
Proving Hard-Core Predicates Using List Decoding

Adi Akavia ∗ Shafi Goldwasser † Samuel Safra ‡

ABSTRACT
We introduce a unifying framework for proving that pred-
icate P is hard-core for a one-way function f, and apply
it to a broad family of functions and predicates, reproving
old results in an entirely different way as well as showing
new hard-core predicates for well known one-way function
candidates.

Our framework extends the list-decoding method of Gol-
dreich and Levin for showing hard-core predicates. Namely,
a predicate will correspond to some error correcting code,
predicting a predicate will correspond to access to a cor-
rupted code word, and the task of inverting one-way func-
tions will correspond to the task of list decoding a corrupted
code word.

A characteristic of the error correcting codes which emerge
and are addressed by our framework, is that code words can
be approximated by a small number of heavy coefficients in
their Fourier representation. Moreover, as long as corrupted
words are close enough to legal code words, they will share a
heavy Fourier coefficient. We list decode such codes, by de-
vising a learning algorithm applied to corrupted code words
for learning heavy Fourier coefficients.

For codes defined over {0, 1}n domain, a learning algo-
rithm by Kushilevitz and Mansour already exists. For codes
defined over ZN , which are the codes which emerge for pred-
icates based on number theoretic one-way functions such as
the RSA and Exponentiation modulo primes, we develop a
new learning algorithm. This latter algorithm may be of
independent interest outside the realm of hard-core predi-
cates.

1. INTRODUCTION
Let f be a one-way function, namely a function which is

easy to compute, but hard to invert on all but a negligible
fraction of its inputs. We say that a Boolean predicate P is
a hard-core predicate for f if P (x) is easy to compute given
x, but hard to guess with non-negligible advantage beyond
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50% given only f(x). The notion of hard-core predicates was
introduced and investigated in [9, 4] and has since proven
central to cryptography and pseudo-randomness.

The standard proof methodology for showing P is hard-
core for f is by a reduction from inverting f to predicting
P . That is, demonstrate an efficient inversion algorithm for
f, given access to a probabilistic polynomial time magic-
algorithm B that on input f(x) guesses P (x) with non-
negligible advantage over a random guess. Since f is assumed
to be a one-way function, it follows that no such algorithm
B exists and P is a hard-core predicate.

Blum and Micali [4] were the first to show a hard-core
predicate for a function widely conjectured to be one-way.
Let p be a prime and g a generator for Z∗

p . The function
EXPp,g : Zp−1 → Z∗

p , EXPp,g(x) = gx mod p is easy to
compute and as hard to invert as solving discrete logarithm
mod p. Blum and Micali[4] define the predicate BMp,g(x) =
0 if 0 ≤ x < p−1

2
and 1 otherwise, and proved it is a hard-

core predicate for EXPp,g if the discrete logarithm problem
is intractable. In subsequent years, it was shown for other
conjectured one-way functions f and other predicates P , that
P is a hard-core predicate for f [9, 22, 3, 20, 10, 1, 11, 13, 5].
Most notably, for the RSA [18] function RSA : Z∗

n → Z∗
n,

RSA(x) = xe mod n, the predicates Pi(x) = ith bit of x
were shown hard-core, first for i = 1, |n| [1] and recently for
any 1 ≤ i ≤ |n| [11].

Goldreich and Levin [7] address the general question of
whether every one-way function (OWF) has some hard-core
predicate. They show that for any OWF f : {0, 1}n → {0, 1}∗
one can define another OWF f′ : {0, 1}n×{0, 1}n → {0, 1}∗×
{0, 1}n by f′(x, r) = 〈f(x), r〉, so that the predicate GL(x, r) =∑n

i=1 xiyi is a hard-core predicate for f′.
The work of Goldreich-Levin, which explicitly addressed

hard-core predicates for arbitrary one-way functions, by way
of solution gave a polynomial time list-decoding algorithm
for a well known error correcting code – the Hadmard code.
It introduced an interesting connection between hard-core
predicates and list decoding which, as pointed out by Im-
pagliazzo and Sudan [12, 19, 21], could potentially lead to
a general list decoding methodology 1 for proving hard-core
predicates for one-way functions.

In this methodology, given a function f and predicate P ,
one would have to:

1. Define a Code. Identify an error-correcting

1Interestingly, this view was not spelled out in ’89 when
the work came out, but is rather a later perspective which
emerged with the growing interest in list-decoding and its
applications.



code CP encoding distinct x’s, such that given
only f(x) and the capability to compute P (z)
on input f(z), one can query-access the code-
word for x, CP

x . In the case of [7] the code de-
fined was the Hadamard code which is a natu-
ral as GL(x, r) is precisely the r-th entry of the
Hadamard encoding of string x.

2. List Decode. Show a polynomial-time list-
decoding algorithm for the code CP , which works
with query access to a corrupted code-word and
tolerates a < 1

2
− ε fraction of error. In the case

of Hadamard code, [7] indeed provides such a list
decoding algorithm.

3. Show that predicting P implies access
to a corrupted code-word. Show that if there
exists a magic algorithm B that on input f(x)
predicts P (x) with non-negligible advantage, then
there exists an access algorithm which for a non-
negligible fraction of x’s, on input f(x), can query
access a corrupted code word of x with < 1

2
− ε

fraction of errors.

Putting all these together, implies that if B exists then f
can be inverted for a non-negligible fraction of x’s (using the
list decoding algorithm). Thus, under the assumption that
f is a one-way function, no such B can exist and predicate
P is a hard-core predicate.

This is no doubt an elegant methodology but is it a use-
ful methodology for proving hard-core predicate results for
natural f’s and P ’s? At the very least, can we define ap-
propriate codes and corresponding list decoding algorithms
so as to employ this methodology for proving existing hard-
core predicate results of [4] for the EXP function, and the
results of of [1, 11] for the RSA function ?

These questions are the starting point for our work.

1.1 Our Work
We introduce a unifying framework for proving that pred-

icate P is hard-core for a one-way function f, and apply
it to a broad family of functions and predicates, reproving
old results in an entirely different way as well as showing
new hard-core predicates for well known one-way function
candidates.

Our framework follows a list decoding methodology. Thus,
the technical essence of the new proofs is to define appro-
priate codes and to list decode them. These two tasks are
independent of the one-way function in question and depend
only on the predicate. The only consideration given to the
one-way function is in devising a way to access the corrupted
code word.

The error correcting codes which emerge and are addressed
by our framework, are those in which code-words can be
approximated by considering only a small number of the
heavy coefficients in their Fourier representation. Moreover,
as long as corrupted words are close enough to legal code
words, they will share a heavy Fourier coefficient. To list
decode, we will first devise a learning algorithm applied to
corrupted code words for finding their heavy Fourier coeffi-
cients, and then find all code words for which these coeffi-
cients are heavy.

Let us now elaborate on the hard-core predicates and one-
way functions for which we apply our framework, and give
a more detailed description of our technique.

1.1.1 Segment Predicates
We apply our framework to prove that a wide class of

predicates called segment predicates are hard-core predicates
for various well known candidate one-way functions.

A segment predicate is any arbitrary assignment of Boolean
values to an arbitrary partition of ZN into poly(log N) seg-
ments, or a multiplicative shift of such an assignment. A
segment predicate can be balanced (with the same number
of 0’s and 1’s) or unbalanced as long as it is far from a con-
stant function. In the latter case of unbalanced predicates,
we naturally adapt the definition of hard-core unbalanced
predicates to be that it is impossible to compute the predi-
cate better than guessing it at random from f(x).

We prove that any segment predicate is hard-core for any
one-way function f defined over ZN for which, , for a non-
negligible fraction of the x’s, given f(x) and y, one can ef-
ficiently compute f(xy) (where xy is multiplication in ZN ).
This includes the functions EXPp,g, RSA(x), Rabin(x) =
x2 mod n, and ECLa,b,p,Q = xQ where Q is a point of high
order on an elliptic curve Ea,b,p,Q(Zp) (naturally the appro-
priate N in each case differs).

In particular, this implies that for every i the i-partition-
bit is a hard-core predicate for the RSA function where we
define the i-th partition bit of x as 0 if 0 ≤ 2ix ≤ N

2
( mod N

and 1 otherwise.
In contrast with the notion of segment predicates, we

remark that in the past most all predicates investigated
correspond in a fairly direct way with bits in the inverse
of f(x). An exception is the work of [17] showing that
Pi(x) = ith bit of ax + b mod p for randomly chosen a, b, p
are hard-core predicates for one-way functions f.

1.1.2 New Proofs of Old Results
It is easy to see that the hard-core predicates of [4, 1,

13] for candidate one-way functions EXP, RSA, Rabin and
ECL, are special cases of the segment predicate defined
above. Thus, we re-prove in an entirely different and uni-
form manner, all the results of [4, 1, 13]

In contrast to previous proofs, the technical essence of
the new proofs is to define appropriate codes and to list de-
code them. These two tasks are independent of the one-way
function in question and depend only on the predicate. The
only consideration given to the one-way function is for devis-
ing a way to access the corrupted code word (step 3 in the
methodology). A task which turns out to be very simple
in all the cases considered. We stress that the proofs ob-
tained here are completely different than the previous ones.
In particular, the proofs do not require the use the binary
gcd algorithm used in previous proofs of the hard-core pred-
icates for RSA [2, 1, 11], nor the square root extraction over
finite fields as in [4].

We present a new proof method for simultaneous security
of many bits. For this purpose we generalize the notion of
balanced hard-core predicates to unbalanced ones. To prove
simultaneous bit security, we will show that any violation of
simultaneous bit security implies a predictor for some un-
balanced hard-core predicate. Using this method we show
that a class of functions called segment functions – an ex-
tention of segment predicates, are simultaneously secure for
RSA, Rabin, EXP , and ECL. In particular, this implies si-
multaneous security of the O(log log N) most significant bits
for those candidate OWFs [20, 15] .

Finally, the new framework applies to proving Goldreich-



Levin hard-core predicate in a natural manner where indeed
the appropriate code is the Hadamard code.

For a partial summary of these results, see table 1.

1.1.3 Technique: List Decoding by Learning Algo-
rithm

The basic approach we take in the list decoding algorithm
we develop is to analyze the Fourier representation of code-
words and corrupted code-words. In particular, for all the
codes we use, most of the weight in the Fourier represen-
tation of every code-word is concentrated on a small set of
characters. We refer to such codes as concentrated codes.
Furthermore, we prove in the concentration and agreement
lemma 1 that if w is close to a legal code-word Cx and C is
a concentrated code, then there exists a character χα which
has a heavy coefficient in both w and Cx.

The above suggests the following high level description
of a list decoding algorithm on input word w : D → {±1}:
First, apply a learning algorithm to find the set of all charac-
ters for which w has heavy Fourier coefficients. Then, apply
a recovery algorithm on each heavy character χα found in
the first step, to obtain a list L containing all x’s for which
χα is a heavy character of the code-word Cx.

Turning this into a polynomial-time list decoding algo-
rithm for each code considered requires showing the exis-
tence of a learning algorithm which given access to an ar-
bitrary function (the corrupted code word) learns its heavy
Fourier coefficients, as well as a recovery algorithm. Whereas
learning and recovery algorithms exist for the Hadamard
code, we develop them anew for the new codes of section
5. As it turns out only one recovery and learning algorithm
suffice for the codes of section 5. The recovery algorithm is
elementary. In contrast, the learning algorithm is interest-
ing on his own right and constitutes another contribution of
this paper.

1.1.4 Learning Heavy Fourier Coefficients for Func-
tions Over ZN

We design an efficient algorithm that learns the heavy
Fourier coefficients of arbitrary functions defined over ZN .

Given a threshold τ and query access to a function g : ZN →
C, the algorithm returns a short list containing all the Fourier
coefficients of g with weight at least τ . The algorithm ex-
tends the work of Mansour and Kushilevitz [14] which solves
the same problem for g : {0, 1}n → {±1}.

We go beyond the application to proving hard-core pred-
icates in which the functions concerned are defined over ZN

and generalize our learning algorithm to work for function
defined over general abelian groups. Specifically, let func-
tion g : D → C where D is a finite abelian group with k
generators g1, ..., gk of known orders N1, ..., Nk respectively.
We design a algorithm which learns all the heavy Fourier
coefficients of g, w.p. at leat 1 − δ; and its running time
is polynomial in log |D| , 1/τ, ‖g‖∞ = maxx |g(x)| , ‖g‖2 and
ln(1/δ).

1.2 Related Work
Hastad and Naslund[11] showed that the ith bit of x (in

its binary representation) is a hard-core predicate for the
RSA function. We note that this is different than our result
showing that the ith partition bit is a hard-core predicate for
the RSA function. It is interesting to study further whether
the same techniques can be applied to obtain both sets of

results.
Fourier analysis has been looked at previously in the con-

text of hard-core predicate in the work of Goldmann et al
[6].

The literature of hard-core predicate is quite vast and
many techniques have been employed throughout the years,
which we cannot elaborate on here. The technique of Kaliski
[13] for proving hard-core predicate for the discrete loga-
rithm problem in general groups might be another inter-
esting avenue to explore in the context of list decoding for
discrete log based functions; it also does not use square root
extraction of [4] as well.

1.3 Roadmap
In section 2 we provide preliminaries on Fourier analysis,

and the necessary definitions for learning, binary codes, and
one-way functions. In section 3, we present our algorithm
for list decoding via learning, and prove its correctness based
on the concentration and agreement lemma. In section 4,
we formally describe the conditions for proving hard-core
predicates via list decoding approach. In section 5 we fo-
cus on showing hard-core predicates for number theoretic
functions. In section 6 we use our techniques to prove si-
multaneous bit security. In section 7 we describe our result
on learning Fourier coefficients of functions over ZN . Due
to lack of space many proofs are omitted and are included
in the full version.

2. PRELIMINARIES

2.1 Groups and Fourier Transform
Let (D, ·) denote a abelian group, where D is the set of

group-elements and · is the group-operation. Consider now
the set of all functions from D to the complex-numbers

VD→C

def
= {g : D → C}

This forms a vector space of dimension |D| over the complex-
numbers. The expectation inner-product for this vector

space is 〈g, h〉 def
= Ex∈D[g(x) · h(x)] (where z denotes the

complex conjugate of z). The l2-norm is defined, as stan-
dard, by, ‖g‖2

2 = 〈g, g〉.
The natural basis for this vector space consists of all func-

tions ex for every x, where ex(x) = 1 and ex(y) = 0 for any
y �= x. An alternative basis for this vector-space is the
Fourier basis, consisting of all multiplicative functions.

A character χα : D → C is a multiplicative function, namely,

∀x, y ∈ D, χα(x · y) = χα(x) · χα(y)

These characters are orthogonal, each of l2-norm 1, and
there are |D| of them, hence they form an orthonormal basis
for VD→C, referred to as the Fourier basis.

Definition 1 (Fourier Representation). The Fourier
representation of a function in VD→C is thus the vector of
its projection on each of the characters, namely,

g =
∑
α∈D

ĝ(α)χα

where we denote

ĝ(α)
def
= 〈g, χα〉.



Predicate (or function) P Function f Code CP = {Cx}x

GL(x, r) f(x) : {0, 1}|r| → {0, 1}∗ {Cx(i) = GL(x, i)}x∈{0,1}n

msbN (x) RSAN,e(x) = xe mod N {Cx(i) = msbN (x · i mod N)}x∈Z∗
N

msbp−1(x) EXPp,g(x) = gx mod p {Cx(i) = msbp−1(x · i mod p − 1)}x∈Z∗
p−1

msbq(x) ECLp,Q(x) = xQ {Cx(i) = msbq(x · i mod q)}x∈Z∗
q

TriLsbp−1 EXPp,g(x) = gx mod p {Cx(i) = TriLsbp−1(x · i mod p − 1)}x∈Z∗
p−1

PrefN (x) RSAN,e(x) = xe mod N { Cs
x(i) = 1 iff D(RSAN,e(x), s) = 1 and 0 o/w}

Table 1: Example of predicates (or a function) and codes. Notations details: GL(z, r) = (−1)〈z,r〉; msbd(z) = 1
if 0 ≤ z < d

2
, −1 o/w; q denotes the order of Q; Assuming p − 1 is co-prime to 3, TriLsbp−1(x) = msb(x/3)

(where the division is modulo p − 1); PrefN (x1...xk) = x1...xl, where l = log k = log log N , s ∈ {0, 1}l, and D is a
distinguisher for PrefN .

The coefficient ĝ(α) is called the α Fourier coefficient of g
and |ĝ(α)|2 is its weight (where for any complex number
z = a + ib, |z|2 = a2 + b2).

We normally utilize a one-to-one mapping between the el-
ements of D and the characters, and thus index each char-
acter χα by an element α ∈ D.

Definition 2 (Restriction). Given g : D → C and a
set of characters Γ. The restriction of g to Γ is the function
g|Γ : D → C defined by

g|Γ =
∑

χα∈Γ

ĝ(α)χα

We refer to g as Fourier concentrated if we can approxi-
mate it to within any ε by its restriction to a small, namely,
of size poly(log(|D|)/ε), set of characters:

Definition 3 (Fourier Concentration). A function
g : D → C is Fourier concentrated if for every ε > 0 there
exists a set Γ consisting of poly(log(|D|)/ε) characters, so
that the l2-norm of g outside Γ (g|Γ̄) is small

‖g − g|Γ‖2 ≤ ε

2.2 Fourier Transform Over ZN

The characters over the additive group ZN are as follows.

Definition 4 (Characters over ZN). For each α ∈
ZN , the α-character χα : ZN → C is defined by

χα(x)
def
= ωαx

N

where ωN = ei 2π
N is the primitive root of unity of order N .

The following proposition gives bounds on the expected
value of a character χα when evaluated on an interval {0, ..., l − 1}.
For α ∈ N , denote abs(α)

def
= min {α, N − α}.

Proposition 1. Denote Sl(α) = Ey=0,...,l−1[ω
αy]

• Upper bound: |Sl(α)|2 < (N/l)2

abs(α)2

• Lower bound: If abs(α) ≤ N
2l

, then |Sl(α)|2 > 1
6
.

Proof. For ease of notation assume w.l.o.g α = abs(α).

Since
∑l−1

y=0 ωαy is a geometric sum,

Sl(α) =
1

l

ωαl − 1

ωα − 1

Noting that ∀b,
∣∣ωb − 1

∣∣2 = 2(1 − cos( 2π
N

b)), and utilizing

Taylor approximation, namely, 1− θ2

2!
≤ cos(θ) ≤ 1− θ2

2!
+ θ4

4!
(for |θ| ≤ π), we get

|Sl(α)|2 =
1

l2
1 − cos( 2π

N
αl)

1 − cos( 2π
N

α)
≤ 1

l2
2

( 2π
N

α)2

2!
− ( 2π

N
a)4

4!

<
(N/l)2

α2

Now, if α ≤ N
2l

, then

|Sl(α)|2 ≥ 1

l2

( 2π
N

αt)2

2!
− ( 2π

N
αt)4

4!

( 2π
N

α)2

2!

>
1

6

�

2.3 Learnable Domain
A concentrated function g : D → C can be approximated

by a restriction to its heavy coefficients. We are therefore
interested in learning those heavy coefficients, when given
only a query access to g.

Let Heavyτ (g) be the set of all characters χα of weight at
least τ

Heavyτ (g)
def
=

{
χα

∣∣ |ĝ(α)|2 ≥ τ
}

Note that for functions whose l2-norm is at most 1 (as are all
functions discussed herein), |Heavyτ (g)| ≤ 1/τ , since by Par-
seval identity ‖g‖2

2 =
∑

α |ĝ(α)|2. In particular, for Boolean
functions g : D → {±1}, ‖g‖2

2 = 1.

Definition 5 (Learnable Domain). We say that D
is a learnable domain, if there exists a learning algorithm
that, given query access to a function g : D → C, and inputs
τ, δ and 1k (where k = log(|D|) denotes the size of x ∈ D),
outputs a list of characters of length polynomial in k, 1/τ
that contains Heavyτ (g), w.p. 1 − δ; and the running time
of the algorithm is polynomial in k, 1/τ, log( 1

δ
), ‖g‖2, ‖g‖∞.

2.4 Binary Codes
An important notion utilized herein is that of a code,

in particular, a binary-code. A binary-code is a subset of
{±1}∗, and concentrating on vectors of length m it is a set
of code-words C ⊆ {±1}m. When m = |D|, we identify each
function g : D → {±1} with a vector in {±1}m, and think
of C as a subset of

VD→{±1}
def
= {g : D → {±1}}

The codes discussed herein would be meant to encode el-
ements of D, thus there is a one-to-one mapping between



code-words and elements of D:

C = {Cx}x∈D

Definition 6 (Normalized Hamming distance). The
normalized Hamming distance between two Boolean func-
tions g, h : D → {±1} is

∆(g, h) = Pr
x∈RD

[g(x) �= h(x)]

For any Boolean function g : D → {±1} denote

majg = max
b∈{±1}

Pr
x∈RD

[g(x) = b]

minorg = 1 − majg

Definition 7 (List decodable). We say that a code
C = {Cx : D → {±1}}x∈D is list decodable, if it has a list
decoding algorithm. Namely, a PPT algorithm that, given
access to a corrupted codeword w : D → {±1} and inputs
ε, δ, 1k (where k = log |D| denotes the size of x ∈ D), returns
a list L ⊇ {x |∆(Cx, w) ≤ minorCx − ε} w.p. at least 1− δ.

2.5 One-Way Functions and Hard-Core Pred-
icates

We are interested in Boolean predicates. From this point
on, we switch to work with range {±1} (rather than {0, 1}).

We say that ν(·) is negligible if for every constant c ≥ 0
there exists an integer kc such that ν(k) < k−c for all k ≥ kc.

Another way to think of it is ν(k) = k−ω(1).
We say that ρ(·) is non-negligible if there exists a constant

c ≥ 0 and an integer kc such that ρ(k) > k−c for all k ≥ kc.
There are two equivalent definitions of (strong) one-way

functions one may work with.
The first is a single function defined over an infinite do-

main which is asymptotically hard to invert with high prob-
ability (where the probability is taken over all strings of the
same length).

The second definition is suitable for number theoretic OWFs
candidates, and therefore, we use this formulation in this
work.

Definition 8 (OWF). We say that F = {fi : Di →
Ri}i∈I is a collection of one-way functions (OWFs) (where
I is an infinite set of indices, Di and Ri are finite), if (1)
one can efficiently sample i ∈ I ∩ {0, 1}k (2) ∀i ∈ I, one
can efficiently sample x ∈ Di (3) ∀i ∈ I, x ∈ Di, one can
efficiently compute fi(x) and (4) ∀i ∈ I, fi is (strongly) hard
to invert, namely, for every PPT algorithm A there exists a
negligible function νA such that

Pr[fi(z) = y : y = fi(x), z = A(i, y)] < νA(k)

(here the probability is taken over random choices of i ∈
I ∩ {0, 1}k, x ∈ Di, and over the coin tosses of A).

Definition 9 (Hard-core predicates). Let P be a
collection of Boolean predicates. We say that P is hard-
core for a collection of one-way functions F if it is hard to
guess the value of Pi(x) from fi(x) with any non-negligible
advantage over a random guess, namely, ∀ PPT algorithm
B, there exists a negligible function νB, s.t.

Pr[B(i, fi(x)) = Pi(x)] < majPi
+ νB(k).

where the probability is taken over the random coin tosses of
B and choices of i ∈ I ∩ {0, 1}k and x ∈ Di.

When P consists of balanced predicates2, the condition is ∀
PPT algorithm B, ∃ a negligible function νB , s.t.

Pr[B(i, fi(x)) = Pi(x)] <
1

2
+ ν(k).

Definition 10 (Predicts). We say that an algorithm
B predicts Pi from fi if ∃ a non-negligible function ρ s.t.

Pr[B(i, fi(x)) = Pi(x)] ≥ majPi
+ ρ(k).

where the probability is taken over the random coins tosses
of B and choices of z ∈ Di ∩ {0, 1}k.

In what follows we fix i and show an efficient reduction
of inverting fi with non-negligible probability to predicting
Pi(x) given fi(x). This will suffice for showing that P is a
hard-core predicate for F .

For a full definition of one-way collection of functions and
hard-core predicates for collections see [8].

3. LIST DECODING VIA LEARNING
In this section we present a list decoding algorithm for

codes C = {Cx : D → {±1}}x∈D. The algorithm requires
D to be a learnable domain, and C to be concentrated and
recoverable (see definitions below).

Definition 11 (Concentration). We say that C is
concentrated if each of its code-words Cx is a Fourier con-
centrated function.

Definition 12 (Recovery). We say that C is recov-
erable, if it has a recovery algorithm, namely, a polynomial
time algorithm that, given a character χα (for α �= 0), a
threshold τ , and 1k where k is the size of x’s in D, returns
a list Lα containing

{x ∈ D |Heavyτ (Cx) � χα}

Given an input w we seek all code-words Cx that are close
to w. The following lemma implies that when C is a con-
centrated code, if w is close to Cx, then w and Cx have a
common heavy Fourier coefficient.

Lemma 1 (Concentration and Agreement). Let
f, g : D → C where ‖f‖2, ‖g‖2 ≤ 1, and such that f is a

concentrated function and 〈f, g〉 > ε +
∣∣∣̂f(0)ĝ(0)

∣∣∣ for some

ε > 0. Then, there exists an (explicit) threshold τ which
is polynomial in ε, 1/k (where k = log(|D|) is the length of
inputs x ∈ D) such that

∃α �= 0, χα ∈ Heavyτ (f) ∩ Heavyτ (g)

Proof. Let Γ be a set of characters on which f is concen-
trated to within o(ε) – namely, so that, if we denote by Γ̄
its complement, it is the case that ε′ = ‖f|Γ̄‖2 ≤ o(ε). Note
that, by Cauchy-Schwartz

〈f|Γ̄, g|Γ̄〉2 ≤ ‖f|Γ̄‖2
2 · ‖g|Γ̄‖2

2 ≤ ε′2 · 1 = ε′2

2P is a collection of balanced predicates if there exists a
negligible function ν, s.t.∣∣∣Pr

x
[Pi(x) = 1] − Pr

x
[Pi(x) = −1]

∣∣∣ < ν(k)



and since the Fourier basis is orthonormal∑
χα∈Γ

f̂(α)ĝ(α) = 〈f|Γ, g|Γ〉 ≥ 〈f, g〉−∣∣〈f|Γ̄, g|Γ̄〉
∣∣ ≥ ε+

∣∣∣̂f(0)ĝ(0)
∣∣∣−ε′

which implies there exists a α �= 0 s.t. χα ∈ Γ and
∣∣∣̂f(α)ĝ(α)

∣∣∣ ≥
ε−ε′
|Γ| . Now, as both

∣∣∣̂f(α)
∣∣∣ , |ĝ(α)| ≤ 1, it must be that both∣∣∣̂f(α)

∣∣∣ , |ĝ(α)| ≥ ε−ε′
|Γ| = τ �

Now, we present the list decoding algorithm.

Theorem 1 (list decoding via learning). Let D be
a learnable domain, and let C = {Cx : D → {±1}} be a con-
centrated and recoverable code, then C is list decodable.

Proof. Given ε, δ, 1k and a corrupted code-word w, consider
a code-word Cx such that ∆(Cx, w) ≤ minorCx − ε.

Replacing f, g in the the concentration and agreement
lemma above with Cx, w respectively, and noting that

∆(Cx, w) ≤ minorCx − ε iff 〈Cx, w〉 ≥
∣∣∣∣E

j
[Cx(j)]

∣∣∣∣ + ε

we conclude that there exist a threshold τ which is polyno-
mial in ε, 1/k, and a character χα with α �= 0, so that

χα ∈ Heavyτ (Cx) ∩ Heavyτ (w)

Since D is a learnable domain, we can in time polynomial
in k, ε−1, log( 1

δ
) find a list L′ that contains Heavyτ (w), w.p.

1 − δ.
Let the output of the list decoding algorithm be the list

L ⊇ {
x ∈ D |Heavyτ (Cx) ∩ L′ �= φ

}
obtained by applying the recovery algorithm with threshold
τ on each character in L′.

Since Heavyτ (Cx) � χα, it must be that x ∈ L with high
probability. Since τ is polynomial in ε, 1/k, then the length
of the list L and the running time of the algorithm are poly-
nomial in k, 1/ε, log( 1

δ
). �

4. HARD-CORE PREDICATES VIA LIST DE-
CODING

Throughout this section F = {fi : Di → Ri}i∈I denotes
a collection of OWFs, P = {Pi : Di → {±1}}i∈I denotes

a collection of predicates, and CP =
{CPi

}
i∈I

denotes a

collection of codes, where CPi =
{
CPi

x : Di → {±1}} is a

code with codewords CPi
x corresponding to a non-negligible

fraction of the x ∈ Di.

Definition 13 (Accessible). Let P be a collection of
predicates. We say that CP is accessible w.r. to F , if there
exists a PPT access algorithm A, s.t. ∀i ∈ I ∩ {0, 1}k, CPi

is accessible w.r. to fi, namely,

1. Code access: ∀x, j ∈ Di, A(i, fi(x), j) returns fi(x
′)

s.t. CPi
x (j) = Pi(x

′).

2. Well spread: For uniformly distributed CPi
x ∈ CPi

and j ∈ Di, the distribution of x′ satisfying fi(x
′) =

A(i, fi(x), j) is statistically close3 to the uniform dis-
tribution on Di.

3Namely, 1
2

∑
c∈Di

|Prx′ [x′ = c] − Prz[z = c]| < ν(k) for a

negligible function ν.

3. Bias preserving: For every codeword CPi
x ∈ CPi ,∣∣Prj [C

Pi
x (j) = 1] − Prz[Pi(z) = 1]

∣∣ ≤ ν(k), where ν is
a negligible function.

For ease of notations, we fix some i ∈ I ∩{0, 1}k and drop
the indices. We now show that if CP is accessible w.r. to
f, then an algorithm B that predicts P implies access to
corrupted codewords.

Lemma 2. Let P : D → {±1} be a balanced predicate. As-
sume CP is accessible w.r. to f. Assume we are given a
PPT algorithm B that predicts P from f. Then, for a non-
negligible fraction of the codewords CP

x ∈ CP , given f(x), we
have access to a corrupted codeword wx satisfying

∆(wx, CP
x ) ≤ 1

2
− ρ(k)

where ρ is a non-negligible function.

Proof. As CP is accessible w.r. to f, there exists an access
algorithm A as in definition 13.

Give f(x), define4 wx by

wx(j) = B(A(f(x), j))

Let ax,j ∈ D satisfy f(ax,j) = A(f(x), j). Since the code
is well spread, and B predicts P with some non-negligible
advantage ρ′,

Pr[B(f(ax,j)) = P (ax,j)] ≥ 1

2
+ ρ′(k) − ν(k)

where the probability is taken over random coin tosses of B
and over random choices of CP

x ∈ CP and j ∈ D.
Let 2ρ(k) = ρ′(k)−ν(k). Thinking of ax,j as first choosing

Cx ∈ S, and then j ∈ D, by a counting argument, ∃S′ ⊆ CP

of at least ρ(k) fraction of the codewords s.t.

∀CP
x ∈ S′, Pr[B(f(ax,j)) = P (ax,j)] ≥ 1

2
+ ρ(k)

where the probability is taken over random coin tosses of
B and over random choices of j ∈ D. Namely, ∀CP

x ∈
S′, ∆(wx, CP

x ) ≥ 1
2
− ρ(k). �

For unbalanced predicates we prove a similar lemma.

Lemma 3. Let P : D → {±1} be a predicate. Assume CP

is accessible w.r. to f. Assume we are given a PPT algo-
rithm B that predicts P from f. Then, for a non-negligible
fraction of the codewords CP

x ∈ CP , given f(x), we have ac-
cess to a corrupted codeword wx satisfying

∆(wx, CP
x ) ≤ minorCP

x
− ρ(k)

for ρ a non-negligible function.

Example 1 (Binary Hadamard code is accessible).

Let F ′ =
{f′n : {0, 1}n × {0, 1}n → Rn} denote a collection of OWFs,
where f′n(x, y) = fn(x).y is the concatenation of fn(x) and y.
Let GL = {GLn : {0, 1}n×{0, 1}n → {±1}} be the collection

4Although A, B are probabilistic algorithms, w.l.o.g we as-
sume wx is well-defined: Since our list decoding algorithm
accesses wx only polynomially many times, by taking wx(j)
to be the majority value in polynomially many applications
of A, B, we have only a negligible probability to of encoun-
tering different values for the same entry wx(j).



of predicates: GLn(x, r) = (−1)〈x,r〉. Let CGL =
{CGLn

}
be

the collection of binary Hadamard codes:

CGLn = {Cx,y : {0, 1}n → {±1}, Cx,y(j) = (−1)〈x,j〉}
Then the algorithm A(n, f′n(x, y), (j′, j)) = fn(x).j is an ac-
cess algorithm for CGLn w.r to f′n, and S = GLn is well
spread, and as balanced as GLn.

Theorem 2 (List Decoding Approach). Assume a col-
lection of codes CP =

{CPi
}

i∈I
, s.t. ∀i ∈ I, (1) CPi is list

decodable, and (2) CPi accessible w.r. to fi. Then P is hard-
core of F .

Proof. It suffices to show for a non-negligible fraction of the
indices i ∈ I a reduction of inverting fi with non-negligible
probability to predicting Pi from fi. For ease of notation,
in the rest of the proof we fix some i ∈ I ∩ {0, 1}k which
satisfies items (2),(3) above, and drop the indices.

Assume an algorithm B that predicts P from f. Then, by
lemma 3 above, there exists a non-negligible function ρ and
a non-negligible fraction of the codewords CP

x ∈ CP s.t. we
have random access to a corrupted code-word wx satisfying
∆(wx, CP

x ) ≤ minorCP
x
− ρ(k).

We list-decode wx to obtain a short list L containing x.
Evaluating f on every candidate x′ in L we output x′ such
that f(x′) = f(x) thus inverting f(x). �

Remark 1. In fact it suffices to have codes CPi satisfying
items (2),(3) of the above theorem for non-negligible fraction
of the indices I.

Remark 2. Since our list decoding algorithm accesses the
corrupted code-word wx only polynomially many time, it can-
not distinguish between two code-words which are within neg-
ligible distance from each other. Consequently, our proof of
P being hard-core for F implies that P = {P ′

i}i∈I is also

hard-core for F , as long as each code-word Cx ∈ CP ′
i is

within negligible distance from the code-word Cx ∈ CPi .

5. NUMBER THEORETIC HARD-CORE PRED-
ICATES

Let ZN be the ring of integers with addition and multi-
plication modulo N . In this section we prove that a broad
family of predicates over ZN , namely, segment predicates, is
hard-core for the candidate one-way functions EXP , RSA,
Rabin and ECL. The definition of segment predicates in-
cludes as a special case predicates previously shown hard-
core [4, 1] as well as other predicates not previously known
to be hard-core.

5.1 Segment Predicates

Definition 14 (Segment Predicate). Let P =
{PN : ZN → {±1}} be a collection of predicates that are
non-negligibly far from constant, namely, ∃ non-negligible
function ρ s.t. majPN

≤ 1 − ρ(k) where k = log N .

• We say that PN is a basic t-segment predicate if PN (x+
1) �= PN (x) for at most t x’s in ZN .

• We say that PN is a t-segment predicate if there exist
a basic t-segment predicate P ′ and a ∈ ZN which is
co-prime to N s.t. ∀x ∈ ZN , PN (x) = P ′(x/a).

• If ∀N , PN is a t(N)-segment predicate, where t(N) is
polynomial in log N , we say that P is a collection of
segment predicates.

Remark 3. Requiring that P is non-negligibly far from
constant is not essential. If it is close to constant then,
trivially, Pi(x) cannot be predicted with a non-negligible
advantage over guessing its majority value, as the majority
guess is already extremely good.

The definition of segment predicates is quite general. It
captures many of the previous predicates considered for RSA,
Rabin, EXP and ECL as well as new predicates. In the fol-
lowing we illustrate the generality and ease of working with
the segment predicate definition.

5.1.1 Examples of Segment Predicates
Most-significant bit is a segment predicate. Let

msb : ZN → {±1} be defined by msb(x) = 1 if x < N/2,
and −1 otherwise. This is a basic 2-segment predicate, since
it changes value only twice.

Least-significant of RSA is a segment predicate.
Let lsb : {0, ..., N − 1} → {±1} be defined by lsb(x) = 1 iff x
is even. When N is odd, ∀x, lsb(x) = msb(x/2), thus as msb
is a basic 2-segment predicate, lsb is a 2-segment predicate
with a = 2. Consequently, lsb is a segment predicate for
RSA, as well as for any other function over ZN , where N is
odd; but it is not a segment predicate for functions over an
even domain such as EXP (where the domain Zp−1 is even,
since p is prime).

Partition bits of RSA are segment predicates. We
define the i-th partition bit, bi : ZN → {±1}, to give alter-
nating values on a partition of ZN to 2i intervals, namely,
bi(x) = msb(x2i). This is a natural generalization of the
most-significant bit (corresponding to i = 0), in which ZN

is partitioned into two halves. Again as msb(x) is a basic 2-
segment predicate, bi is a 2-segment predicate with a = 2−i

for RSA, as well as for any other function over ZN , where
N is odd.

Example of a new basic segment predicate. In gen-
eral, we can define a new basic segment predicate by choos-
ing any partition of ZN to polynomially many intervals, and
giving arbitrary answer (in ±1) for each interval. For exam-
ple, a segment predicate might give 1 on the first 10% of the
inputs and between the middle 50−90%, and −1 otherwise.

Example of a new segment predicate. From any ba-
sic segment predicate, and any a co-prime to N one may
define a (general) segment predicate. For example, in the
EXP case, though the lsb is not a segment predicate, many
others are. For instance, consider a trinary partition of the

msb defined by TriLsb(x)
def
= msb(x/3). Under the stan-

dard assumption that p− 1 = 2q, where q is prime, this is a
segment predicate.

5.2 Defining a Code

Definition 15 (Multiplication code). For each pred-
icate PN : ZN → {±1}, we define the multiplication code
CPN = {Cx : ZN → {±1}}x∈Z∗

N
by

Cx(j) = PN (j · x mod N)

For a collection of predicates P = {PN : ZN → {±1}}, de-
note CP =

{CPN
}
.



Note that CPN consists of code-words Cx for a non-negligible
fraction of the x ∈ ZN (since Z∗

N is a non-negligible fraction
of ZN ).

5.3 List Decoding
The additive group of ZN is shown to be a learnable do-

main in theorem 6 in section 7.
In the next two lemmata we show that when PN is a

segment predicate, the multiplication code CPN is concen-
trated and recoverable. In the following, for any function
g, we say that g is concentrated within ε on Γ, whenever
‖g − g|Γ‖2

2 ≤ ε.

Lemma 4 (Concentration). Let P = {PN} be a col-
lection of segment predicates, then ∀N, CPN is concentrated.

Proof. We first prove that any basic segment predicate is
concentrated on small characters (namely those for which
abs(α) = min {α, N − α} is small):

Claim 4.1. Let ε > 0. For a basic t-segment predicate
P : ZN → {±1}, P is concentrated within ε on Γ = {χα|abs(α) ≤
O(t2/ε)}, i.e

‖P|{χα | abs(α)>O(t2/ε)}‖
2
2 ≤ ε

Proof. Let us first examine the Fourier coefficients of a
basic 2-segment predicate P , which gives 1 on a segment I
and −1 otherwise:∣∣∣P̂ (α)

∣∣∣ = E
x
[P (x)χα(x)] =

1

N
[
∑
x∈I

χα(x) −
∑
x/∈I

χα(x)]

By Proposition 1,
∣∣∣ 1

N

∑l−1
y=0 χα(y)

∣∣∣ < 1
abs(α)

. Consequently,

since P̂ (α) is the difference of two sums
∑

χα(x), and each
can be expressed as a difference of two such sums initiated

at 0, then
∣∣∣P̂ (α)

∣∣∣ < O(1/abs(α)).

Now, let us examine a basic t-segment predicate P . A
basic t-segment predicate defines a partition of ZN into t
segment Ij , so that P is constant on each segment Ij . Thus
we can express P as a sum, P = t−1+

∑t
j=1 Pj , of functions

Pj : ZN → {±1} such that Pj(x) is the constant P (x) for
x ∈ Ij and −1 otherwise.

Note that each Pj is a basic 2-segment predicate, thus∣∣∣P̂j(α)
∣∣∣ < O(1/abs(α)). Therefore,

∣∣∣P̂ (α)
∣∣∣ =

∣∣∣∣∣
t∑

j=1

P̂j(α)

∣∣∣∣∣ ≤ O(t/abs(α))

Now, consider the sum of weights over all large characters
χα: ∑

abs(α)>k

∣∣∣P̂ (α)
∣∣∣2 ≤ O(t2)

∑
abs(α)>k

1

abs(α)2
< O(

t2

k
)

which implies that for ε > 0

‖P|{χα | abs(α)>O(t2/ε)}‖
2
2 ≤ ε

From the above Claim, we can easily deduce that CPN is
concentrated, by applying the following claim:

Claim 4.2. For f, g : ZN → C such that g(y) = f(y/b)

where b ∈ Z∗
N , ĝ(α) = f̂(αb).

Proof. By definition ĝ(α) = Ey∈Zp [f(y/b)χα(y)]. Since
b ∈ Z∗

N , {yb}y∈ZN
= ZN , thus ĝ(α) = Eyb,y∈ZN

[f(yb/b)χα(yb)].

Now, as χα(yb) = χαb(y), ĝ(α) = Ey[f(y)χαb(y)] = f̂(αb).
The code CPN is defined by Cx(j) = PN (jx), for PN a

general segment predicate. Since, PN (x) = PN
′(x/a) (where

PN
′ is a basic t-segment predicate), Cx(j) = PN

′(jx/a).
Now, by the above Lemma, PN

′ is concentrated within ε on{
χα | abs(α) ≤ O(t2/ε)

}
and therefore, Cx is concentrated

to within ε on

Γ =
{

χβ |β = α(x/a) mod N, abs(α) ≤ O(t2/ε)
}

Thus CPN is concentrated. �

Lemma 5 (Recovery). Let P = {PN} be a collection
of segment predicates, then ∀N, CPN is recoverable.

Proof. Let PN be a t-segment predicate. We show a recovery
algorithm for CPN that runs in time polynomial in t log N .
Denote PN (y) = PN

′(y/a) for a basic segment predicate
PN

′; then, Cx(j) = PN (jx) = PN
′(jx/a) implies (by Lemma

4) Cx is concentrated to within τ on

Γ =
{

χβ |β = α(x/a) mod N, abs(α) < O(t2/τ)
}

On input a character χβ for β �= 0 and a threshold pa-
rameter τ , let us describe an algorithm outputting a list
containing {x |Heavyτ (Cx) � χβ}.

Since Cx is concentrated to within τ on Γ, χβ ∈ Heavyτ (Cx)
implies χβ ∈ Γ and thus

β ≡ x(α/a) mod N

for abs(α) ≤ poly(log N/τ). Our algorithm outputs the
union of the lists Lα, such that Lα contains all x so that
x ≡ β(α/a)−1 mod N .

If α is co-prime to N , then so is α/a and there is a single
solution to this equation, which can be efficiently computed
by the Extended Euclid Algorithm. Otherwise, if α is not co-
prime to N , then we can easily find d = gcd(α, N), compute

x ≡ β(α/a)−1 mod
N

d

and return all

Lα =

{
x + i · N

d
(modN)

}
i=0,...,d−1

The union of the lists Lα (over all α such that abs(α) ≤
O(t2/τ)) contains all x such that Heavyτ (Cx) � χβ , and,
since gcd(α, N) is small, the lengths of the lists and the
time of constructing them are poly(log(N)/τ). �

Combining Theorem 1 with the above lemmata, we con-
clude that for P = {PN} a collection of segment predicates,
for every N , the multiplication code CPN is list decodable.

5.4 Accessibility
We now show that that the multiplication code CPN =

{Cx}x∈Z∗
N

is accessible w.r. to the well known candidate

one-way functions of RSA, Rabin, EXP and ECL. As it
turns out this task is simple for all the functions we consid-
ered. Due to lack of space, in this version we elaborate only
on the RSA and EXP examples.



5.4.1 Accessibility w.r. to RSA

Definition 16 (RSA). Assuming hardness of invert-
ing the RSA function yields the following collection of OWFs.
Define RSA = {RSAn,e(x) = xe mod n, RSAn,e : Z∗

n →
Z∗

n}〈n,e〉∈I for I = {〈n, e〉, n = pq, |p| = |q|, p and q are
primes and (e, φ(n)) = 1}

One technical issue we need to address, when consider-
ing segment predicates in the context of RSA or Rabin, is
that segment predicates were defined over the domain ZN

whereas RSA, Rabin are defined over Z∗
N . To overcome

this difficulty we extend the definition of segment predi-
cates, by saying that P ′ = {P ′

N} : Z∗
N → {±1} is a col-

lection of segment predicates, if there exists a collection
P = {PN : ZN → {±1}} of segment predicate, such that
P ′

N is the restriction of PN to inputs from the domain Z∗
N .

W.l.o.g assume PN (x) = 0 for every x ∈ ZN \ Z∗
N .

Lemma 6 (RSA). Let P =
{

PN |Z∗
N

∣∣∣ PN : ZN → {±1}
}

be a collection of segment predicates, then P is a hard-core
predicate of RSA.

Proof. Let the access algorithm A be

input: 〈N, e〉, RSAN,e(x), j
output: If j ∈ Z∗

N , return RSAN,e(jx) = RSAN,e(j)·
RSAN,e(x) mod N ; else return 0.

For any fixed x ∈ Z∗
N , and uniformly distributed j ∈ ZN ,

consider the distribution of x′ satisfying RSAN,e(x
′) =

A(i, RSAN,e(x), j). The restriction of this distribution to
Z∗

N is uniform; while its restriction to ZN \ Z∗
N gives only

one value x′ = 0. Still, this distribution is close to uniform,
as w.l.o.g there is only a negligible fraction of inputs j /∈ Z∗

N

(otherwise, RSA can be broken). Therefore, the code is well
spread, and bias preserving. �

5.4.2 Accessibility w.r. to EXP

Definition 17 (EXP). Assuming hardness of solving
the Discrete Log Problem yields the following collection of
OWFs. Define EXP = {EXPp,g(x) = gx mod p, EXPp, g :
Zp−1 → Z∗

p}〈p,g〉∈I for I = {〈p, g〉, p prime, g generator for
Z∗

p}.
Lemma 7 (EXP). Let P = {Pp,g : Zp−1 → {±1}} be a

collection of segment predicates, then P is a hard-core pred-
icate of EXP .

Proof. Let the access algorithm A be

input: 〈p, g〉, EXPp,g(x), j
output: Return EXPp,g(xj) = EXPp,g(x)j mod
N .

For any fixed x ∈ Z∗
p−1, and uniformly distributed j ∈ Zp−1,

the distribution of x′ satisfying EXPp,g(x′) = A(i, EXPp,g(x), j)
is uniform. Therefore, the code is well spread, and bias pre-
serving. �

Remark 4. So far, we invert EXPp,g(x) only for x’s
which are co-prime to p−1 (as CP = {Cx}x∈Z∗

p−1
). Nonethe-

less, by random self reducibility of EXP we can invert for
any x: For r ∈R Zp−1, EXPp,g(x + r) = gx · gr is a genera-
tor of Z∗

p w.h.p. In this case, we can invert EXPp,g(x + r)
to find x′ = x + r, and return x = x′ − r.

Remark 5. Interestingly, lsb is a segment predicate over
odd domains, and thus hard-core for RSA, while it is easy
for EXP (where the domain is even). To see where the
proof fails, consider the code Clsb consisting of code-words
Cx(j) = lsb(jx).

This code has no recovery algorithm with a succinct out-
put, as its code words correspond only to one out of two
functions: Cx(j) = lsb(jx) = 1 for even x’s, and Cx(j) =
lsb(jx) = lsb(j) for odd x’s. Moreover, no alternative list
decoding algorithm exists, since each code word is at distance
0 from half the codewords.

5.5 Putting It Together

Theorem 3. Let P be a collection of segment predicates.
Then, P is hard-core for RSA, Rabin, EXP, ECL, under
the assumption that these are OWFs.

6. SIMULTANEOUS SECURITY

Definition 18 (Hard-core function). Let F = {fi :
Di → Ri}i∈I be collections of OWFs. Let H = {hi : Di →
{0, 1}l(i)}i∈I be collections of functions s.t. for each i ∈
I ∩ {0, 1}k, l(i) is polynomial in k.

We say that a PPT algorithm D is a distinguisher for H
w.r. to F , if ∃ a non-negligible function ρ s.t.

|Pr[D(fi(x), hi(x)) = 1] − Pr[D(fi(x), h(r)) = 1]| ≥ ρ(k)

where the probability is taken over the random coin tosses of
D and choices of i ∈ I ∩ {0, 1}k, x, r ∈ Di.

We say that H is hard-core for F , if there exists no dis-
tinguisher for H w.r. to F .

We now extend the definition of segment predicates to
segment functions.

Definition 19 (Segment function). Let H = {hN :

ZN → {0, 1}l(N)}N∈I be a collection of functions. For each

s ∈ {0, 1}l(N), define a predicate PH,s
N : ZN → {0, 1}, PH,s

N (x) =
1 if hN (x) = s and 0 otherwise. We say that H is a collec-

tion of segment functions, if P =
{

PH,s
N

}
N∈I,s∈{0,1}l(N)

is

a collection of segment predicates.

It turns out that for proving simultaneous security it is
useful to consider unbalanced segment predicates as in the
following examples.

Example 2 (Most significant bits). Let PrefN (x)
be the l(N) most significant bits in a binary representa-

tion of x. ∀s ∈ {0, 1}l(N), define the unbalanced predicate
P s

N (x) = 1 if PrefN (x) = s, and 0 otherwise. When l(N) ≤
O(log log N), P s

N is is a segment predicate (as it is non-
negligibly far from constant), thus, H = {PrefN : ZN →
{0, 1}l(N)}N is a collection of segment functions.

Example 3 (Dissection bits). Let a ∈ Z∗
N , and let

Dissecta,N (x) = PrefN (x/a). Then when l(N) ≤ O(log log N),

H =
{

Dissecta,N : ZN → {0, 1}l(N)
}

N
is a collection of seg-

ment functions.

Theorem 4. Let H =
{

hN : ZN → {0, 1}l(N)
}

N
be a col-

lection of segment functions. Then H is hard-core for RSA,
Rabin, EXP and ECL, under the assumption that these
are OWFs.



7. LEARNING HEAVY FOURIER COEFFI-
CIENTS OF FUNCTIONS OVER ABELIAN
GROUPS

In this section, we consider the problem of finding all the
heavy Fourier coefficient of a given function g.

Theorem 5 (Learning). Let G be a finite abelian group
with known set of generators of known orders. There is a
learning algorithm that, given query access to g : G → C,
0 < τ and 0 < δ < 1, outputs a list L, of O(‖g‖2

2/τ) char-
acters (each can be encoded by log |G| bits), that contains
Heavyτ (g), w.p. at least 1 − δ; and the running time of the
algorithm is polynomial in log |G| , ‖g‖∞, 1/τ and ln(1/δ).

For the sake of this extended abstract, we will describe
the restricted case of g being a Boolean function defined
over ZN . A description of the general case is deferred to the
full version of this paper.

7.1 Related Learning Work
Our algorithm extends a previous algorithm by Kushile-

vitz and Mansour [14], which learns heavy Fourier coeffi-

cients of functions g : {0, 1}k → {±1}. The main difficulty
in extending the algorithm of [14] is as follows. Consider
the case of g over {0, ..., N − 1}, and identify each character

with an element α1...αk ∈ {0, ..., N − 1}k. A central step in
the algorithm of [14] is fixing some prefix α0 = α1...αi−1 and
checking for each αi ∈ {0, 1} whether the prefix α0αi can be
extended to a heavy character. When αi ∈ {0, ..., N − 1},
it is impossible to consider every possible value, since N
is thought of as exponentially large. Instead, we devise an
efficient search procedure for finding the few relevant αi’s.

We note that in [16] Mansour extended techniques from
[14] to an algorithm that learns the heavy coefficients of
a polynomial P , when given black-box query access to P .
This latter algorithm can be interpreted as an algorithm that
finds the heavy Fourier coefficients of a function g : Zk

N → C,
where N is restricted to be a power of 2.

7.2 The Boolean Function over ZN Case
Let us state the result for Boolean functions over ZN .

Theorem 6. There is an algorithm that, given query ac-
cess to g : ZN → {±1}, 0 < τ and 0 < δ < 1, outputs a list
L, of O(1/τ) characters (each can be encoded in log N bits),
that contain Heavyτ (g), w.p. at least 1− δ; and the running

time5 of the algorithm is Õ(log N · ln2(1/δ)/τ5.5).

7.2.1 Overview of the algorithm
The algorithm begins with an initial collection of intervals

C0, obtained by a partition of ZN into intervals of size N
l0

.
Each interval in C0 is viewed as a candidate for containing
some α such that χα is a heavy character of g.

The algorithm consists of O(log N
l0

) steps of refining in-
tervals’ collections. In refining step i ≥ 1 each interval in
collection Ci−1 is halved into two sub-interval, now of size

N
l0·2i . Each sub-interval is either inserted into a new col-

lection Ci or discarded depending on the outcome of a pro-
cedure which distinguishes (with high probability) between

5We use Õ() notation to indicate that we omit terms of
complexity which is polynomial in log(1/τ), log log N or
ln ln(1/δ).

intervals which contain some α for which χα is heavy and
those which are ”far from” containing any such α (in the
sense that the sum of weights of all characters in a slightly
larger interval is less than c · τ , for some constant c < 1).
Indeed, the heart of the algorithm is to devise such an effi-
cient distinguishing procedure (see refinement section 7.2.3
for details).

Once all refining steps are completed, the algorithm holds
a final collection of singleton intervals including amongst
them all heavy characters, and possibly some other char-
acters as well. In a post-processing step, one may further
shrink down this list of characters in the collection to co-
incide (with high probability) with a list of length O( 1

τ
)

containing all heavy characters of g.

7.2.2 The Algorithm
The notion of a good l-collection of intervals is central to

our algorithm.

Definition 20 (good l-collection). Let J l
j = [(j −

1)�(N/l)�, j�(N/l)� − 1] denote an interval of size �(N
l
)�.

An l-collection of intervals C is a subset of the intervals{
J l

j

}
1≤j≤l

. We say that an l-collection C is good if :

1. |C| ≤ O(1/τ1.5) (C is small), and

2. ∀χα ∈ Heavyτ (g), ∃J ∈ C such that α ∈ J (all heavy
characters are included in the intervals of C)

Algorithm LearnHeavyCoefficients
Input: query access to g : ZN → {±1}, τ > 0 and 0 < δ < 1
Output: a list of characters L, such that L is of length at
most O(1/τ), and it contains Heavyτ (g) w.p. at least 1 − δ
Algorithm:

1. Initialization: Let j = 0, l0 = O(1/
√

τ); and C0 ={
J l0

i

}
i=1,...,l0

.

2. Refinement: repeat log(N/l0) times: Cj+1 = Refine(Cj);
j ← j + 1; lj = 2lj−1.

3. Return Shrink(Cj)

Remarks:
1. Throughout the algorithm, for 1 ≤ j ≤ O(log N

l0
), we

keep the invariant that Cj is a good lj-collection. The search
for heavy characters is initiated by setting l0 = O( 1√

τ
), and

initializing the l0-collection C0 =
{

J l0
i

}
i=1,...,l0

. This is a

good collection: it is small since l0 is small, and it contains
all heavy characters since it covers ZN . Next, at each re-

fining step j, in time Õ( ln2(1/δ)

τ5.5 ) we refine the current good
lj-collection Cj into a good lj+1 = 2lj-collection Cj+1, w.p.
at least 1−O( δ

log N
) (for details and proof see section 7.2.3).

Finally, after O(log(N
l0

)) steps, the final collection consists

of O( 1
τ1.5 ) intervals of length 1 each. This final collection is

good w.p. at least 1−O(δ) by union bound over the refining
steps.

2. The final collection, being good, thus constitutes a list
of length at most O( 1

τ1.5 ), which contains all heavy charac-
ters, w.p. at least 1−O(δ). To shrink this list, we estimate
the weight of each character in the list, such that w.h.p. the
distance of our estimation from the real value is no more
than τ/4 (this can be done efficiently, by Chernoff bound).



We maintain only the characters estimated to be of weight
at least 3τ/4. The shrunk list contains, w.h.p., all heavy
characters, and no character of weight less than τ/2. Thus,
the final output is a list of length O( 1

τ
), containing all heavy

characters with probability at least 1 − δ.
3. As our goal was to prove a polynomial upper bound,

we did not bother optimizing the complexity of the learning
algorithm. However, by a more careful analysis and choice
of parameters, its complexity can be improved. This has sig-
nificance for a tighter security proof for the hard-core predi-
cates and more importantly for devising efficient algorithms
for discovering heavy Fourier coefficients in applications in-
volving FFT computations.

7.2.3 Refinement Procedure
In a refinement step, we efficiently transform a good l-

collection C into a good 2l-collection C′ as follows. Let the in-
tervals that are candidates for C′ be Candidate = {J2l

i that
intersects an interval in C}1≤i≤2l. It is sufficient to consider
whether to keep or discard these intervals, as each heavy
character of g is contained in some interval of C. Namely,
we consider at most 3 |C| ≤ O(1/τ1.5) intervals (by the in-
variant of C being small).

Ideally, we would like now to discard all candidate inter-
vals that do not contain a heavy character. However, we do
not know how to efficiently decide if an interval contains a
heavy character or not. Instead we discard all interval that
are ”far from” containing a heavy character:

Definition 21 (Far from heavy). For each interval
J , denote weight(J) =

∑
α∈J |ĝ(α)|2. For each J2l

i let

Ext(J2l
i ) =

∆⋃
j=−∆

J2l
i+j , for ∆ = �(2

√
24/τ)�

We say that J2l
i is far from heavy if weight(Ext(J2l

i )) <
τ/24.

We devise a distinguishing procedure to distinguish between
(1) the case that an interval J = J2l

i contains an α such that
χα is heavy, from the case (2) J is far from heavy. In the
latter case, we discard the interval J , while otherwise, we
insert J to C′. Clearly, we lose nothing, as for every α ∈ J ,
the weight of χα ≤ weight(J) ≤ weight(Ext(J)) ≤ τ .

Refine Procedure
Input: a good l-collection C
Output: a good 2l-collection C′

Algorithm:

1. Initialization: Candidates = {J2l
i that intersect some

J ∈ C}i=1,...,2l; C′ is the empty collection.

2. ∀J2l
i ∈ Candidates, if Distinguishing(J2l

i ) = Yes, C′ ←
C′ ∪ {

J2l
i

}
3. Return C′.

Lemma 8 (Refine). Given a good l-collection C, w.p.
at least 1 − O(δ/ log N), the refinement procedure returns a
good 2l-collection C′; and its running time is O(T/τ1.5), for

T = Õ(ln2(1/δ)/τ4) the running time of the distinguishing
procedure.

7.2.4 Distinguishing Procedure
The distinguishing procedure is the heart of the algorithm.

Distinguishing Procedure
Input: an interval J2l

i

Output: Yes/No
Algorithm:

1. Let ε = δτ1.5/ log N , m2 = Θ(ln(1/ε)/τ2), m1 =
Θ(ln(m2/ε)/τ2). Randomly choose x1, ..., xm2 sam-
ples in ZN

2. For each xr, r ∈ 1, ..., m2

• Randomly choose y1, ..., ym1 samples in {0, ...., l − 1}
• Let gi(xr) = χshift(xr) · 1

m1

∑m1
t=1 g(xr − yt), for

shift = −(i − 1)�(N/2l)�
3. Let est-norm-gi = 1

m2

∑m2
r=1 gi(xr)

2

4. If est-norm-gi > τ/8 return Yes, otherwise, return No

Lemma 9 (Distinguisher). Given query access to g :
ZN → {±1}, τ, δ > 0, and an interval J = J2l

i , the Distin-

guishing procedure above runs in time T = Õ(ln2(1/δ)/τ4),
and w.p. at least 1 − O(δτ1.5/ log N), returns

1. Yes, when J contains a heavy character

2. No, when J is far from heavy

Proof. We distinguish between the above cases by estimating
weight(J). Ideally, we would like to compute weight(J),
by computing the norm of its restriction ‖g|{χα : α∈J}‖2

2 =
weight(J). But, how do we access g|{χα : α∈J}, and how do
we compute its norm?

Decaying function: Relaxing the requirement of access-
ing g|{χα : α∈J}, we would like to access a J-decaying func-
tion h defined as follows. Let d(α, J) denote the distance of
α ∈ ZN from the closest β ∈ J . We say that a function h is

J-decaying, if
∣∣∣ĥ(α)

∣∣∣ = c(α) |ĝ(α)| for 0 ≤ c(α) ≤ 1 s.t. for

α ∈ J, c(α) is fairly high, i.e., Ω(1) ≤ c(α); and for α /∈ J,
c(α) decreases rapidly, i.e., c(α) ≤ O(|J | /d(α, J)).

Being able to compute
∑

α∈ZN

∣∣∣ĥ(α)
∣∣∣2 provides a good

handle on weight(J) since,

Ω(weight(J)) ≤
∑

α∈ZN

∣∣∣ĥ(α)
∣∣∣2 ≤ O(weight(Ext(J))) + O(τ)

follows from

• ∑
α∈J

∣∣∣ĥ(α)
∣∣∣2 ≥ Ω(weight(J)).

• ∑
α∈Ext(J)

∣∣∣ĥ(α)
∣∣∣2 ≤ O(weight(Ext(J)))

• ∑
α/∈Ext(J)

∣∣∣ĥ(α)
∣∣∣2 ≤ O(τ) · ∑α |ĝ(α)|2 = O(τ) (as for

Boolean g’s,
∑

α |ĝ(α)|2 = 1).

In the following, we provide query access to a close ap-
proximation to a J-decaying function, and in turn, use it
to approximate weight(J). We begin by providing query
access to a function gi, which is (a) close to a J-decaying
function h, and (b) bounded by 1, namely ∀x, |g(x)| ≤ 1.



First, we address J = J2l
1 . Consider the function

h1(x) = E
y=0,...,l−1

[g(x − y)]

h1 is J-decaying, since
∣∣∣ĥ1(α)

∣∣∣ = c(α) |ĝ(α)|, for c(α) =

|Ey=0,...,l−1[χα(y)]|, where, by proposition 1, c(α) ≥ 1/6
for α ∈ J , and c(α) ≤ 2 |J | /abs(α) otherwise. Note also
that c(α) ≤ 1. Denote ε = δτ1.5/ log N , η = O(τ) (to be
specified later on), and m1 = Θ(ln(m2/ε)/η2) (for m2 to
be specified later on). Then, by Chernoff bound, given m1

random samples y1, ..., ym1 ∈ {0, ...., l − 1},

g1(x) =
1

m1

m1∑
t=1

g(x − yt)

satisfies
∣∣g1(x) − h1(x)

∣∣ < η, w.p. at-least 1 − O(ε/m2).

Second, we address J = J2l
i . Let shift = −(i−1)�(N/2l)�

denote the offset for shifting J to zero, then hi(x) = χshift(x)·
Ey=0,...,l−1[g(x−y)] is J-decaying, since

∣∣∣ĥi(α)
∣∣∣ =

∣∣∣ĥ1(shift + α)
∣∣∣

where h1 is J2l
1 -decaying. Therefore, given m1 random sam-

ples y1, ..., ym1 ∈ {0, ...., l − 1},

gi(x) = χshift(x) · 1

m1

m1∑
t=1

g(x − yt)

satisfies
∣∣gi(x) − hi(x)

∣∣ < η, w.p. at-least 1 − O(ε/m2).
We proceed by showing how to approximate weight(J),

when given query access to the function gi above.

First, we approximate
∑

α∈ZN

∣∣∣ĥi(α)
∣∣∣2. Let x1, ..., xm2 ∈

ZN be m2 = Θ(ln(1/ε)/γ2) random samples, and define

est-norm-gi =
∑m2

r=1

∣∣gi(xr)
∣∣2. By union bound, w.p. at

least 1 − O(ε),
∣∣∣est-norm-gi − 1

m2

∑m2
r=1

∣∣hi(xr)
∣∣2∣∣∣ < 2η. By

Chernoff bound,

∣∣∣∣ 1
m2

∑m2
r=1

∣∣hi(xr)
∣∣2 − ∑

α

∣∣∣ĥi(α)
∣∣∣2∣∣∣∣ ≤ γ, w.p.

at least 1−O(ε). Combined together, w.p. at least 1−O(ε),∣∣∣∣est-norm-gi − ∑
α

∣∣∣ĥi(α)
∣∣∣2∣∣∣∣ ≤ 2η + γ.

Finally, we specify the parameters we use and wrap every-
thing together. Assign η, γ = O(τ) such that 2η+γ ≤ τ/24.
Recall that for α ∈ J , c(α) > 1/6. By the definition of
Ext(J), for α /∈ Ext(J), c(α) ≤ τ/24. Therefore, on the one
hand, weight(J) ≥ τ implies est-norm-gi > weight(J)/6 −
2η − γ ≥ τ/8; and on the other hand, weight(Ext(J)) <
τ/24 implies est-norm-gi < weigth(Ext(J)) + τ/24 + 2η +
γ ≤ τ/8. Hence, by answering Yes iff est-norm-gi ≥ τ/8,
we distinguish the two cases of the lemma, w.p. at least
1−O(ε) = 1−O(δτ1.5/ log N); and the running time of the

distinguishing procedure is O(m1 · m2) = Õ(ln2(1/δ)/τ4).
�
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