xn) is a codeword10 drawn uniformly

at random in some code C, such as RM(m, r), and Y n = (Y1, . . . , Yn) is the output random vector of
Xn through a given BMS channel. Inequality (31) implies that if H(Xn|Y n) ≈ 0, then the block-MAP
decoding error probability err(Xn|Y n) is also close to 0. A “good” code should have decoding error
probability approaching 0 while containing as many codewords as possible. Since H(Xn|Y n) is an upper
bound on the decoding error probability, and H(Xn) = log2(|C|) measures the number of codewords in C,
the above condition for “good” codes translates into

H(Xn|Y n) vanishing while H(Xn) as large as possible. (32)

For the case of linear codes, the (random) codewordX is generated from a k×n generator matrixGk×n.
More precisely, (X1, . . . , Xn) = (U1, . . . , Uk)Gk×n, where (U1, . . . , Uk) is the message vector consisting
of i.i.d. Bernoulli-1/2 components. In this setting, the requirement in (32) becomes H(U1, . . . , Uk|Y )
vanishing while k as large as possible.

One way to construct a good generator matrix Gk×n is first constructing an n×n square matrix Gn that
is full rank. Then pick k rows from Gn to form the matrix Gk×n. This time we use a message vector of
length n, denoted by Un = (U1, . . . , Un), still consisting of i.i.d. Bernoulli-1/2 components. The (random)
codeword Xn = (X1, . . . , Xn) is given by Xn = UnGn. Since Gn is invertible, X1, . . . , Xn are also i.i.d.
Bernoulli-1/2 random variables. As a consequence, H(Xn|Y n) = nH(X1|Y1). Therefore,∑

i∈[n]

H(Ui|Y n, U i−1) = H(Un|Y n) = H(Xn|Y n) = nH(X1|Y1), (33)

where U i−1 is the shorthand notation for (U1, U2, . . . , Ui−1). The conditional entropy H(Ui|Y n, U i−1)
has a natural connection to the successive decoder, which decodes the message bits one by one from U1

to Un. When decoding Ui, the successive decoder already knows the values of all previous message bits
in U i−1 and all the channel outputs in Y . By (31), H(Ui|Y n, U i−1) is an upper bound on the decoding
error probability of the successive decoder when it decodes Ui. In light of (33), we can not hope that
H(Ui|Y n, U i−1) vanishes for all i ∈ [n]. In fact, since H(Ui|Y n, U i−1) ≤ 1 for all i, the conditional
entropyH(Ui|Y n, U i−1) is not vanishing for at least nH(X1|Y1) values of i. Therefore,H(Ui|Y n, U i−1) ≈
0 for at most n− nH(X1|Y1) values of i, and this happens if and only if the conditional entropies polarize,
i.e., for all but a vanishing fraction of i ∈ [n],

H(Ui|Y n, U i−1) is very close to either 0 or 1.

10 In previous sections, we use X to denote the vector (X1, . . . , Xn). Here we use Xn to follow the notation in the polar coding
literature.
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More formally, polarization means that for some ε = o(1/n),

|{i ∈ [n] : H(Ui|Y n, U i−1) ∈ (ε, 1− ε)}| = o(n).

Now denoting the set of ‘deterministic’ components byDε,n := {i ∈ [n] : H(Ui|Y n, U i−1) < ε}, the above
polarization condition together with (33) implies that

|Dε,n| = n(1−H(X1|Y1))− o(n).

Moreover, we have

err((Ui, i ∈ Dε,n) | Y n, (Ui, i /∈ Dε,n))

≤H((Ui, i ∈ Dε,n) | Y n, (Ui, i /∈ Dε,n)) ≤
∑
i∈Dε,n

H(Ui|Y n, U i−1) ≤ ε|Dε,n| = o(1),

where the first inequality follows from (31), the second inequality follows from the fact that conditioning
on more variables reduces entropy, and the last equality follows from the assumption ε = o(1/n). Thus, we
can pick the rows of Gn with row indices in Dε,n to form the generator matrix Gk×n. The resulting code
has a vanishing error probability and code rate 1−H(X1|Y1)− o(1). Since 1−H(X1|Y1) = I(W ) is the
channel capacity of the underlying BMS channel W , this gives us a capacity-achieving code.

The benefit of working in the ‘full rank’ setting described in the previous paragraphs is that the total
entropy is preserved via the linear transform Gn; see (33). Under this invariant, if some of the individual
entropies H(Ui|Y n, U i−1) go up, others must go down. In particular, this gives hope to use recursive
arguments where individual entropies get pushed iteratively towards the extreme. In the case of the BEC
channel, such conditional entropies have an explicit algebraic interpretation in terms of ‘conditional ranks’
[84], but for general channels, these quantities do not have an explicit relation to the algebraic properties of
the code.

We next discuss such polarization processes, underlying how the polar codes and RM codes ordering
are different but related. In a nutshell, both polar codes and RM codes are derived from the same full rank
matrix

Gn :=

[
1 0

1 1

]⊗m
,

where n = 2m. This matrix can also be viewed, up to a permutation of the rows, as the matrix obtained
by evaluating all multivariate monomials on the m-dimensional Boolean hypercube. See Section 2.3 for a
discussion on this. Thus, one can have different orderings from the same full rank matrix, and each of them
can polarize. We also know that not all orderings polarize; for instance, proceeding from the nth row down
to the first row withGn leaves all conditional entropies equal to the originalH(X1|Y1). Polar codes give one
specific ordering that polarizes by simply taking the increasing ordering of the row indices in Gn. Another
natural ordering is the one corresponding to the increasing weights of the rows in Gn, which seems relevant
for RM codes since RM codes select rows of large weights. In fact, as we will explain in Section 6.3, the
code obtained from this ordering for a given channel is equivalent to RM codes if and only if RM codes
achieve capacity on this channel.

6.2 Polar codes polarize and achieve capacity

We now consider an arbitrary BMS channel W . We use the communication model in Fig. 4a to transmit
information overW . As in the last subsection, the input vector Un consists of n i.i.d. Bernoulli-1/2 random
variables. We encode Un by multiplying it with an n × n invertible matrix Gn and denote the resulting



6 Polarization 55

vector as (X1, . . . , Xn) = (U1, . . . , Un)Gn. Then we transmit each Xi through an independent copy of W .
Given the channel output vector Y n, our task is to recover the input vector Un, and we use a successive
decoder to do so. The successive decoder decodes the input vector bit by bit from U1 to Un. When decoding
Ui, it makes use of all the channel outputs Y n and all the previously decoded11 inputs U i−1. The conditional
entropy

Hi := H(Ui|U i−1, Y n)

indicates whether Ui is noisy or noiseless under the successive decoder: If Hi ≈ 0, then Ui is (almost)
noiseless and can be correctly decoded with high probability. If Hi is bounded away from 0, then so is the
decoding error probability of decoding Ui.

As mentioned in the last subsection, we say that the matrix Gn polarizes if almost all Hi, 1 ≤ i ≤ n are
close to either 0 or 1, or equivalently, if almost all Ui, i ≤ i ≤ n become either noiseless or completely noisy.
As discussed in the previous section, an important consequence of polarization is that every polarizing matrix
automatically gives us a capacity-achieving code under the successive decoder. Indeed, ifGn polarizes, then
we can construct the capacity achieving code by putting all the information in the Ui’s whose corresponding
Hi is close to 0 and freezing all the other Ui’s to be 0, i.e., we only put information in the (almost) noiseless
Ui’s. Let G be the set of indices of the noiseless Ui’s. Then the generator matrix of this code is the submatrix
of Gn obtaining by retaining only the rows whose indices belong to G. To show that this code achieves
capacity, we only need to argue that |G| is asymptotic to nI(W ), and this directly follows from

n∑
i=1

Hi = H(Un|Y n) = H(Xn|Y n) = nH(Xi|Yi) = n(1− I(W )), (34)

where the last equality relies on the assumption that W is symmetric. Since almost all Hi’s are close to
either 0 or 1, by the equation above we know that the number of Hi’s that are close to 1 is asymptotic to
n(1 − I(W )), so the number of Hi’s that are close to 0 is asymptotic nI(W ), i.e., |G| is asymptotic to
nI(W ).

In his influential paper [38], Arıkan gave an explicit construction of a polarizing matrix

Gn :=

[
1 0

1 1

]⊗m
,

where ⊗ is the Kronecker product and n = 2m. For example,

G4 :=

[
1 0

1 1

]⊗2

=


1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

 .
Polar codes are simply the capacity-achieving codes constructed from Gn. More precisely:

Theorem 22 (Polarization for Gn). For any BMS channel W and any 0 < ε < 1/2,

|{i ⊆ [2m] : Hi ∈ (ε, 1− ε)}| = o(2m). (35)

Here we give a brief explanation about why this theorem holds without delving into technical details.

Whenm = 1 and n = 2, we haveG2 =

[
1 0

1 1

]
.DefineH(W ) := 1−I(W ). The chain rule of conditional

entropy gives
2H(W ) = H(U1|Y1, Y2) +H(U2|Y1, Y2, U1).

11 Assuming no decoding errors up to U i−1.
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SinceH(U2|Y1, Y2, U1) ≤ H(U2|Y2) = H(W ), we can create two synthetic channelsW− : U1 → (Y1, Y2)
and W+ : U2 → (Y1, Y2, U1) such that H(W−) ≥ H(W ) ≥ H(W+). More precisely, let ∆ := H(W )−
H(W+). Then we have

H(W−) = H(W ) + ∆ ≥ H(W ) ≥ H(W+) = H(W )−∆, (36)

and the above inequalities are strict unless ∆ = H(W )−H(W+) = 0. It has been established that ∆ = 0
if and only if H(W ) = 0 or 1, i.e., W is either noiseless or completely noisy. In fact, a quantitative version
of this claim is known:

Lemma 9 (Lemma 2.2 of [85]). Let W be a BMS channel. For any ε ∈ (0, 1/2), there exists a constant
δ(ε) > 0, which only depends on ε and does not depend on W , such that

H(W ) ∈ (ε, 1− ε) =⇒ ∆ = H(W )−H(W+) = H(W−)−H(W ) > δ(ε). (37)

Therefore, unless the initial channel W is noiseless or completely noisy, the synthesized channel W+ is
strictly better than W , and the synthesized channel W− is strictly worse than W .

When we move to m = 2 and n = 4, we can create four synthetic channels W−−,W−+,W+−,W++

corresponding to the channels mapping Ui to (Y 4, U i−1) where the binary expansion of i (mapping 0 to −
and 1 to +) gives the channel index. Note that the behavior of these channels at m = 2 can be related to that
at m = 1, as suggested by the notation W s1s2 , s1, s2 ∈ {−,+}. Namely, the two channels (W ∗−,W ∗+)
are the synthesized channels obtained by composing two independent copies of W ∗, ∗ ∈ {−,+} with the
transformation G2, as done for m = 1.

This recursive structure continues to hold as we increase the value ofm. Namely, each time by increasing
the value ofm by 1, we produce twice more synthetic channels which are the + and - versions of the original
synthetic channels. For each synthetic channel we have

H(W s−) = H(W s) + ∆s ≥ H(W s) ≥ H(W s+) = H(W s)−∆s, (38)

with ∆s := H(W s)−H(W s+), s ∈ {−,+}m. This follows by the inductive property of G2n:

G2n =

[
Gn 0

Gn Gn

]
.

Note that if W is a BMS channel, then each synthetic channel W s is still a BMS channel. Therefore,
Lemma 9 implies that for every ε ∈ (0, 1/2) and every s ∈ {−,+}m,

H(W s) ∈ (ε, 1− ε) =⇒ ∆s = H(W s)−H(W s+) = H(W s−)−H(W s) > δ(ε), (39)

where δ(ε) is a universal constant that is independent of s. The polarization result is then a consequence
of this recursive process: if one tracks the entropies of the 2m channels at level m, at the next iteration,
i.e., at level m+ 1, one breaks symmetrically each of the previous entropies into one strictly lower and one
strictly larger value, as long as the entropies at level m are not extremal, i.e., not 0 or 1. Therefore, extremal
configurations are the only stable points of this process, and most of the values end up at these extremes,
as stated by Theorem 22. One way to prove this is based on the martingale convergence theorem, together
with the fact that the only two fixed points of the −,+ transforms are at the extremes, or conversely, that for
values other than 0 and 1, a strict movement takes place as in (39).

Here we give an elementary derivation of Theorem 22 without using the martingale convergence theo-
rem. To prove Theorem 22, it suffices to show that

lim
m→∞

1

2m

∑
s∈{−,+}m

H(W s)(1−H(W s)) = 0. (40)
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Define Γm := 1
2m
∑

s∈{−,+}m H(W s)(1−H(W s)). We first prove that Γm+1 ≤ Γm for all m, i.e., Γm is
decreasing with m. By definition,

Γm+1 =
1

2m+1

∑
s∈{−,+}m

[H(W s+)(1−H(W s+)) +H(W s−)(1−H(W s−))]

=
1

2m+1

∑
s∈{−,+}m

[H(W s+) +H(W s−)− (H(W s+))2 − (H(W s−))2]

=
1

2m+1

∑
s∈{−,+}m

[2H(W s)− 1

2
(H(W s+) +H(W s−))2 − 1

2
(H(W s+)−H(W s−))2]

(a)
=

1

2m+1

∑
s∈{−,+}m

[2H(W s)− 2(H(W s))2 − 2∆2
s]

= Γm −
1

2m

∑
s∈{−,+}m

∆2
s,

where equality (a) follows from H(W s−)−H(W s+) = 2∆s. Since {Γm}∞m=1 is a decreasing sequence, it
does have a limit. Lemma 10 below further tells us that if Γm is bounded away from 0, then Γm − Γm+1 =

1
2m
∑

s∈{−,+}m ∆2
s is also bounded away from 0. Therefore, the sequence {Γm}∞m=1 can only converge to

0. This proves (40) and establishes Theorem 22.

Lemma 10. If Γm ≥ ε > 0, then Γm − Γm+1 > 2ε
(
δ(1−

√
1−2ε
2 )

)2
, where the function δ(·) is given in

Lemma 9 and inequality (39).

Proof. Since x(1 − x) ≤ 1/4 for 0 ≤ x ≤ 1, we have H(W s)(1 −H(W s)) ≤ 1/4 for all s ∈ {−,+}m,
and so ε ≤ Γm ≤ 1/4. Define a set D := {s ∈ {−,+}m : H(W s)(1−H(W s)) > ε/2}. Then

ε ≤ Γm =
1

2m

∑
s∈{−,+}m

H(W s)(1−H(W s))

=
1

2m

∑
s∈D

H(W s)(1−H(W s)) +
1

2m

∑
s/∈D

H(W s)(1−H(W s))

≤ 1

2m
1

4
|D|+ 1

2m
ε

2
(2m − |D|)

≤ 1

2m
1

4
|D|+ ε

2
.

Thus we obtain that |D|2m ≥ 2ε. On the other hand, if H(W s)(1 − H(W s)) > ε/2, then 1−
√

1−2ε
2 <

H(W s) < 1+
√

1−2ε
2 . Therefore, ∆s > δ(1−

√
1−2ε
2 ) for all s ∈ D, where the function δ(·) is given in

Lemma 9 and inequality (39). Then we have

Γm − Γm+1 =
1

2m

∑
s∈{−,+}m

∆2
s ≥

1

2m

∑
s∈D

∆2
s >

1

2m
|D|
(
δ(

1−
√

1− 2ε

2
)
)2
≥ 2ε

(
δ(

1−
√

1− 2ε

2
)
)2
.

This completes the proof of the lemma.

Stronger versions of Theorem 22 hold for certain choices of ε = εn that is not a constant and varies with
n. In particular, Theorem 22 still holds for ε = εn = n−2 (in fact, εn can even decay exponentially with
roughly the square-root of n). Therefore, the polar code retaining only rows i of Gn such that Hi ≤ εn has
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(a) Polarization framework
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...
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X2

...

Xn

W

W

...
W

Y1
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...
Yn

(b) Polarization framework for RM codes

Fig. 4: Polarization framework: The input vector Un are i.i.d. Bernoulli(1/2) random variables. Given the
channel output vector Y n, we use successive decoder to decode the input vector Un one by one from top to
bottom.

a block error probability that is upper-bounded by nεn. Since εn = o(1/n), the block error probability is
upper-bounded by nεn = o(1), and the code achieves capacity.

The encoding procedure of polar codes amounts to finding G, the set of noiseless (or “good”) bits,
and efficient algorithms for finding these were proposed and analyzed in [38, 49–53]. In [38], Arıkan also
showed that the successive decoder for polar codes allows for an O(n log n) implementation. Later in [86],
a list decoding version of the successive decoder was proposed, and its performance is nearly the same as
the Maximum Likelihood (ML) decoder of polar codes for a wide range of parameters.

Remark 4 (Universality of polar codes). It was proved in [87] that polar codes are not universal under the
successive cancellation decoder. Specifically, let GBEC,n be the set of noiseless bits for a BEC channel with
capacity 1/2, where n is the code length. Similarly, let GBSC,n be the set of noiseless bits for a BSC channel
with capacity 1/2. The results of [87] showed that

lim
n→∞

1

n
|GBEC,n ∩ GBSC,n| < 1/2,

indicating that the difference between these two sets is not negligible.
However, it is interesting to note that polar codes are universal under the MAP decoder. More precisely,

it was proved in [88, pp. 87–89] that when using the MAP decoder, the polar code constructed for the BSC
channel has vanishing decoding error probability under all BMS channels with the same capacity as the
BSC channel.

Finally, we note that it is possible to modify the construction of polar codes to make them universal
under the successive cancellation decoder [89, 90].

6.3 RM codes polarize and Twin-RM codes achieve capacity

In [29], the authors develop a similar polarization framework to analyze RM codes; see Fig. 4b for an
illustration. More precisely, the monomials xA1 , . . . , xAn defined by the n := 2m subsets A1, . . . , An of
[m], are used in replacement to the increasing integer index i in [n]. We arrange these subsets in the following
order: Larger sets always appear before smaller sets; for sets with equal size, we use the lexicographic order.
Specifically, we always have |Ai| ≥ |Aj | for i < j. Define the matrix

Rn :=


Eval(xA1)

Eval(xA2)
...

Eval(xAn)

 (41)



6 Polarization 59

whose row vectors are arranged according to the order of the subsets. By definition,Rn is a generator matrix
of RM(m,m). Here we give a concrete example of the order of sets and Rn for m = 3 and n = 2m = 8:

A1 = {1, 2, 3}
A2 = {1, 2}
A3 = {1, 3}
A4 = {2, 3}
A5 = {1}
A6 = {2}
A7 = {3}
A8 = ∅

R8 =



1 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

1 0 0 0 1 0 0 0

1 1 1 1 0 0 0 0

1 1 0 0 1 1 0 0

1 0 1 0 1 0 1 0

1 1 1 1 1 1 1 1


.

Note that Rn is a row permutation of Gn. Let UA1 , . . . , UAn be the (random) coefficients of the monomials
xA1 , . . . , xAn . Multiplying the coefficient vector (UA1 , . . . , UAn) with Rn gives us a mapping from the
coefficient vector to the evaluation vector Xn := (UA1 , . . . , UAn)Rn. Then we transmit each Xi through an
independent copy of W and get the channel output vector Y n. We still use the successive decoder to decode
the coefficient vector bit by bit from UA1 to UAn . Similarly to Hi, we define the conditional entropy

HAi := H(UAi |UA1 , . . . , UAi−1 , Y
n),

and by the chain rule we also have the balance equation

n∑
i=1

HAi = n(1− I(W )), (42)

In [29], a polarization result for HAi is obtained, showing that with this ordering too, almost all HAi are
close to either 0 or 1. More precisely:

Theorem 23 (Polarization of RM codes). For any BMS channel W and any 0 < ε < 1/2,

|{i ∈ [2m] : HAi ∈ (ε, 1− ε)}| = o(2m). (43)

In particular, the above still holds for some choices of ε = εn that decay faster than 1/n. Therefore the
code obtained by retaining only the monomials xAi in Rn corresponding to Ai’s such that HAi ≤ εn has
a vanishing block error probability and achieves capacity; this follows from the same reasoning as in polar
codes. We call this code the Twin-RM code as it is not necessarily the RM code. In fact, if the following
implication were true,

|A| > |B| ?
=⇒ HA ≥ HB, (44)

then the Twin-RM would be exactly the RM code, and the latter would also achieve capacity on any BMS.
The same conclusion would hold if (44) held true for most sets; it is nonetheless conjectured in [29] that
(44) holds in the strict sense. To further support this claim, [29] provides two partial results:

(i) Partial order:

A ⊇ B =⇒ HA ≥ HB, (45)

more generally, the implication is shown to hold if there exists B̃ s.t. A ⊇ B̃, |B̃| = |B| and B̃ is less
than B and each component of B̃ is smaller than or equal to the corresponding component of B (as
integers).
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(ii) For the BSC, (44) is proved up to 2m = 16, and numerically verified for some larger block lengths.

It is also shown in [29] that it suffices to check (44) for specific subsets. It is useful at this point to
introduce the division of the input bits of RM(m, r) into m + 1 layers, where the jth layer corresponds to
the subsets of [m] with size j, and the range of j is from 0 to m. Therefore, the 0th layer only has one bit
U1, and the first layer hasm bits U2, U3, . . . , Um+1. In general, the ith layer has

(
m
i

)
bits. It is shown in [29]

that it suffices to check (44) for subsets A,B that are respectively the last and first subsets in consecutive
layers, as these are shown to achieve respectively the largest and least entropy within layers. Further, it was
shown in [91] that the above ordering, together with a generalized ordering, allow to show that a δ-almost
RM code, i.e., a linear code spanned by the evaluations of all but a δ fraction of the monomials of degree at
most d, achieves positive rate on the BSC. Namely, that for any δ > 0 and any ε > 0, there exists a family
of δ-almost Reed–Muller codes of constant rate that correct 1/2 − ε fraction of random errors with high
probability.

We now present the proof technique for Theorem 23.
Proof technique for Theorem 23. For RM codes, the inductive argument for polar codes is broken. In

particular, we no longer have a symmetric break of the conditional entropies as in (38), hence no obvious
martingale argument. Nonetheless, we next argue that the loss of the inductive/symmetric structure takes
place in a favorable way, i.e., the spread in (38) tends to be greater for RM codes than for polar codes. In
turn, we claim that the conditional entropies polarize faster in the RM code ordering (see [29]). We next
explain this and show how one can take a short-cut to show that RM codes polarize using increasing chains
of subsets, exploiting the Plotkin recursive structure of RM codes and known inequalities from polar codes.
We first need to define increasing chains.

Definition 16 (Increasing chains). We say that ∅ = B0 ⊆ B1 ⊆ B2 ⊆ · · · ⊆ Bm = [m] is an increasing
chain if |Bi| = i for all i = 0, 1, 2, . . . ,m.

As for polar codes, we will make use of the recursive structure of RM codes, i.e., the fact that RM(m+
1,m+ 1) can be decomposed into two independent copies of RM(m,m). In order to distinguish HA’s for
RM codes with different parameters, we add a superscript to the notation, writing H(m)

A instead of HA. A
main step in our argument consist in proving the following theorem:

Theorem 24 (RM polarization on chains). For every BMS channel W , every positive m and every increas-
ing chain {Bi}mi=0, we have

H
(m)
B0
≤ H(m)

B1
≤ H(m)

B2
≤ · · · ≤ H(m)

Bm
. (46)

Further, for any ε ∈ (0, 1/2), there is a constant D(ε) such that for every positive m and every increasing
chain {Bi}mi=0, ∣∣∣{i ∈ {0, 1, . . . ,m} : ε < H

(m)
Bi

< 1− ε
}∣∣∣ ≤ D(ε). (47)

Note that D(ε) does not depend on m here. This theorem relies strongly on the following interlacing
property over chains.

Lemma 11 (Interlacing property). For every BMS channel W , every positive m and every increasing chain
{Bi}mi=0, we have

H
(m+1)
Bi

≤ H(m)
Bi
≤ H(m+1)

Bi+1
∀i ∈ {0, 1, . . . ,m}. (48)

The proof of Theorem 24 relies mainly on the previous lemma and the following polar-like inequality:
for any ε ∈ (0, 1/2), there is δ(ε) > 0 such that for any increasing chain and any i ∈ {0, 1, . . . ,m},

H
(m)
Bi
∈ (ε, 1− ε) =⇒ H

(m)
Bi
−H(m+1)

Bi
> δ(ε) and H(m+1)

Bi+1
−H(m)

Bi
> δ(ε). (49)
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Fig. 5: Illustration of the interlacing property in (48) used in the proofs of Theorem 24.
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Fig. 6: The fast polar transform with block size 4. The dots on the second line are the results of the standard
polar transform, and the dots on the third line are the results of fast polar transform. In the fast polar
transform, the bit-channel obtained by adding a monomial gets even worse (i.e., has even more entropy)
than what would the classical polar − transform produce on that bit-channel, and similarly, the better bit-
channel obtained by not adding the monomial is even better (less entropic) that what the polar + transform
would produce. Therefore, the gap between H(m+1)

Ai∪{m+1} and H(m+1)
Ai

is always larger than the gap between

H((W
(m)
Ai

)−) and H((W
(m)
Ai

)+). Intuitively, this explains why RM codes polarize and do so even faster
than polar codes (although the formal proof uses the increasing chain argument).
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Note that (49) is analogous to (39) except that (i) it does not involve the +,− transform of polar codes
but the augmentation or not of a monomial with a new element, (ii) the resulting spread is not necessarily
symmetrical as in (38). This is where it can be seen that RM codes have a bigger spread of polarization than
polar codes, as further discussed below.

We first note that (46) follows directly from the interlacing property (48); see Fig. 5 for an illustration
of this. To prove (47), we combine (46) with the polar-like inequality (49). Indeed, by (49) we know that as
long as H(m)

Bi
> ε and H(m)

Bi+1
< 1− ε, we have H(m)

Bi+1
−H(m)

Bi
> 2δ; see Fig. 5 for an illustration. Let j be

the smallest index such that H(m)
Bj

> ε, and let j′ be the largest index such that H(m)
Bj′

< 1− ε. Then∣∣∣{i ∈ {0, 1, . . . ,m} : ε < H
(m)
Bi

< 1− ε
}∣∣∣ = j′ − j + 1.

Since H(m)
Bi

increases with i, we have H(m)
Bj′
− H(m)

Bj
=
∑j′−1

i=j (H
(m)
Bi+1

− H(m)
Bi

) > 2(j′ − j)δ, and since

H
(m)
Bj′
−H(m)

Bj
is upper bounded by 1, we have j′ − j < 1

2δ . Therefore,

∣∣∣{i ∈ {0, 1, . . . ,m} : ε < H
(m)
Bi

< 1− ε
}∣∣∣ < 1

2δ
+ 1.

Thus we have proved (47) with the choice of D(ε) = 1/(2δ(ε)) + 1.
Now we are left to explain how to prove (48)–(49). In Fig. 4b, we define the bit-channel W (m)

Ai
as

the binary-input channel that takes U (m)
Ai

as input and Y n, (U
(m)
Aj

: j < i) as outputs, i.e., W (m)
Ai

is the

channel seen by the successive RM decoder when decoding U (m)
Ai

. By definition, we have H(m)
Ai

= 1 −
I(W

(m)
Ai

). Making use of the fact that RM(m+ 1,m+ 1) can be decomposed into two independent copies
of RM(m,m), one can show the larger spread of RM code split. More precisely, for every Ai ⊆ [m], the
bit-channelW (m+1)

Ai
is always better than the “+” polar transform ofW (m)

Ai
, and the bit-channelW (m+1)

Ai∪{m+1}

is always worse than the “−” polar transform of W (m)
Ai

, i.e.,

H
(m+1)
Ai

≤ H((W
(m)
Ai

)+) ≤ H(m)
Ai
≤ H((W

(m)
Ai

)−) ≤ H(m+1)
Ai∪{m+1}.

Therefore, the gap between H(m+1)
Ai∪{m+1} and H(m)

Ai
is even larger than the gap between H((W

(m)
Ai

)−) and

H
(m)
Ai

. Similarly, the gap between H
(m)
Ai

and H
(m+1)
Ai

is even larger than the gap between H
(m)
Ai

and

H((W
(m)
Ai

)+); see Fig. 6 for an illustration. Combining this with the polar inequality (39), we have shown
that (48)–(49) hold for any Bi+1 = Bi ∪ {m+ 1}. Then by the symmetry of RM codes, one can show that
H

(m+1)
Bi∪{j} ≥ H

(m+1)
Bi∪{m+1} for all j ∈ [m] \Bi. This proves (48)–(49) and Theorem 24.

Theorem 24 proves a polarization on each increasing chain (See equation (47)). In order to obtain the
global polarization of RM codes (Theorem 23), we observe that there are in total m! increasing chains, and
a careful averaging argument over these m! chains gives the result in Theorem 23.
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7 Scaling law

In this section, we review and explain some basic concepts in communication and information therory,
including finite-length scaling and error exponents. We will also give an overview of results on the finite-
length scaling of RM codes and polar codes.

Shannon’s celebrated channel coding theorem asserts that reliable communication can be established
if and only if the code rate R is below the channel capacity. More precisely, given a channel W and two
(arbitrarily small) positive constants ε, δ > 0, we can always find a code with code rate R > I(W )− δ and
large enough code length such that the decoding error probability err < ε.

We say that a code is optimal for a channel W if it achieves the smallest decoding error probability
for the transmission over W among all codes with the same length and same code rate. Then the channel
coding theorem can be interpreted in two different ways: (i) Suppose that we fix the code rate R < I(W ),
or equivalently, we fix the gap to capacity I(W ) − R to be some positive (and arbitrarily small) constant.
For a family of optimal codes with this fixed code rate R and increasing code length, the decoding error
probability err → 0 as the code length n→∞. (ii) Suppose that we fix the decoding error probability to be
some (arbitrarily small) positive constant err. For a family of optimal codes with this fixed decoding error
probability and increasing code length, the gap to capacity I(W )−R→ 0 as the code length n→∞.

These two interpretations naturally induce the following two questions for optimal codes: (i) When we
fix the code rate R, we know that err → 0 as n → ∞, but how fast does err decay as a function of n?
(ii) When we fix the decoding error probability err, we know that the gap to capacity I(W ) − R → 0 as
n → ∞, but how fast does I(W ) − R decay as a function of n? These two questions have been studied
for decades, and numerous results have been established. For the first question, it is well known that when
we fix R to be some constant that is strictly smaller than I(W ), err decays exponentially fast in n. More
precisely, err scales as exp(−E(R)n), where E(R) is a constant that depends only on R, and this constant
is referred to as the error exponent [62,63,92–96]. For the second question, when we fix the decoding error
probability err to be some (arbitrarily small) constant, the gap to capacity I(W ) − R scales as Θ(1/

√
n)

for optimal codes as well as the random code ensemble [97–102].
After answering the two fundamental questions above, let us consider a more general setting, where both

err and I(W )−R scales as some functions of n. Now suppose that we want err to scale as exp(−Θ(nπ))
for some constant 0 ≤ π ≤ 1, and we ask how does I(W ) − R scale as a function of n in this regime.
This question has also been extensively studied [103–105]. For optimal codes as well as the random code
ensemble, it has been established that I(W )− R = Θ(n−

1
2

(1−π)) when err scales as exp(−Θ(nπ)). Note
that this more general setting includes the two fundamental settings above as special cases: When π = 0,
we get back to the constant err setting; when π = 1, we get back to the constant code rate setting.

The analysis of optimal/random codes over the BEC channel: Let us use a BEC channel with era-
sure probability ε as a toy example to interpret and explain the results discussed above. For simplicity,
let us consider linear codes. Suppose that the code length is n and code dimension is k = Rn. First we
recognize that if more than n − k bits are erased, then there is no way to recover the original codeword.
By the Central Limit Theorem, we know that the number of erasures is εn±Θ(

√
n) with high probability.

Therefore, if n − k − εn = o(
√
n), then with probability ≥ 1/2 more than n − k bits are erased, and so

the decoding error probability is bounded away from 0. By noticing that n− k − εn = o(
√
n) is equivalent

to I(W ) − R � 1/
√
n, we conclude that I(W ) − R ≥ Θ(1/

√
n) is necessary in order to achieve a small

(but constant) err. The other direction, i.e., that I(W ) − R = Θ(1/
√
n) is also sufficient to achieve an

arbitrarily small (but constant) err, requires some random coding arguments which we will not cover in this
monograph.

Now consider the regime where I(W ) − R = Θ(n−
1
2

(1−π)) for some constant 0 ≤ π ≤ 1. This
is equivalent to n − k = εn + Θ(n

1
2

(1+π)). The number of erasures is a binomial random variable with
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parameters n and ε. It is well known12 that P(Binom(n, ε) ≥ εn + Θ(n
1
2

(1+π))) = exp(−Θ(nπ)). Since
the number of erasures < n− k is a necessary condition to recover the original codeword, we conclude that
the decoding error probability err is at least exp(−Θ(nπ)). One can further show that err = exp(−Θ(nπ))
is also achievable with random codes, which we will not cover in this monograph.

The analysis of optimal/random codes over the BSC channel: We now consider a BSC channel with
crossover probability p, which we denote as BSC(p). The channel capacity of BSC(p) is 1−H2(p), where
H2(p) := −p log2(p)−(1−p) log2(1−p) is the binary entropy function. A simple sphere-packing argument
explains why the code rate cannot exceed 1 − H2(p) for reliable communication: In the n-dimensional
Hamming space {0, 1}n, the number of points contained in a Hamming ball with radius np is roughly
2nH2(p). We associate each codeword with a radius-np Hamming ball centered at this codeword. Reliable
communication over BSC(p) requires that almost all vectors in each radius-np Hamming ball are decoded
as the codeword lying at its center. In other words, we require that all these radius-np Hamming balls with
codewords as their centers have no intersections with each other. The n-dimensional Hamming space has 2n

vectors in total, so the number of codewords cannot exceed 2n−nH2(p), i.e., the code rate is upper bounded
by 1−H2(p).

A more refined version of the above argument further tells us that I(W )− R ≥ Θ(1/
√
n) is necessary

in order to achieve a small (but constant) err. We prove this by contradiction. Suppose on the contrary that
I(W )− R � 1/

√
n, i.e., n− k − nH2(p) = o(

√
n). Then the number of codewords is 2n−nH2(p)−o(

√
n),

so the average number of channel output vectors that are decoded into the same codeword is 2nH2(p)+o(
√
n),

which can only cover a Hamming ball with radius ≤ np+ o(
√
n). By the Central Limit Theorem, when the

crossover probability is p, the number of errors is np±Θ(
√
n) with high probability. Therefore, with proba-

bility 1/2, the number of errors is np+ Θ(
√
n), which cannot be corrected by a code with 2n−nH2(p)−o(

√
n)

codewords, and so the decoding error probability of such a code is bounded away from 0. This explains why
the gap to capacity I(W )−R needs to be Θ(1/

√
n) in order to achieve arbitrarily small (but constant) err

over BSC.
The definition of scaling exponent: In the above discussion, we analyzed how err and I(W ) − R

jointly scale as functions of code length n for optimal codes and random codes. The same questions can
be asked for any capacity-achieving13 code family. We say that a capacity-achieving code family has a
polynomial gap to capacity if there exists a constant µ > 0 such that for any fixed decoding error probability
err > 0, the gap to capacity satisfies I(W ) − R < n−1/µ when n is large enough. The smallest µ that
satisfies the inequality I(W ) − R < n−1/µ for large enough n is called the scaling exponent of the code
family. According to this definition, smaller scaling exponent means that the code has a smaller gap to
capacity. Since the scaling exponent of optimal codes and random codes is 2, the scaling exponent of any
other code family is at least 2.

The scaling of polar codes: It has been established that polar codes have a polynomial gap to capacity
[43, 44]. In particular, [43] proved that when using the successive cancellation (SC) decoder, the scaling
exponent of polar codes is at least 3.579 for any BMS channel. The authors of [106] further proved an
upper bound µ ≤ 4.714 valid for any BMS channel and improved this upper bound to µ ≤ 3.639 for the
case of the BEC. Numerical simulations in [107] showed that the scaling exponent of polar codes is about
3.63 for BEC and 4.01 for binary-input AWGN channels. These numbers imply that polar codes with the
SC decoder have a much larger gap to capacity than optimal codes and random codes. At the same time,
improvement on the gap to capacity (or equivalently, the scaling exponent) is available for polar codes at
the expense of higher encoding and decoding complexity. It has been shown in [108,109] that if we replace
the matrix Gn in (2) with G⊗m for some large enough square matrix G, then the resulting polar codes have

12 One can prove this using the Chernoff bound together with the fact that Chernoff bound is tight up to constant factors in the
exponent.

13 We require the code family to be capacity achieving because otherwise the gap to capacity I(W )−R will not decrease to 0 as
n→∞.
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Fig. 7: Comparison between the performance of RM(7, 3) and the meta-converse bound in [102]

scaling exponent 2 under the SC decoder for any BMS channel. However, since we use a very large G in
the code construction procedure, both the encoding and the SC decoding of this new polar code have much
higher complexity than the standard polar codes. The results in [109] were further extended in [110] to show
that by using a large enough matrix G in the polar code construction, polar codes in fact achieve the jointly
optimal scaling of I(W ) − R = Θ(n−

1
2

(1−π)) and err = exp(−Θ(nπ)) under the SC decoder. Note that
the joint scaling between the gap to capacity and error probability for standard polar codes was analyzed in
[106].

The scaling of RM codes: The definition of scaling exponent can be extended to more general code
families which are not necessarily capacity-achieving. More precisely, for a given code C with code length
n, we use errML(p) to denote its block error probability under the ML decoder when transmitting over the
BSC(p) channel. Given a positive number 0 < δ < 1/2, define width(δ) := err−1

ML(1− δ)− err−1
ML(δ) as

the amount of change in the channel crossover probability when the ML decoding error decreases from 1−δ
to δ, where err−1

ML is the inverse function of errML. Note that width(δ) depends on the code C although
we omit this dependence in the notation. The scaling exponent of a code family is defined as the smallest µ
that satisfies the inequality width(δ) < n−1/µ for any 0 < δ < 1/2 and large enough n. If we set δ to be
very close to 0, the inequality width(δ) < n−1/µ implies that the ML decoding error probability transitions
from (almost) 0 to (almost) 1 in a narrow window of channel crossover probability, and the width of the
window approaches 0 as n → ∞. For the class of capacity-achieving codes, this narrow window locates at
H−1

2 (1 − R), where R is the rate of the code and H−1
2 is the inverse of the binary entropy function. For a

general code family, it is notoriously difficult to locate the window of the sharp transition. However, a classic
result from Tillich and Zemor [111] asserts that for binary linear codes, the width of the transition window
is O(1/

√
d), where d is the distance of the code. This result allows us to establish the sharp transition of

the ML decoding error probability for a linear code family even if we don’t know whether this code family
achieves capacity or not.

In order to apply the result of [111] to RM codes, we need the following result about the distance of RM
codes: If we fix the code rate of RM codes to be some positive constant R ∈ (0, 1) and let the code length n
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goes to infinity, then the code distance d = Ω(n1/2−α) for arbitrarily small constant α > 0. To see this, we
recall that the distance of the code RM(m, r) is d = 2m−r and the code rate is

R =

(
m
0

)
+
(
m
1

)
+
(
m
2

)
+ · · ·+

(
m
r

)
2m

.

Let Z1, Z2, . . . , Zm be m i.i.d. Bernoulli-1/2 random variables. It is easy to see that

R = P [Z1 + Z2 + · · ·+ Zm ≤ r] .

Since we consider the regime of m → ∞, Central Limit Theorem tells us that R is bounded away from 0
and 1 if and only if r = m/2 ± Θ(

√
m). Therefore, for RM codes, the code rate R ∈ (0, 1) implies that

d = 2m/2±Θ(
√
m) = Ω(n1/2−α) for arbitrarily small constant α > 0. Taking d = Ω(n1/2−α) into the result

of [111], we obtain that the width of the transition window for constant-rate RM codes is O(1/n1/4−α) for
arbitrarily small constant α > 0. Recently, [30] improved the bound on the transition width of RM codes
to O(1/n1/2−α) for arbitrarily small constant α > 0. The result of [30] implies that if RM codes achieve
capacity, then RM codes’ gap to capacity is almost optimal since Θ(1/

√
n) is the smallest possible gap to

capacity for any code.
In Fig. 7, we compare the performance of the RM(7, 3) code with the dispersion meta-converse bound

in [102]. More specifically, we use Dumer’s recursive list decoder [11–13] to decode the RM(7, 3) code.
We choose the list size to be 128, which allows the decoding error probability of the recursive list decoder to
be very close to the ML decoder for the RM(7, 3) code. The code length and code dimension of RM(7, 3)
are n = 128, k = 64. The dispersion meta-converse bound in [102] gives a lower bound on the decoding
error probability for any code with the same code length and code dimension. As we can see from Fig. 7,
there is still a gap between the ML performance of RM codes and the meta-converse bound.
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8 Decoding algorithms

We will survey various decoding algorithms for RM codes in this section. We divide these algorithms into
three categories. The first category (Section 8.1) only consists of Reed’s algorithm [6]: This is the first
decoding algorithm for RM codes, designed for the worst-case error correction, and it can efficiently correct
any error pattern with Hamming weight up to half the code distance. The second category (Section 8.2)
includes efficient algorithms designed for correcting random errors or additive Gaussian noise. These al-
gorithms afford good practical performance, especially in the short to medium code length regime or for
low-rate RM codes. Yet due to complexity constraints, most of them are not efficient for decoding RM
codes with long code length. More specifically, we will cover the Fast Hadamard Transform decoder [7, 8]
for first-order RM codes, Sidel’nikov-Pershakov algorithm and its variants [9, 10], Dumer’s list decoding
algorithm [11–13] and Recursive Projection-Aggregation algorithm [14] as well as an algorithm based on
minimum-weight parity checks [45]. Finally, the last category (Section 8.3) again only consists of a single
decoding algorithm—a Berlekamp-Welch type decoding algorithm proposed in [15]. This algorithm is de-
signed for correcting random errors. Its performance guarantee (i.e., its polynomial run-time estimate) was
established for decoding RM codes of degrees up to r = o(

√
m) while all the previous decoding algorithms

discussed in this section only have performance guarantee for constant value of r (i.e., we do not have poly-
nomial upper bounds on their run time at other regimes of parameters). In fact, this algorithm also gives
interesting results for degrees r = m− o(

√
m/ logm).

8.1 Reed’s algorithm [6]: Unique decoding up to half the code distance

In this section, we recap Reed’s decoding algorithm [6] for RM(m, r). It can correct any error pattern with
Hamming weight less than 2m−r−1, half the code distance.

For a subset A ⊆ [m], we write A = [m] \ A and we use VA := {z ∈ Fm2 : zi = 0 ∀i ∈ A} to denote
the |A|-dimensional subspace of Fm2 , i.e., VA is the subspace obtained by fixing all zi’s to be 0 for i outside
of A. For a subspace VA in Fm2 , there are 2m−|A| cosets of the form VA + b := {z + b : z ∈ VA}, where
b ∈ Fm2 . For any A ⊆ [m] and any b ∈ Fm2 , we always have∑

z∈(VA+b)

Evalz(xA) = 1, (50)

and we also have that for any A 6⊂ B, ∑
z∈(VA+b)

Evalz(xB) = 0. (51)

The sums in (50)–(51) are both over F2. To see (50), notice that Evalz(xA) = 1 if and only if zi = 1
for all i ∈ A, and there is only one such z ∈ (VA + b). To see (51): Since A 6⊆ B, there is i ∈ (A \
B). The value of zi does not affect the evaluation Evalz(xB). Therefore,

∑
z∈(VA+b),zi=0 Evalz(xB) =∑

z∈(VA+b),zi=1 Evalz(xB), and (51) follows immediately.
Suppose that the binary vector y = (yz : z ∈ Fm2 ) is a noisy version of a codeword Eval(f) ∈ RM(m, r)

such that y and Eval(f) differ in less than 2m−r−1 coordinates. Reed’s algorithm recovers the original
codeword from y by decoding the coefficients of the polynomial f . Since deg(f) ≤ r, we can always
write f =

∑
A⊆[m],|A|≤r uAxA, where uA’s are the coefficients of the corresponding monomials. Reed’s

algorithm first decodes the coefficients of all the degree-r monomials, and then it decodes the coefficients
of all the degree-(r − 1) monomials, so on and so forth, until it decodes all the coefficients.

To decode the coefficients uA for |A| = r, Reed’s algorithm first calculates the sums
∑

z∈(VA+b) yz over
each of the 2m−r cosets of the subspace VA, and then it performs a majority vote among these 2m−r sums:
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If there are more 1’s than 0’s, then we decode uA as 1. Otherwise we decode it as 0. Notice that if there is
no error, i.e., if y = Eval(f), then we have∑

z∈(VA+b)

yz =
∑

z∈(VA+b)

Evalz(
∑

B⊆[m],|B|≤r

uBxB) =
∑

B⊆[m],|B|≤r

uB
∑

z∈(VA+b)

Evalz(xB).

According to (50)–(51), for the subsets B ⊆ [m] with |B| ≤ r = |A|, ∑z∈(VA+b) Evalz(xB) = 1 if and
only if B = A. Therefore,

∑
z∈(VA+b) yz = uA for all the 2m−r cosets of the form VA + b if y = Eval(f).

Since we assume that y and Eval(f) differ in less than 2m−r−1 coordinates, there are less than 2m−r−1

cosets for which
∑

z∈(VA+b) yz 6= uA. After the majority voting among these 2m−r sums, we will obtain
the correct value of uA.

After decoding all the coefficients of the degree-r monomials, we can calculate

y′ = y − Eval(
∑

B⊆[m],|B|=r

uBxB).

This is a noisy version of the codeword Eval(f−∑B⊆[m],|B|=r uBxB) ∈ RM(m, r−1), and the number of
errors in y′ is less than 2m−r−1 by assumption. Now we can use the same method to decode the coefficients
of all the degree-(r−1) monomials from y′. We then repeat this procedure until we decode all the coefficients
of f .

Theorem 25. For a fixed r and growing m, Reed’s algorithm corrects any error pattern with Hamming
weight less than 2m−r−1 in O(n logr n) time when decoding RM(m, r).

Reed’s algorithm is summarized below:

Algorithm 1 Reed’s algorithm for decoding RM(m, r)

Input: Parameters m and r of the RM code, and a binary vector y = (yz : z ∈ Fm2 ) of length n = 2m

Output: A codeword c ∈ RM(m, r)

1: t← r
2: while t ≥ 0 do
3: for each subset A ⊆ [m] with |A| = t do
4: Calculate

∑
z∈(VA+b) yz for all the 2m−t cosets of VA

5: num1← number of cosets (VA + b) such that
∑

z∈(VA+b) yz = 1

6: uA ← 1[num1 ≥ 2m−t−1]
7: end for
8: y ← y − Eval(

∑
A⊆[m],|A|=t uAxA)

9: t← t− 1
10: end while
11: c← Eval(

∑
A⊆[m],|A|≤r uAxA)

12: Output c

8.2 Decoding algorithms with good practical performance

8.2.1 Fast Hadamard Transform (FHT) for first order RM codes [7,8]

The dimension of the first order RM code RM(m, 1) ism+1, so there are in total 2m+1 = 2n codewords. A
naive implementation of the Maximum Likelihood (ML) decoder requires O(n2) operations. In this section
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we recap an efficient implementation of the ML decoder based on FHT which requires only O(n log n)
operations. We will focus on the soft-decision version of this algorithm, and the hard-decision version can
be viewed as a special case.

Consider a binary-input memoryless channel W : {0, 1} → W . The log-likelihood ratio (LLR) of an
output symbol x ∈ W is defined as

LLR(x) := ln
(W (x|0)

W (x|1)

)
.

We still use y = (yz : z ∈ Fm2 ) to denote the noisy version of a codeword in RM(m, 1). Given the
channel output vector y, the ML decoder for first order RM codes aims to find c ∈ RM(m, 1) to maximize∏
z∈Fm2

W (yz|cz). This is equivalent to finding c which maximizes the following quantity:

∏
z∈Fm2

W (yz|cz)√
W (yz|0)W (yz|1)

,

which is further equivalent to maximizing∑
z∈Fm2

ln
( W (yz|cz)√

W (yz|0)W (yz|1)

)
. (52)

As the codeword c is a binary vector,

ln
( W (yz|cz)√

W (yz|0)W (yz|1)

)
=

{
1
2 LLR(yz) if cz = 0

−1
2 LLR(yz) if cz = 1

.

From now on we will use the shorthand notation

Lz := LLR(yz),

and the formula in (52) can be written as

1

2

∑
z∈Fm2

(
(−1)czLz

)
, (53)

so we want to find c ∈ RM(m, 1) to maximize this quantity.
By definition, every c ∈ RM(m, 1) corresponds to a polynomial in F2[x1, x2, . . . , xm] of degree one, so

we can write every codeword c as a polynomial u0 +
∑m

i=1 uixi. In this way, we have cz = u0 +
∑m

i=1 uizi,
where z1, z2, . . . , zm are the coordinates of the vector z. Now our task is to find u0, u1, u2, . . . , um ∈ F2 to
maximize ∑

z∈Fm2

(
(−1)u0+

∑m
i=1 uiziLz

)
= (−1)u0

∑
z∈Fm2

(
(−1)

∑m
i=1 uiziLz

)
. (54)

For a binary vector u = (u1, u2, . . . , um) ∈ Fm2 , we define

L̂(u) :=
∑
z∈Fm2

(
(−1)

∑m
i=1 uiziLz

)
.

To find the maximizer of (54), we only need to compute L̂(u) for all u ∈ Fm2 , but the vector (L̂(u) : u ∈ Fm2 )
is exactly the Hadamard Transform of the vector (Lz : z ∈ Fm2 ), so it can be computed using the Fast
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Hadamard Transform with complexityO(n log n). Once we know the values of (L̂(u), u ∈ Fm2 ), we can find
u∗ = (u∗1, u

∗
2, . . . , u

∗
m) ∈ Fm2 that maximizes |L̂(u)|. If L̂(u∗) > 0, then the decoder outputs the codeword

corresponding to u∗0 = 0, u∗1, u
∗
2, . . . , u

∗
m. Otherwise, the decoder outputs the codeword corresponding to

u∗0 = 1, u∗1, u
∗
2, . . . , u

∗
m. This completes the description of the soft-decision FHT decoder for first order RM

codes.
The hard-decision FHT decoder is usually used for random errors, or equivalently, used for error cor-

rections over BSC. For BSC, the channel output y = (yz : z ∈ Fm2 ) is a binary vector. Suppose that the
crossover probability of BSC is p < 1/2, then Lz = ln(1−p

p ) if yz = 0, and Lz = − ln(1−p
p ) if yz = 1.

Since rescaling the LLR vector by a positive factor does not change the maximizer of (54), we can divide
the LLR vector by ln(1−p

p ) when decoding RM codes over BSC(p). This is equivalent to setting Lz = 1
for yz = 0 and Lz = −1 for yz = 1. Then the rest of the hard-decision FHT decoding is the same as the
soft-decision version.

Theorem 26. The FHT decoder finds the ML decoding result in O(n log n) time when decoding first order
RM codes.

FHT can also be used for list decoding of first order RM codes. For list decoding with list size s, we
find s vectors u(1), . . . , u(s) that give the largest values of |L̂(u)| among all vectors in Fm2 .

As a final remark, we mention that first order RM codes can also be decoded efficiently as geometry
codes [112].

Algorithm 2 FHT decoder for first order RM codes
Input: Code length n = 2m, and the LLR vector (Lz : z ∈ Fm2 ) of the received (noisy) codeword
Output: A codeword c ∈ RM(m, 1)

1: (L̂(u) : u ∈ Fm2 )← FHT(Lz : z ∈ Fm2 )
2: u∗ = (u∗1, u

∗
2, . . . , u

∗
m)← argmaxu∈Fm2 |L̂(u)|

3: if L̂(u∗) > 0 then
4: c← Eval(

∑m
i=1 u

∗
ixi)

5: else
6: c← Eval(1 +

∑m
i=1 u

∗
ixi)

7: end if
8: Output c

8.2.2 Sidel’nikov-Pershakov algorithm [9] and its variant [10]

In [9], Sidel’nikov and Pershakov proposed a decoding algorithm that works well for second order RM
codes with short or medium code length (e.g. ≤ 1024). A version of their decoding algorithm also works
for higher-order RM codes, but the performance is not as good as the one for second order RM codes.

In this section, we recap Sidel’nikov-Pershakov algorithm for second order RM codes. Consider a
polynomial f ∈ F2[x1, . . . , xm] with deg(f) ≤ 2:

f(z1, . . . , zm) =
∑

1≤i<j≤m
ui,jzizj +

m∑
i=1

uizi + u0.

For a vector b = (b1, . . . , bm) ∈ Fm2 , we have

Evalz+b(f) + Evalz(f) =
∑

1≤i<j≤m
ui,j(zi + bi)(zj + bj) +

∑
1≤i<j≤m

ui,jzizj +

m∑
i=1

uibi
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=
∑

1≤i<j≤m
ui,jzibj +

∑
1≤i<j≤m

ui,jbizj +
∑

1≤i<j≤m
ui,jbibj +

m∑
i=1

uibi

=bUzT +
∑

1≤i<j≤m
ui,jbibj +

m∑
i=1

uibi, (55)

where the matrix U is defined as

U :=



0 u1,2 u1,3 . . . u1,m

u1,2 0 u2,3 . . . u2,m

u1,3 u2,3 0 . . . u3,m

...
...

...
...

...
u1,m u2,m u3,m . . . 0


.

Note that Evalz+b(f) + Evalz(f) is the coordinate of the discrete derivative of f at direction b, as defined
in (15).

We first describe the decoder for BSC and then generalize it to other binary-input channels. Suppose
that we transmit the codeword c = Eval(f) ∈ RM(m, 2) through some BSC, and we denote the channel
output vector as y ∈ Fn2 . For a fixed b, the vector (yz+b + yz : z ∈ Fm2 ) is the noisy version of the codeword
in RM(m, 1) corresponding to the polynomial in (55). Note that the vector bU consist of the coefficients
of all the degree-1 monomials in this polynomial. Therefore, we can decode bU from the noisy codeword
(yz+b + yz : z ∈ Fm2 ). A naive way to do so is to decode each bU separately using the FHT decoder
for different vectors b ∈ Fm2 . Sidel’nikov and Pershakov instead proposed to decode bU for all b ∈ Fm2
collectively: The first step is to calculate s candidates for bU that have the largest posterior probability by
decoding (yz+b + yz : z ∈ Fm2 ) with the FHT list decoder described at the end of Section 8.2.1. We denote
these s candidates as D(1)

b , . . . , D
(s)
b and associate each of them with a reliability value initialized as its

posterior probability. Since bU = b′U + (b + b′)U for all b′ ∈ Fm2 , the correct candidates (D∗b : b ∈ Fm2 )
satisfy D∗b = D∗b′ + D∗b+b′ . In order to find D∗b , for each i = 1, . . . , s, we check for all b′ ∈ Fm2 whether

there are certain i1 and i2 such that D(i)
b = D

(i1)
b′ + D

(i2)
b+b′ . Each time when we find such b′ and i1, i2, we

increase the reliability value of D(i)
b by some function14 of the reliability values of D(i1)

b′ and D(i2)
b+b′ . Finally,

we set D∗b to be D(i)
b with the largest reliability value among all i = 1, . . . , s.

At this point, we have obtained D∗b for all b ∈ Fm2 . Notice that D∗b is the noisy version of bU , and in par-
ticular, the first coordinate ofD∗b is the noisy version of u1,2b2 +u1,3b3 +· · ·+u1,mbm. Therefore, if we pick
the first coordinate of D∗b for all b ∈ Fm2 , we will obtain the noisy version of a codeword from RM(m, 1),
and this codeword is the evaluation vector of the polynomial u1,2x2+u1,3x3+· · ·+u1,mxm. After decoding
this noisy codeword using the FHT decoder, we will obtain the coefficients u1,2, u1,3, . . . , u1,m, which form
the first column of the matrix U . Similarly, we can also pick the ith coordinate of D∗b for all b ∈ Fm2 and
decode it with the FHT decoder. This will allow us to calculate the ith column of U . Once we decode all
the entries in U , we have the coefficients of all the degree-2 monomials in f . Then we use the FHT decoder
again to decode all the other coefficients in f , which gives us the final decoding result.

For more general binary-input channels other than BSC, we are not able to calculate yz+b + yz since
the two summands are not binary any more. We instead work with the LLRs Lz := LLR(yz). Given
Lz+b and Lz , we want to estimate how likely Evalz+b(f) + Evalz(f) is 0 or 1. The LLR of the sum
Evalz+b(f) + Evalz(f) can be calculated as

ln
(

exp
(
Lz+b + Lz

)
+ 1
)
− ln

(
exp(Lz) + exp(Lz+b)

)
. (56)

14 The choice of this function is somewhat ad hoc, and we omit the precise definition here.
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Once we replace yz+b + yz with this LLR, we can follow the decoding procedure described above for BSC
to decode the output vector of more general binary-input channels.

In [9], Sidel’nikov and Pershakov showed that for second order RM codes RM(m, 2), their algorithm
can correct almost all error patterns with Hamming weight no more than (n−Cm1/4n3/4)/2 for any constant
C > ln 4 when the code length n→∞.

In [10], Sakkour proposed a simplified and improved version of the Sidel’nikov-Pershakov algorithm for
decoding second order RM codes. The main change in Sakkour’s algorithm is to use a simple majority voting
to obtain D∗b from Db, replacing the more complicated procedure in Sidel’nikov-Pershakov algorithm. Such
a simplification also leads to smaller decoding error probability. We summarize Sakkour’s algorithm below
in Algorithm 3 since it is simpler and has better performance:

Algorithm 3 Sakkour’s algorithm for decoding second order RM codes over BSC
Input: The code length n = 2m; the received (noisy) codeword y = (yz : z ∈ Fm2 );
Output: A codeword c ∈ RM(m, 2)

1: for every b ∈ Fm2 do
2: Db ← FHT Decoder(yz+b + yz : z ∈ Fm2 ) . FHT Decoder for RM(m, 1)
3: end for
4: for every b ∈ Fm2 do
5: D∗b ← Majority(Db+b′ +Db′ : b′ ∈ Fm2 )
6: . Majority function picks the vector occurring the largest number of times
7: end for
8: for i = 1, 2, . . . ,m do
9: Ei ← (the i-th coordiante of D∗b : b ∈ Fm2 ) . Ei is a vector of length n

10: Êi ← FHT Decoder(Ei) . FHT Decoder for RM(m, 1)
11: (u{i,j} : j ∈ [m] \ {i})← coefficients of the polynomial corresponding to Êi
12: end for
13: y ← y − Eval(

∑
A⊆[m],|A|=2 uAxA)

14: D̂ ← FHT Decoder(y) . FHT Decoder for RM(m, 1)
15: (uA : A ⊆ [m], |A| ≤ 1)← coefficients of the polynomial corresponding to D̂
16: c← Eval(

∑
A⊆[m],|A|≤2 uAxA)

17: Output c

8.2.3 Dumer’s recursive list decoding [11–13]

Dumer’s recursive list decoding makes use of the Plotkin (u, u + v) construction of RM codes (see Sec-
tion 2.2 for discussions), and it works well for short or medium length RM codes. More precisely, for RM
codes with length ≤ 256, Dumer’s recursive list decoding algorithm can efficiently approach the decoding
error probability of the ML decoder. For code length 512 or 1024, Dumer’s algorithm works well for RM
codes with low code rates. In [13], Dumer and Shabunov also proposed to construct subcodes of RM codes
that have better performance than RM codes themselves under the recursive list decoding algorithm.

We start with the basic version of Dumer’s recursive decoding algorithm (without list decoding). Sup-
pose that we transmit a codeword c = Eval(f) ∈ RM(m, r) through some binary-input channel W , and we
denote the output vector as y and the corresponding LLR vector as L. The original codeword Eval(f) has
two components Eval[zm=0](f) and Eval[zm=1](f). We also devide the LLR vector L into two subvectors
L[zm=0] and L[zm=1] in the same way so that L[zm=0] and L[zm=1] are the LLR vectors of Eval[zm=0](f) and
Eval[zm=1](f), respectively. We then construct the LLR vector of Eval[/zm](f) from L[zm=0] and L[zm=1]
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and we denote it as L[/zm]: Each coordinate of L[/zm] is obtained by combining the corresponding coordi-
nates in L[zm=0] and L[zm=1] using formula (56).15

We first decode Eval[/zm](f) ∈ RM(m−1, r−1) from L[/zm] and denote the decoding result as ĉ[/zm].
Then we use ĉ[/zm] together with L[zm=0] and L[zm=1] to form an updated LLR vector of Eval[zm=0](f),
which we denote as L̃[zm=0]. The updating rule is as follows: For each z = (z1, . . . , zm−1) ∈ Fm−1

2 ,
if ĉ[/zm]

z = 0, then we set L̃[zm=0]
z = L

[zm=0]
z + L

[zm=1]
z , and if ĉ[/zm]

z = 1, then we set L̃[zm=0]
z =

L
[zm=0]
z − L[zm=1]

z . As the next step, we decode Eval[zm=0](f) ∈ RM(m− 1, r) from L̃[zm=0] and denote
the decoding result as ĉ[zm=0]. Finally, we combine ĉ[/zm] and ĉ[zm=0] to form the final decoding result
ĉ = (ĉ[zm=0], ĉ[zm=0] + ĉ[/zm]).

In this recursive decoding algorithm, we decompose the decoding of RM(m, r) into two tasks: First, we
decode a codeword from RM(m− 1, r − 1). After that, we decode another codeword from RM(m− 1, r).
Then the decoding of RM(m− 1, r − 1) and RM(m− 1, r) are further decomposed into decoding another
four codewords from RM codes with shorter code length and smaller order. This decomposition procedure
continues until we reach codewords from first order RM codes RM(i, 1) for some i or full RM codes
RM(j, j) for some j. For first order RM codes we use the FHT decoder, and for full RM codes we simply
use the ML decoder. The summary of the algorithm and an illustration of how it works for RM(6, 2) and
RM(6, 3) are given in Fig. 8.

Next we briefly discuss the recursive list decoding algorithm. In the list decoding version, we usually
stop at the zero order RM codes instead of the first order ones 16. Note that the zero order RM codes are
simply repetition codes with dimension 1. We still go through the same procedure as illustrated in Fig. 8, i.e.,
we keep decomposing the RM codes and eventually we only decode the RM codes on “leaf nodes”. In the
list decoding algorithm, the codes on “leaf nodes” are either repetition codes or full RM codes. Each time
when we decode a new leaf node, we examine several possible decoding results of this new node for every
candidate in the list: If this new leaf node is a repetition code, then there are only two possible decoding
results–all zero or all one; if this new leaf node is a full RM code, then we take the 4 most likely decoding
results of it for every candidate in the list. In this way, we will increase the list size by a factor of 2 or 4 at
each step, depending on whether the new leaf node is a repetition code or a full RM code. We then calculate
a reliability value for each candidate in the new list. When the list size is larger than some pre-specified
value µ, we prune the list down to size µ by only keeping the candidates with the largest reliability values.
Clearly, large µ leads to longer running time of the algorithm but smaller decoding error probability.

In [13], a family of subcodes of RM codes were also proposed. The subcodes have smaller decoding
probability under the recursive list decoding algorithm. The idea is quite natural: Each repetition code on
the “leaf nodes” only contain one information bit. Some of these information bits are relatively noisy, and
the others are relatively noiseless. Dumer and Shabunov proposed to set all the noisy bits to be 0. In this
way, one can get smaller decoding error at the cost of decreasing the code rate.

8.2.4 Recursive projection aggregation decoding [14]

The Recursive Projection Aggregation (RPA) decoding algorithm was proposed recently by Ye and Abbe
[14]. It works well for second and third order RM codes with short or medium code length (e.g. ≤ 1024).
In particular, the RPA algorithm can efficiently achieve the same decoding error probability as the ML

15 In [13], Dumer and Shabunov proposed to work with the quantity W (x|1) −W (x|0) instead of LLR, but one can show that
formula (56) for LLR is equivalent to the combining method in [13] expressed in terms of W (x|1)−W (x|0).

16 In fact, stopping at first order RM codes in list decoding allows one to achieve smaller decoding error probability than stopping
at zero order RM codes. In this paper, we only describe the version of list decoding stopping at zero order RM codes for two reasons:
First, it is easier to describe; second, this is the version presented in Dumer and Shabunov’s original paper [13, Section III].
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Algorithm 4 Dumer’s Algorithm Φm
r for decoding RM(m, r)

Input: LLR vector L = (L[zm=0], L[zm=1])
Output: ĉ

1: if 1 < r < m then
2: Calculate L[/zm] from L[zm=0] and L[zm=1]

3: ĉ[/zm] ← Φm−1
r−1 (L[/zm])

4: Calculate L̃[zm=0] from L[zm=0], L[zm=1] and ĉ[/zm]

5: ĉ[zm=0] ← Φm−1
r (L̃[zm=0])

6: ĉ← (ĉ[zm=0], ĉ[zm=0] + ĉ[/zm])
7: else if r = 1 then
8: use FHT decoder
9: else if r = m then

10: use ML decoder
11: end if

RM(6, 2)

RM(5, 1) RM(5, 2)

RM(4, 1) RM(4, 2)

RM(3, 1) RM(3, 2)

RM(2, 1) RM(2, 2)

RM(6, 3)

RM(5, 2) RM(5, 3)

RM(4, 1) RM(4, 2) RM(4, 2) RM(4, 3)

RM(3, 1) RM(3, 2) RM(3, 1) RM(3, 2) RM(3, 2) RM(3, 3)

RM(2, 1) RM(2, 2) RM(2, 1) RM(2, 2) RM(2, 1) RM(2, 2)

Fig. 8: The recursive decoding algorithm Φm
r for RM(m, r) and an illustration of how it works for RM(6, 2)

and RM(6, 3): We decompose RM(6, 2) and RM(6, 3) until we reach the leaf nodes, which are the first
order or full RM codes marked in red. Eventually we only need to decode these RM codes on the leaf nodes
using FHT or ML decoders. The order of decoding these leaf nodes is indicated by the red dashed arrows.
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Decode RM(m, 3)
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decoding
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Fast Hadamard
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Fig. 9: Recursive Projection-Aggregation decoding algorithm for third order RM codes

decoder for second order RM codes with length ≤ 1024. Moreover, RPA decoder naturally allows parallel
implementation.

We will focus mainly on the RPA decoder for BSC channels and briefly mention how to adapt it to
general communication channels at the end of this section. In Section 2.5, we have shown that Eval[/p](f) ∈
RM(m−1, r−1) whenever Eval(f) ∈ RM(m, r) for any p = b1z1 + · · ·+bmzm with nonzero coefficients
b = (b1, . . . , bm) 6= 0. Let B be the one-dimensional subspace of Fm2 consisting of the 0 vector and b.
Then Eval[/p](f) is obtained by taking the sums in each of the 2m−1 cosets of B, i.e., each coordinate in
Eval[/p](f) is the sum

∑
z∈T Evalz(f) for some coset T of B. For this reason, we will use the two notations

Eval[/B](f) and Eval[/p](f) interchangeably from now on. For a noisy codeword y, we also use y[/B] and
y[/p] interchangeably, and we call y[/B] the projection of y onto the cosets of B. There are in total n − 1
one-dimensional subspaces in Fm2 . We denote them as B1, . . . ,Bn−1.

Suppose that we transmit a codeword c = Eval(f) ∈ RM(m, r) through BSC, and that the channel
output is y. The RPA decoder for RM(m, r) consists of three steps: First, the projection step, then the
recursive decoding step, and third, the aggregation step. More precisely, the first step is to project the
noisy codeword y onto all n − 1 one-dimensional subspaces B1, . . . ,Bn−1. Note that this projection step
also appears in Sidel’nikov-Pershakov algorithm [9] and Sakkour’s algorithm [10];see Section 8.2.2. The
second step is to decode each y[/Bi] using the RPA decoder for RM(m − 1, r − 1). If r = 2, then we
simply use the FHT decoder for y[/Bi]. We denote the decoding result of the second step as ŷ[/Bi]. Note
that ŷ[/B1], . . . , ŷ[/Bn−1] consist of the (noisy) estimates of the sum Evalz(f) + Evalz′(f) for all z 6= z′.
We denote the estimate of Evalz(f) + Evalz′(f) as ŷ(z,z′). Finally, in the aggregation step, observe that
ŷ(z,z′) + yz′ is an estimate of Evalz(f) for all z′ 6= z. For a fixed z, we have in total n − 1 such estimates
of Evalz(f), and we perform a majority vote among these n − 1 estimates to obtain ŷz , i.e., we count the
number of 0’s and 1’s in the set {ŷ(z,z′) + yz′ : z′ ∈ Fm2 , z′ 6= z}: If there are more 1’s than 0’s, then
we set ŷz to be 1. Otherwise, we set it to be 0. Next we replace the original channel output vector y with
ŷ = (ŷz : z ∈ Fm2 ), and run the Projection-Recursive decoding-Aggregation cycle again for a few more
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rounds17. The vector ŷ = (ŷz : z ∈ Fm2 ) in the last round is the final decoding result of the RPA decoder.
See Fig. 9 for a high-level illustration of the RPA decoder.

For general communication channels we need to work with LLR, and we only need to make two changes
in the RPA decoder for BSC. The first change is in the projection step: In order to calculate y[/B], we need to
calculate the sums yz+yz′ for the BSC case. We cannot do this for general communication channels because
the channel output vector is not binary anymore. Instead, we calculate the projected LLR vectors L[/B] using
(56), and in the recursive decoding step, we decode from L[/B1], . . . , L[/Bn−1]. The second change is in the
aggregation step: We replace the majority vote with a weighted sum of the LLRs. More precisely, for a
fixed z, we calculate the sum L̂z = 1

n−1

∑
z′ 6=z ỹ(z,z′)Lz′ , where we set ỹ(z,z′) = 1 if ŷ(z,z′) = 0 and

ỹ(z,z′) = −1 if ŷ(z,z′) = 1. After each round, we replace the LLR vector of the original channel output
with L̂ = (L̂z : z ∈ Fm2 ) and run the Projection-Recursive decoding-Aggregation cycle again. After the last
round, we decode ŷz as 0 if L̂z > 0 and otherwise we decode ŷz as 1. The vector ŷ = (ŷz : z ∈ Fm2 ) is the
final decoding result of the RPA decoder.

In practical implementation, we combine the RPA decoder with the following list decoding procedure
proposed by Chase [113] to boost the performance. We first sort |Lz|, z ∈ Fm2 from small to large. As-
sume for example that |Lz1 |, |Lz2 |, |Lz3 | are the three smallest components in the LLR vector, meaning that
yz1 , yz2 , yz3 are the three most noisy symbols in the channel outputs. Next we enumerate all 8 the possible
cases of these three bits: We set Lzi = ±Lmax for i = 1, 2, 3, where Lmax is some large real number.
In practice, we can choose Lmax := 2 max(|Lz| : z ∈ Fm2 ). For each of these 8 cases, we use the RPA
decoder to obtain a decoded codeword (candidate). Finally, we calculate the posterior probability for each
of these 8 candidates, and choose the largest one as the final decoding result, namely, we perform the ML
decoding among the 8 candidates in the list. This list decoding version of the RPA decoder allows us to
efficiently achieve the same decoding error probability as the ML decoder for second order RM codes with
length ≤ 1024.

Algorithm 5 RPA decoder for RM codes over BSC
Input: The parameters of the Reed-Muller codem and r; the received (noisy) codeword y = (yz : z ∈ Fm2 );
the maximal number of iterations Nmax

Output: ŷ = (ŷz : z ∈ Fm2 ) ∈ Fn2
1: for j = 1, 2, . . . , Nmax do
2: ŷ/Bi ← RPA(m− 1, r − 1, y/Bi , Nmax) for i = 1, 2, . . . , n− 1
3: {ŷ(z,z′) : z, z′ ∈ Fm2 , z 6= z′} ← coordinates of ŷ/B1 , . . . , ŷ/Bn−1

4: for every z ∈ Fm2 do
5: num1← number of z′ ∈ Fm2 \ {z} such that ŷ(z,z′) + yz′ = 1

6: ŷz ← 1[num1 > n−1
2 ]

7: end for
8: if y = ŷ then
9: break

10: end if
11: y ← ŷ
12: end for
13: Output ŷ

17 In practice, usually three rounds are enough for the algorithm to converge.
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Fig. 10: Block diagram of the automorphism-based decoding in [114]. This is originally Fig. 1 in [114].

8.2.5 Additional methods

In [45], Santi et al. applied iterative decoding to a highly-redundant parity-check (PC) matrix that contains
only the minimum-weight dual codewords as rows. In particular, [45] proposed to use the peeling decoder
for the binary erasure channel, linear-programming and belief propagation (BP) decoding for the binary-
input additive white Gaussian noise channel, and bit-flipping and BP decoding for the binary symmetric
channel. For short block lengths, it was shown that near-ML performance can indeed be achieved in many
cases. [45] also proposed a method to tailor the PC matrix to the received observation by selecting only
a small fraction of useful minimum-weight PCs before decoding begins. This allows one to both improve
performance and significantly reduce complexity compared to using the full set of minimum-weight PCs.
Some other RM decoders recently proposed in [114–116] share some similarities with the RPA decoder in
[14] because they all make use of the symmetry and/or the automorphism group of RM codes.

Geiselhart et al. [114] proposed a general decoding framework for RM codes and polar codes,
which makes use of the automorphism groups of these two code families. The block diagram of their
automorphism-based decoding framework is given in Fig. 10. Suppose that we want to decode an RM code
over a BSC channel, and y in Fig. 10 is the channel output vector. The first step of the automorphism-based
decoding is to find M permutations in the automorphism group of the RM code. Here M is a parameter up
to our own choice, and we denote the permutations as π1, π2, . . . , πM . Larger M leads to smaller decoding
error probability at the cost of a higher decoding complexity. In the next step, we apply these M permuta-
tions to the channel output vector y and denote the permuted versions of y as y′1, y′2, . . . , y′M . Then we pick a
classic decoder to decode each y′i for 1 ≤ i ≤M . This classic decoder could be the SC decoder, BP decoder,
SCL decoder, or recursive list decoder, among other choices. We denote the decoded version of y′i as x̂′i and
apply the inverse permutation π−1

i to it. At this point, we obtain M decoding candidates x̂1, x̂2, . . . , x̂M .
Finally, we perform the ML decoding among these M candidates to obtain the final decoding result x̂.

In recent years, machine learning techniques have been used to build new decoders for RM codes and
other linear codes [117–119]. Nachmani et al. [117] introduced neural decoders as a generalization of the
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classic Belief Propagation (BP) decoding algorithms. In particular, they viewed the Trellis graph in the BP
algorithm as a neural network and optimized the weights in the Trellis graph by training the neural network.
The method in [117] is quite general, and it works for all linear codes. Later in [118], a new class of neural
decoders was specifically designed for cyclic codes, which exploits the cyclic invariant structure of the codes
by imposing a shift-invariant structure on the weights of the neural decoder. Since punctured RM codes are
cyclic codes, the neural decoders in [118] can be applied to them. The paper [119] used machine learning
methods to construct a new code called the Kronecker Operation (KO) codes, which share a similar structure
as RM codes and polar codes.

In [42], Mondelli et al. explored the relationship between polar and RM codes, and they proposed a
coding scheme which improves upon the performance of the standard polar codes at practical block lengths.
The starting point is the experimental observation that RM codes have a smaller error probability than polar
codes under MAP decoding. This motivates one to introduce a family of codes that “interpolates” between
RM and polar codes, call this family Cinter = {Cα : α ∈ [0, 1]}, where Cα|α=1 is the original polar code,
and Cα|α=0 is an RM code. Based on numerical observations, one can see that the error probability under
MAP decoding is an increasing function of α. MAP decoding has in general exponential complexity, but
empirically the performance of polar codes at finite block lengths is boosted by moving along the family
Cinter even under low-complexity decoding schemes such as belief propagation or successive cancellation
list decoder. The performance gain was also demonstrated in [42] via numerical simulations for transmission
over the erasure channel as well as the Gaussian channel.

A recent paper [120] also made use of the connection between RM codes and polar codes to invent a
new family of codes called the Adjacent-Bits-Swapped (ABS) polar codes. ABS polar codes were inspired
by [29], which conjectured that RM codes polarize even faster than polar codes. [29] further conjectured
that the reason for faster polarization is that RM codes reordered the rows so that the conditional entropy
of each message bit given previous message bits and all the channel outputs becomes completely ordered.
Inspired by this conjecture, the authors of [120] added a permutation layer after each polar transform layer
in the ABS polar code construction. In each permutation layer, the “unordered” adjacent bits are swapped
to speed up polarization. ABS polar codes can be viewed as an intermediate point between polar codes and
RM codes: On the one hand, ABS polar codes have permutation layers to speed up the polarization—this
is somewhat similar to RM codes because RM codes also reorder/permute the rows of the square matrix
G⊗m2 . On the other hand, ABS polar codes only swap a small number of adjacent bits so that the overall
structure is still close to polar codes, which allows us to use a modified SCL decoder to efficiently decode
ABS polar codes. After the invention of ABS polar codes, Li et al. proposed ABS+ polar codes in [121],
which is a further generalization and improvement of ABS polar codes. ABS+ polar codes consistently
improve upon standard polar codes by 0.15dB–0.35dB for a wide range of code parameters while keeping
the same decoding time.

8.3 Berlekamp-Welch type decoding algorithm [15]

In this section we explain the algorithm of Saptharishi, Shpilka and Volk [15] for decoding RM codes
of degrees up to r = o(

√
m). In fact, their algorithm also gives interesting results for degrees r = m −

o(
√
m/ logm). The algorithm is similar in spirit to the work of Pellikaan, Duursma and Kötter ([122,123]),

which abstracts the Berlekamp-Welch algorithm.
Before stating their main theorem we will need the following notation. For u, v ∈ Fnq , we denote by

u∗v ∈ Fnq the vector (u1v1, . . . , unvn). ForA,B ⊆ Fnq we similarly defineA∗B = {u∗v | u ∈ A, v ∈ B}.
For a code N ⊆ Fnq and a subset U ⊂ [n] we say that N can correct the erasure pattern 1U if we can correct
every codeword whose U-coordinates were erased (i.e. replaced with “?”).

The algorithm considers three codes C,E and N, all subsets of Fnq , such that E ∗ C ⊆ N. It is able to
correct in C those error patterns that are correctable as erasures in N, through the use of an error-locating



8 Decoding algorithms 79

code E.

Algorithm 6 Decoding Algorithm of [15]

Require: received word y ∈ Fnq such that y = c + e, with c ∈ C and e is supported on a set U ⊆ [n].
1: Solve for a ∈ E,b ∈ N, the linear system a ∗ y = b.
2: Let {a1, . . . ,ak} be a basis for the solution space of a, and let E denote the common zeros of {ai | i ∈

[k]}.
3: For every j ∈ E , replace yj with ‘?’, to get a new word y′.
4: Correct y′ from erasures in C.

Theorem 27. Let Fq be a finite field and E,C,N ⊆ Fnq be codes with the following properties.

1. E ∗ C ⊆ N.

2. For any pattern 1U that is correctable from erasures in N, and for any coordinate i 6∈ U , there exists
a codeword a ∈ E such that aj = 0 for all j ∈ U and ai = 1.

Then Algorithm 6 corrects in C any error pattern 1U , which is correctable from erasures in N.

It is worth pointing out the differences between Algorithm 6 and the abstract Berlekamp-Welch decoder
of Pellikaan, Duursma and Kötter [122, 123]. Similarly, [122, 123] set up codes E,C and N such that
E ∗ C ⊆ N. However, instead of Property 2, they require that for any e ∈ E and c ∈ C, if e ∗ c = 0 then
e = 0 or c = 0 (alternatively they impose some requirements on the distances of E and C that guarantee this
property). This property as well as the distance properties, do not hold in the case of Reed-Muller codes,
which is the main application of Theorem 27.

Proof Sketch. It is relatively easy to show that Property 2 in the statement of the theorem guarantees that
every erasure pattern that is correctable in N is also correctable in C. The main point of the algorithm is
that, under the hypothesis of the theorem, the common zeros of the possible solutions for a are exactly the
corrupted coordinates (errors).

We first note that the system of equations a ∗ y = b is indeed a linear system in the coordinates of a,b
and therefore can be solved efficiently.

Denote y = c + e, where c ∈ C is the transmitted codeword and e is supported on the set of error
locations U . The following two claims guarantee that the algorithm correctly finds the set of error locations.
The first claim shows that error locations are common zeros and the second claim shows that no other
coordinate is a common zero.

Claim 2. For every a ∈ E,b ∈ N such that a ∗ y = b, it holds that a ∗ e = 0.

Proof. Observe that a ∗ e = a ∗ y− a ∗ c is also a codeword in N. As a ∗ e is supported on U , and since U
is an erasure-correctable pattern in N, it must be the zero codeword.

Claim 3. For every i 6∈ U there exists a ∈ E,b ∈ N such that a is 0 on U , ai = 1 and a ∗ y = b.

Proof. Property 2 implies that since U is correctable from erasures in N, for every i 6∈ U there is a ∈ E such
that a is 0 on U and ai = 1. Set b = a ∗ y. As b = a ∗ c + a ∗ e = a ∗ c, it follows that b ∈ N.

Together, Claims 2 and 3 imply the correctness of the algorithm.
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To apply Theorem 27 to RM codes we note that for m ∈ N and r ≤ m/2 − 1 the codes C =
RM(m,m− 2r − 2), N = RM(m,m− r − 1) and E = RM(m, r + 1) satisfy the conditions of Theo-
rem 27.

Theorem 21 shows that RM(m,m− r − 1) achieves capacity for r = m/2 ± O(
√
m). Letting r =

m/2 − o(√m) and looking at the code RM(m,m− 2r − 2) = RM(m, o(
√
m)) so that

(
m
≤r
)

= (1/2 −
o(1))2m, Saptharishi et al. obtained the following corollary to Theorem 27.

Corollary 7. There exists an efficient (deterministic) algorithm that is able to correct a fraction of (1/2 −
o(1)) random errors in RM(m, o(

√
m)), with probability 1− o(1).

Similar arguments allow [15] to obtain results for high rate RM codes. In particular, combining Theo-
rem 19 with the argument of [15], [3] gives the following result.

Theorem 28 (Corollary 1.3 of [3]). Let γ0 be the constant in Theorem 19. Then, for r < γ0m, there is
an efficient algorithm that can correct RM(m,m− (2r + 2)) from a random set of (1− o(1))

(
m
≤r
)

errors.
Moreover, the running time of the algorithm is 2m · poly(

(
m
≤r
)
).

In [124], Kopparty and Potukuchi improved the running time of the decoding algorithm of Theorem 28
to be a polynomial in the length of the syndrome, that is the algorithm can decode in time poly(

(
m
≤r
)
).

It is an intriguing open problem to find an efficient algorithm that can decode from more random errors.
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9 Applications of RM codes beyond communication

Reed-Muller codes (over both large and small finite fields) have been extremely influential even beyond com-
munication and channel coding, playing a central role in some important developments in several areas. In
cryptography, they have been used e.g. in secret sharing schemes [125], instance hiding constructions [126]
and private information retrieval (see the surveys [24, 127]). In the theory of randomness, they have been
used in the constructions of many pseudo-random generators and randomness extractors, e.g. [128, 129].
These in turn were used for hardness amplification, program testing and eventually in various interactive and
probabilistic proof systems, e.g. the celebrated results NEXP=MIP [130], IP=PSPACE [131] and NP=PCP
[132]. In circuit lower bounds for some low complexity classes one argues that every circuit in the class
is close to a codeword, so any function far from the RM code cannot be computed by such circuits (e.g.
[133]). In distributed computing they were used to design fault-tolerant information dispersal algorithms for
networks [134]. The hardness of approximation of many optimization problems is greatly improved by the
“short code” [135], which uses the optimal testing result of [136]. In compressed sensing [137–140], RM
codes and Delsarte-Goethals codes (discussed in Section 2.7) are used to construct good sensing matrices
for the purpose of recovering sparse signals from very few measurements [141–143]. And the list goes on.
Needless to say, the properties used in these works are properties of low-degree polynomials (such as inter-
polation, linearity, partial derivatives, self-reducibility, affine-invariance, heredity under various restrictions
to variables, etc.), and in some of these cases, specific coding-theoretic perspective such as distance, unique-
decoding, list-decoding, local testing and decoding etc. play important roles. Finally, polynomials are basic
objects to understand computationally from many perspectives (e.g. testing identities, factoring, learning,
etc.), and this study interacts well with the study of coding theoretic questions regarding RM codes.

We shall next give a taste of three of these applications without diving into too many details. As the focus
of this manuscript is on binary RM codes, we shall not discuss RM codes over larger fields. The readers
interested in more applications of error correcting codes in theoretical computer science are encouraged to
read the survey [144].

9.1 Low degree testing

As mentioned above, RM codes played a very important role in the early days of interactive proofs, including
the original proof of the PCP theorem. The main property that was used is that RM codes are locally testable.
Local testability is the task of deciding, with high probability, by querying few positions in a received word,
whether it is a valid RM codeword or is far (in Hamming distance) from all RM codewords. Arguably these
early local testing results for RM codes (starting with the testing algorithm for Hadamard codes, which
are RM codes of degree one, due to Blum, Luby and Rubinfeld [145]) were the main driving force that
established the now thriving field of property testing.

Most of the applications described above rely on RM codes over large fields. Specifically, the RM codes
used in the proof of the PCP theorem and in the work on hardness-amplification require the field size to
be larger than the degree of the multivariate polynomials being evaluated. However, testing of binary RM
codes also received a lot of attention in the CS literature [146–150].

To explain the problem of low degree testing we start with some basic notation. All the notions below
can be naturally extended to larger fields. As before, for f, g : Fm2 → F2 we let δ(f, g) = Px (f(x) 6= g(x))
denote the relative-distance between f and g, where the probability is over x chosen uniformly at random
from Fm2 . Let δr(f) = ming∈Pm,r{δ(f, g)} denote the distance of f from the space of degree r polynomials.
We say f is δ-far from g if δ(f, g) ≥ δ and δ-close otherwise. We say f is δ-far from the set of degree r
polynomials if δr(f) ≥ δ. The goal of low-degree testing is to design a test to distinguish the case where
δr(f) is zero from the case where it is relatively large.

Definition 17 (Local tester). A (q, ε, δ)-local tester (for Pm,r) is a probabilistic algorithm T = T (m, r)
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that when given oracle access to f : Fm2 7→ F2,18 makes at most q queries to f and accepts f ∈ Pm,r with
probability 1, while rejecting any f /∈ Pm,r, such that δr(f) ≥ δ, with probability at least ε. We call ε the
δ-soundness parameter of the algorithm.

We say T is absolutely sound if there exists ε > 0 such that for every δ, r and m, T = T (m, r) is a
(q, ε · δ, δ)-local tester.

Roughly, absolute soundness means that the guarantee on the tester degrades “continuously” as the
distance to Pm,r decreases.

For an affine subspace A in Fm2 , let dim(A) denote its dimension. For function f : Fm2 → F2 and
affine subspace A, let f |A : A → F2 denote the restriction of f to A. For a function f , we let deg(f)
denote its degree as a polynomial. We use the fact that f |A can be viewed as a dim(A)-variate polynomial
with deg(f |A) ≤ deg(f). A special subclass of tests for Pm,r would simply pick an affine subspace A of
Fm2 and verify that deg(f |A) ≤ r. The concept of testing dimension (defined below) captures the minimal
dimension for which such a test has positive soundness, regardless of the number of variables.

Definition 18 (Testing dimension). For a non-negative r, the testing dimension of polynomials of degree r
over F2 is the smallest integer t satisfying the following: For every positive integer m and every function f :
Fm2 → F2 with deg(f) > r, there exists an affine subspaceA of dimension at most t such that deg(f |A) > r.
We use tr to denote the testing dimension for polynomials of degree r.

This notion was studied in [147] who proved the following fact.

Proposition 12. The testing dimension tr = r + 1.

In other words, if a function is not a degree r polynomial then there is an affine subspaceA of dimension
at most r + 1 such that deg(f |A) > r. Observe that for every such affine subspace there is a codeword in
RM(m, r)⊥ that is supported on A. Thus, another way of interpreting Proposition 12 is that dual codewords
supported on affine subspaces of dimension r + 1 span RM(m, r)⊥. A natural question to ask is does any
function of degree larger than r violates many of these dimension-(r+ 1) constraints? The test proposed by
[147] relies on a positive answer to this question:

Description 1 (t-dimensional (degree r) tester of [147]). Given oracle access to f : Fm2 → F2, pick a
random affine subspace A with dim(A) = t and accept if deg(f |A) ≤ r.

[147] shows that the tr-dimensional test, which has query complexity 2tr and that accepts any f ∈ Pm,r
with probability 1, has δ-soundness roughly Ω(δ2−tr). [149, 150] proved that the test is absolutely sound.
Specifically, if we let ρr(f, t) denote the probability that the t-dimensional test rejects a function f , then
they proved that

Theorem 29 ([149, 150]). There exist constants ε1, ε2 > 0 such that for every r and m and every function
f : Fm2 → F2, it is the case that ρr(f, tr) ≥ min{ε12trδ(f), ε2}. In other words the tr-dimensional test
rejects f with probability min{ε12trδ(f), ε2}.

Theorem 29 shows that every function that is “far” from RM(m, r) violates a large fraction of the
(r+1)-dimensional constraints. The proof of the theorem is a bit technical so we will not get into it. Instead
we will just give a high level overview of the proof.

The idea is to prove the claim by induction on m. Consider a function f that is δ-far from every degree
r polynomial. For a “hyperplane”, i.e., an (m − 1)-dimensional affine subspace A of Fm2 , let f |A denote

18 Oracle access means that the algorithm can ask for the value of f at any input of its choice. The number of queries is counted
as part of the running time of the algorithm.
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the restriction of f to A. We first note that the test can be interpreted as first picking a random hyperplane
A in Fm2 and then picking a random (r + 1)-dimensional affine subspace A′ inside A and testing if f |A′ is
a degree r polynomial. Now, if on every hyperplane A, f |A is still δ-far from degree r polynomials then
we would be done by the inductive hypothesis. The insight of the analysis is understanding what happens
when f |A is close to some degree r polynomial gA for several (but just O(2r)) hyperplanes. In this case
they prove that one can “glue” the different polynomials gA (each defined on some (m − 1)-dimensional
subspace within Fm2 ) into a degree-r polynomial g that agrees with all the gA’s. They then show that this
polynomial is close to f , completing the argument.

9.2 Private information retrieval

A κ-server Private Information Retrieval (PIR) scheme allows a user to retrieve a data item of its choice
from a database, replicated among κ servers, while preventing the servers from gaining information about
the identity of this item (the servers are not allowed to communicate with each other). The goal is to design
such PIR schemes that minimize the communication cost (defined as the worst-case number of bits trans-
ferred between the user and the servers in the protocol). This problem was introduced by Chor, Goldreich,
Kushilevitz, and Sudan [151] and attracted a lot of research, see [152] and references within.

We shall denote the database by an n-bit string x ∈ {0, 1}n where the user, holding some retrieval index
i, wishes to learn the i-th data bit xi. In the case of a single server (κ = 1), a trivial solution is to send the
entire database x to the user. The communication cost of this solution is n - the server sends all the n bits of
the database to the user. This was shown to be optimal in [151]. As we wish to minimize the communication
cost, Chor et al. suggested that the user accesses κ > 1 replicated copies of the database stored at different
servers, requiring that each individual server gets absolutely no information about i.

We shall present a construction due to Beimel, Ishay and Kushilevitz that is based on encoding the
database as a codeword of an appropriate RM code [153].

Let x ∈ {0, 1}n be the database from which the user wishes to retrieve information. Let r = 2κ + 1

and choose m such that
(
m
r

)
≥ n. Clearly, m = O(κn

1
2κ+1 ) suffices. We identify each index i ∈ [n] with a

unique r-tuple in [m] (by choice of m there are at least n such tuples). Denote by E(i) ∈ {0, 1}m the tuple
corresponding to i. Let f(y1, . . . , ym) be a polynomial of degree r over F2 such that f(E(i)) = xi. It is
not hard to see that such f exists. Note that the polynomial f ∈ Pm,r encodes the database. Thus, we can
imagine that our task is the following. The κ servers hold f and our goal is to obtain the value f(E(i)) by
asking the the different servers for the value of f at different points, that have no correlation to f in a way
that will allow us to compute f(E(i)).

For j ∈ [κ] let zj = (zj,1, . . . , zj,κ) ∈ (Fm2 )κ. Consider the polynomial f̃(z1, . . . , zκ) = f(z1+. . .+zκ).
Each monomial M(z1, . . . , zκ) of f̃ contains at most r variables zj,i. Thus, there is some j ∈ [κ] such that
the number of variables from zj appearing in M is at most d rκe = 1. We associate the monomial M with
the jth server (if there is more than one such j then we associate M to the first server having this property).

Given an index i ∈ [n] the user picks at random κ − 1 vectors vi ∈ {0, 1}m and sets vκ = E(i) −∑κ−1
j=1 vj . Thus, E(i) =

∑κ
j=1 vj . Observe that any κ− 1 vectors among v1, . . . , vκ are completely random

and independent.
The user, who wishes to compute the value f(E(i)) = f(v1 + . . . + vκ), sends all vectors except the

jth one to the jth server. Each of the servers now evaluates the monomials associated to it on its input
vectors. Observe that by the way we associated monomials to servers, each server now holds a linear
function in the variables unknown to it. That is, the jth server now holds a linear function `j(zj,1, . . . , zj,m).
Next, each server sends its linear function to the user (by sending the coefficients). Finally the user
computes

∑κ
j=1 `j(vj) = f(v1 + . . .+ vκ) = f(E(i)). Overall, the user sent O(κ2m) bits and the servers

communicated O(κm) bits. Thus the total communication is O(κ2m) = O(κ3n
1

2κ−1 ). As each server
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received κ− 1 completely random vectors, the servers learn nothing about the retrieved index i.

We note that the best known construction of PIR schemes also relies on RM codes, but in a more

complicated way [154]. It achieves communication cost of nO
(

log log κ
κ log κ

)
.

9.3 Compressed sensing

The goal of compressed sensing is to recover sparse signals from very few measurements. The two fun-
damental questions in compressed sensing are: (i) how to construct suitable sensing matrices; (ii) how to
efficiently recover the sparse signal from the measurements. The mathematical foundation of compressed
sensing was laid in the seminal works [137–140]. In particular, the Restricted Isometry Property (RIP) was
formulated in [139]: A sensing matrix satisfies the k-Restricted Isometry Property if it acts as a near isome-
try on all k-sparse vectors, where k-sparse means that the vector has at most k non-zero entries. To ensure
unique and stable reconstruction of k-sparse vectors, it is sufficient that the sensing matrix satisfies 2k-RIP.

We use Φ to denote a sensing matrix of size m× n. For a subset S ⊆ [n] of size k, we write ΦS to refer
to the m× k submatrix of Φ formed of the columns with indices in S. We say Φ is (k, δ)-RIP if∥∥ΦT

SΦS − I
∥∥

2
≤ δ for every subset S ⊆ [n] of size |S| = k,

where I is the identity matrix, and ‖ · ‖2 is the spectral norm (the largest singular value). In the compressed
sensing problem, k is the sparsity of the signal, m is the number of measurements, and n is the length of the
signal. Both m and k are much smaller than n. The objective is to design a sensing matrix Φ such that every
k-sparse signal x ∈ Rn can be recovered from the measurements Φx with small errors in terms of the `1 or
`2 norm. The results of [139] showed that this requirement is satisfied as long as Φ is (2k, δ)-RIP for some
small δ.

As a natural variation of the original compressed sensing problem, one may not seek to recover all
k-sparse vectors, but only aim to recover most of them. This variation leads to the Statistical Restricted
Isometry Property (StRIP) of the sensing matrix, defined as follows.

Suppose that a subset S ⊂ N of size |S| = k is chosen uniformly at random from [n]. Then Φ is said to
have the (k, δ, ε)-StRIP if

P
(∥∥ΦT

SΦS − I
∥∥

2
≥ δ
)
< ε.

It was shown in [141–143] that certain RM codes and Delsarte-Goethals codes (discussed in Section 2.7)
form good sensing matrices and satisfy the Statistical Restricted Isometry Property. In particular, [143]
showed that the number of measurements is m = O(k) if we construct StRIP sensing matrices from RM
codes and Delsarte-Goethals codes. Meanwhile, if we require the RIP property for the sensing matrix,
then the number of measurements must be at least m = Ω(k log(n/k)). Therefore, the sensing matrices
constructed from RM codes and Delsarte-Goethals codes are more efficient in the sense that they require
much fewer measurements, although they provide weaker recovery guarantees than sensing matrices with
RIP properties, e.g., matrices with random Gaussian or Bernoulli entries.
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10 Open problems

10.1 Capacity-achieving results

1. Capacity-achieving for general BMS channels under the block-MAP decoder
In the constant-rate regime, the following two capacity-achieving results are known: (i) RM codes

achieve the capacity of BEC under the block-MAP decoder [4]; (ii) RM codes achieve the capacity of all
BMS channels under the bit-MAP decoder [5]. These two results are discussed in Section 5.3 and Sec-
tion 5.4, respectively. Since achieving capacity under the block-MAP decoder is stronger than achieving
capacity under the bit-MAP decoder, and represents the classical definition of Shannon’s capacity, the natu-
ral open problem is to show that RM codes achieve the capacity of all BMS channels under the block-MAP
decoder.

2. Relation between the twin-RM codes and RM codes
As mentioned in Section 6.3, the twin-RM code, obtained by retaining the low-entropy components of

the squared RM code (proceeding in the RM ordering) is proved to achieve capacity on any BMS. There
are now three possible outcomes: (i) the twin-RM code is exactly the RM code, (ii) the twin-RM code is
equivalent to the RM code, in that only a vanishing fraction of rows selected by the two codes are different,
(iii) the twin-RM code is not equivalent to the RM code. If (i) or (ii) is true, then RM codes also achieve
the capacity of all BMS channels. If (iii) is true instead, then the RM code is not capacity-achieving (for the
considered BMS channel).

Conjecture 1. The twin-RM code is the RM code, i.e., with the notation of Section 6.3 where Un = RnX
n

and Rn is the squared RM code matrix, for i, j ∈ [n],

|Ai| > |Aj | =⇒ H(Ui|U i−1, Y n) ≥ H(Uj |U j−1, Y n), (57)

in words, the conditional entropy is non-decreasing as we go to lower degree layers.

10.2 Weight enumerator

1. Unified bounds for two different regimes
As mentioned in Section 4, we now have two different approaches to bound the number of codewords

in two different regimes. More precisely, the method proposed in [35] gives strong and in some cases nearly
optimal bounds in the constant relative weight regime for constant rate codes. Yet this method does not
produce meaningful bound when the code rate approaches 0 or in the small weight regime. On the other
hand, the method in [2] gives good bound for small rate codes or in small weight regime, but it does not
work well in the linear weight regime for constant rate codes. A natural open problem is thus to obtain a
unified bound that is effective in both regimes.

2. Use the capacity-achieving results for BEC to prove the conjecture for BSC
As discussed in Section 4.3.3, Samorodnitsky gave a nearly optimal upper bound in a certain linear

weight regime for any code that achieves capacity for the BEC. This in particular means that the weight
distribution of RM codes in this regime is (nearly) the same as that of random codes. Since random codes
achieve capacity of BSC, can we thus extend this result to prove that RM codes achieve capacity on the
BSC?

3. Close the gap between the upper and lower bounds for small weight codewords
There is a gap between the existing upper and lower bounds on small weight codewords; see Theorem 7

and Theorem 9. A natural open problem is to close this gap.
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10.3 Algorithms

1. Efficient decoding algorithms with near-ML performance for general code parameters
Till now, all the available decoding algorithms for RM codes only work well in one of the following

three regimes: (i) low code rate regime—code rate is close to 0; (ii) high code rate regime—code rate is
close to 1; (iii) short code length regime. When the code parameters are outside of these three regimes,
currently available RM decoders have either an unbearably long running time or a much larger decoding
error probability than that of an ML decoder. The major open problem in this direction is to design new
decoding algorithms with low complexity and near-ML performance for RM codes with general parameters.
From a practical perspective, if one could design such a decoder for code length up to 2048 and code rates
around 0.5, it would certainly be considered as a breakthrough in this area.

2. Efficient decoding algorithms with theoretical guarantees
The results of [2], as described in Section 5.1, show that RM(m,m/2−O(

√
m logm)) can correct a

fraction of 1/2− o(1) random errors. Currently, the best algorithm that we have can only handle RM codes
with degrees up to o(

√
m) [15] (see Section 8.3). It is a natural open problem to extend these up to any

constant fraction of errors.
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[105] Y. Altuğ and A. B. Wagner, “Moderate deviations in channel coding,” IEEE Transactions on Infor-
mation Theory, vol. 60, no. 8, pp. 4417–4426, 2014.



10 Open problems 93

[106] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Unified scaling of polar codes: Error exponent,
scaling exponent, moderate deviations, and error floors,” IEEE Transactions on Information Theory,
vol. 62, no. 12, pp. 6698–6712, 2016.

[107] S. B. Korada, A. Montanari, E. Telatar, and R. Urbanke, “An empirical scaling law for polar codes,”
in 2010 IEEE International Symposium on Information Theory, 2010, pp. 884–888.

[108] A. Fazeli, H. Hassani, M. Mondelli, and A. Vardy, “Binary linear codes with optimal scaling: Polar
codes with large kernels,” IEEE Transactions on Information Theory, vol. 67, no. 9, pp. 5693–5710,
2021.

[109] V. Guruswami, A. Riazanov, and M. Ye, “Arikan meets Shannon: Polar codes with near-optimal
convergence to channel capacity,” in Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, 2020, pp. 552–564.

[110] H. P. Wang and I. M. Duursma, “Polar codes’ simplicity, random codes’ durability,” IEEE Transac-
tions on Information Theory, vol. 67, no. 3, pp. 1478–1508, 2021.

[111] J. P. Tillich and G. Zémor, “Discrete isoperimetric inequalities and the probability of a decoding
error,” Combinatorics, Probability and Computing, vol. 9, no. 5, pp. 465–479, 2000.

[112] L. G. Tallini and B. Bose, “Reed-Muller codes, elementary symmetric functions and asymmetric error
correction,” in 2011 IEEE International Symposium on Information Theory Proceedings. IEEE,
2011, pp. 1051–1055.

[113] D. Chase, “Class of algorithms for decoding block codes with channel measurement information,”
IEEE Transactions on Information Theory, vol. 18, no. 1, pp. 170–182, 1972.

[114] M. Geiselhart, A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Automorphism ensemble
decoding of Reed–Muller codes,” IEEE Transactions on Communications, vol. 69, no. 10, pp. 6424–
6438, 2021.
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