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ABSTRACT
In the distributed uniformity testing problem, k servers draw sam-

ples from some unknown distribution, and the goal is to determine

whether the unknown distribution is uniform or whether it is ε-far
from uniform, where ε is a proximity parameter. Each server de-

cides whether to accept or reject, and these decisions are sent to

a referee, who makes a final decision based on the servers’ local

decisions. Uniformity testing is a particularly useful building-block,

because it is complete for the problem of testing identity to any

fixed distribution.

It was recently shown that distributing the task of uniformity

testing allows each server to draw fewer samples than are needed in

the centralized case, but so far the number of samples required for

distributed uniformity testing has not been well understood. In this

paper we settle this question, and also investigate the cost of using

local decision rules, such as rejecting iff at least one server wants to

reject (the usual decision rule used in local distributed decision). To

answer these questions, we develop a new Fourier-based technique

for proving lower bounds on the sample complexity of distribution

testing, which lends itself particularly well to the distributed case.

Using our technique, we tightly characterize the number of sam-

ples required for uniformity testing when the referee can apply any

decision function to the servers’ local decisions. We also show that

if the network rejects whenever one server wants to reject, then

the cost of uniformity testing is much higher, and in fact we do

not gain compared to the centralized case unless the number of

servers is exponential in Ω(1/ε). Finally, we apply our lower bound

technique to the case where the referee applies a threshold decision

rule, and also generalize a lower bound from [1] for learning an

unknown input distribution.

CCS CONCEPTS
• Theory of computation → Distributed algorithms;

∗
Supported partially by NSF grant CCF-1412958 and Rothschild Fellowship.

†
Rotem Oshman and Uri Meir are partially supported by Israeli Center of Research

Excellence in Algorithms (ICORE). This work was done in part while the authors were

visiting the Simons Institute for the Theory of Computing.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-6217-7/19/07. . . $15.00

https://doi.org/10.1145/3293611.3331613

KEYWORDS
distributed computing, uniformity testing, boolean analysis

ACM Reference Format:
Uri Meir, Dor Minzer, and RotemOshman. 2019. Can Distributed Uniformity

Testing Be Local?. In 2019 ACM Symposium on Principles of Distributed
Computing (PODC ’19), July 29-August 2, 2019, Toronto, ON, Canada. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3293611.3331613

1 INTRODUCTION
In the distribution testing problem, we are given samples from some

unknown distribution µ, and we want to test whether µ satisfies

some desired property P, or whether µ is far from satisfying the

property. The central question is how many samples are needed to

distinguish these two cases with high confidence.

This question has been extensively studied in the centralized

setting, where one tester examines all the samples and outputs an

answer (e.g., [2, 6, 10, 11, 13] and many others). Recently, distri-

bution testing has also been considered in the distributed setting,

where it is also useful (e.g, [1, 7]). For example, suppose we have

a sensor network whose sensors take measurements of their en-

vironment, and must raise an alarm if the measurements deviate

significantly fromnormal; or a distributed algorithm designed under

the assumption that its input distribution satisfies some property

P, but to make the system more robust, we want to verify that P

is satisfied before running the algorithm. In such cases, we would

like to deploy a distributed tester for P, where every network node

draws as few samples as possible, and the network together decides

whether P is satisfied or is far from being satisfied. Note that an

algorithm that has success probability 1 − δ under a distribution µ
also has success probability 1 − δ − ε under any distribution that is

ε-close to µ, so for many setting, it is enough to distinguish whether

P is satisfied or far from satisfied.

Uniformity testing. In this paper we focus on the problem of uni-
formity testing: distinguishing the case where the input distribution
µ is the uniform distributionUn on a fixed domain {1, . . . ,n}, from
the case where µ is far from uniform in ℓ1 distance:

∥µ −Un ∥1 =
n∑
i=1

����µ(i) − 1

n

���� > ε,

where ε is a proximity parameter. Uniformity testing is particularly

important, because the problem of testing equality to any fixed dis-

tribution reduces to it; furthermore, uniformity testing is a special

case of many other problems, such as independence testing and

closeness testing, and lower bounds on uniformity testing imply

lower bounds on these other problems as well. It is known that

centralized uniformity testing requires Θ(
√
n/ε2) samples [16]. Our

focus in this paper is on lower bounds for distributed uniformity
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testing. (Note that some applications require ε = o(1), so under-

standing the dependence on ε is important: in general, if X is a

random variable whose maximum possible value isM , and µ,η are

distributions with ∥µ − η∥
1
= ε , then Eµ [X ] 6 Eη [X ] +M · ε/2.)

What is a distributed tester? It is trivial to simply take the cen-

tralized uniformity tester and “make it distributed” by having one

node draw Θ(
√
n/ε2) samples and run the centralized tester. Our

question is: can we use the power of distributed computing to de-

velop a distributed tester where the individual sample complexity
of each node is significantly smaller than Θ(

√
n/ε2)?

Ideally, a distributed tester should behave as a local decision
algorithm: each node examines its own input and makes a decision;

if some node “raises an alarm” by rejecting, then the whole network

rejects, and may need to take some action; otherwise, the network

accepts, and no action is necessary. This local-decision model, and

variants that allow a few communication rounds (e.g., [8, 9]), are

often used in settings where we want to perform some “sanity

check” of the state of the network — e.g., proof labeling schemes [15].
However, previous work on distributed property testing has also

allowed for more general decision rules, where the decision of the

network is any function of the individual decisions of the nodes

(not necessarily their AND). This has allowed for the development

of testers that use fewer samples, but it comes at the cost of locality
— instead of each node raising an alarm independently of the other

nodes, we now need to collect the nodes’ decisions and apply some

(possibly complex) function to them. So far, it has been unclear

whether locality comes at an extra cost, or whether any distributed

tester can be made local without using more samples.

Distributed uniformity testing. In [7], two uniformity testers are

developed: for a network ofk nodes, the first tester uses the standard
AND decision rule (the network rejects if at least one node rejects),

and has a sample complexity ofO(
√
n/(kΘ(ε

2)ε2)) at each node. This
tester only improves on the centralized tester when the number

of nodes is exponential in 1/ε2. For this reason, [7] also develops a

tester which uses a threshold rule, where the network rejects if at

least some fraction of nodes reject; the threshold-based tester has a

much better sample complexity, O(
√
n/k/ε2). Still, the tester does

not achieve “perfect parallelism”, in the sense that the number of

samples each node must draw is larger than a (1/k)-fraction of the

centralized sample complexity.

In contrast, [1] focuses exclusively on the case where each node

has a single sample. Each node sends ℓ bits to a referee, who then

outputs the answer (this corresponds to allowing the network to

use an arbitrary decision rule). It is shown in [1] that in the single-

sample setting, the number of nodes must be Θ(n/ε2). We note that

the decision rule used in [1] is “global”, in the sense that when the

input distribution is ε-far from uniform, no subset of o(n) nodes
can figure out that it should be rejected.

Our goal in this paper is to answer the following questions:

(1) What is the sample complexity of distributed uniformity testing

with any decision rule, as a function of the universe size n, the
number of nodes k , and the promixity parameter ε?

(2) Can we make distributed uniformity testing efficient and local,

or does insisting on the AND decision rule come at the cost

of requiring more samples? What about intermediate levels of

locality, such as checking if a few nodes want to reject?

Initial steps towards answering the first question were made

in [1, 7], but the picture remained far from clear (see Section 1.1).

As for the second question, to our knowledge, the cost of using

local decision rules has so far not been considered.
1

Our techniques. In the world of centralized distribution testing,

lower bounds are usually proven by showing directly that if the

number of samples q is too small, then q samples “look the same”

whether or not the property P is satisfied. Such arguments do not

apply in our setting, because even though each node has only a small

number of samples, together the nodes have many more samples

than are needed to test P. Thus, the samples themselves do provide
the answer. Instead, we must show that by sending only a single

bit (its decision whether to accept or reject), a node cannot provide
much useful information about its samples. We use techniques from

the world of Boolean analysis, and study the Fourier spectrum of

the nodes’ messages; this allows us to quantify the “difference” in a

node’smessagewhen it is fed samples from the uniform distribution,

compared to samples from a distribution that is ε-far from uniform.

To quantify the cost of using a local decision rule, we argue that

the AND-rule or a threshold-rule with a small threshold “force” the

nodes to give highly-biased bits, which have a very high probability

of being 1. Using analytical techniques, we analyze the behavior

of such functions, and show that, essentially, they provide even

less information about the samples. Therefore, more samples are

required. Our proof uses the level inequalities, developed in [14]

with the motivation of studying distributed coin flipping.

The reader is not assumed to have any prior knowledge of Fourier

analysis; we review the necessary concepts in Section 2 below.

Contributions. For an arbitrary decision rule, when k = O(n), we
are able to show that the tester of [7] is tight:

Theorem 1.1 (Informal). For any decision rule f : {0, 1}k → {0, 1},
if k 6 n/ε2, then the individual sample complexity of ε-uniformity
testing using the f -rule is Ω(

√
n/k/ε2).

We also show that the ANDdecision rule is muchmore expensive,

and if we insist on using it, we do not gain much compared to the

centralized tester, unless k = 2
Ω(1/ε )

:

Theorem 1.2. There exists a constant c > 0 such that for every ε > 0,
if k 6 2

c/ε , then the individual sample complexity of ε-uniformity
testing using the AND-rule is Ω(

√
n/(log(k)2ε2)).

For the range k ≈ 2
c/ε

, this lower bound is equivalent to hav-

ing a bound of the form Ω̃(
√
n/(kΘ̃(ε )ε2)), leaving open a possible

quadratic improvement in the exponent of k (from Ω(ε) to Ω(ε2))
compared to the tester of [7]. We remark that in the setting of [1],

where each node has only one sample, it is impossible to solve uni-

formity testing using the AND decision rule, no matter how many

nodes we have. We refer the reader to the full version for a proof.

Next we consider the T -threshold decision rule, where we reject

if at least T nodes decide to reject. This rule was shown in [7]

1
There is an example in the literature of a problem, “at most one marked node”, which

is trivial for randomized local decision algorithms with a certain success probability,

but if we insist that the success probability be “too high”, the problem becomes very

hard [9]. This already shows that using the AND decision rule has an inherent cost.
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to yield a tester which is sample-optimal, in light of Theorem 1.1

above. We show:

Theorem 1.3. There exists c > 0 such that the following holds.
Fix n, ε > 0, and let k 6

√
n. For any threshold T > 0, if T <

c/(ε2 log2(k/ε)), then the individual sample cost of ε-uniformity test-
ing using the T -threshold rule is Ω

(√
n/(T log(k/ε)2 · ε2)

)
.

We see that we need to take eitherT = Ω̃(1/ε2), orT that grows

with k , in order to start gaining significantly compared to the cen-

tralized case. Again, this leaves open a possible quadratic improve-

ment, because in [7], the threshold used was T = Θ(1/ε4).
Finally, we address the question of learning a distribution, which

was studied in [1]. We extend the trade-off shown in [1] to any

number of samples, and show:

Theorem 1.4. There exists δ > 0, such that any q-query protocol
on the distributed network that computes a δ -approximation to an
unknown input distribution must have k = Ω(n2/q2) nodes.

Although we have so far assumed that each node sends a single

bit (its decision whether to accept or reject), our results generalize

to any number ℓ > 1 of bits: the lower bounds decay as 2
−Θ(ℓ)

. We

do not yet know whether this behavior is tight.

1.1 Related Work
The study of distribution testing began in [10, 13], where the uni-

formity testing problem was considered implicitly, as part of a

property tester for the expansion of a graph. In [10, 13] it is shown

that for constant ε , uniformity testing requires Θ(
√
n) samples. The

dependence on ε was characterized exactly in [16], which showed

that Θ(
√
n/ε2) samples are needed. Uniformity testing was shown

to be complete for testing equality between an unknown input

distribution to a known distribution in [6, 11]. We refer to [3, 12]

for more background on distribution testing.

Distributed property testing for distributions was independently

introduced by [1, 7], each taking a different perspective. In [1], it

is assumed that each node receives exactly one sample from the

unknown distribution, and the question is how many nodes are

needed; it is shown that if each node can send ℓ bits to a referee, then

Θ(n/(2ℓ/2ε2)) nodes are sufficient and necessary. Moreover, for the

problem of learning an ε-approximation to the input distribution, [1]

gives upper and lower bounds of Θ(n2/(2ℓε2)). Our techniques
recover the lower bounds of [1], and generalize them to the case

where nodes receive more queries. Although we study a single

player’s message using very different techniques from [1], when it

comes to combining the messages, our lower bounds for an arbitrary

decision rule use the standard technique used in [1].

In [7], each node receives q > 1 queries, and several settings are

studied: the simultaneous communication model, the CONGEST
network model, and the LOCAL network model. The most directly

relevant results from [7] are the testers we mentioned above: using

the AND decision rule, [7] shows that q = O(
√
n/(kΘ(ε

2)ε2)) sam-

ples are sufficient at each node, and using a threshold decision rule,

q = O(
√
n/k/ε2) samples suffice. It is also shown in [7] that if we

use the AND rule, an anonymous tester requires Ω(
√
n/k) samples

at each node, when the promixity parameter ε is a sufficiently small

constant. Our new lower bounds show that in fact, Ω(
√
n/k/ε2)

samples are necessary for any decision rule and any tester, assum-

ing that k = O(n), and we derive much stronger bounds for the

AND rule and the threshold rule.

2 PRELIMINARIES
Distributed property testing for distributions. We have k nodes

(also called players in prior work), who each receive q iid samples

from an unknown distribution µ supported on a universe of size n.
The goal is to distinguish whether µ satisfies some property P of

distributions, or whether µ is ε far from satisfying P, in the sense

that for any distribution η that does satisfy P we have ∥µ − ε ∥
1
> ε .

Here, ∥·∥
1
denotes the ℓ1-norm, ∥v ∥

1
=

∑
i |vi |.

Each of the k nodes sends a bit xi to a referee, who then ap-

plies some decision function f : {0, 1}k → {0, 1} and outputs

f (x1, . . . ,xk ). We require that if µ satisfies the property P then

f (x1, . . . ,xk ) = 1 w.p. at least 2/3, but if µ is ε-far from satisfying

P, then f (x1, . . . ,xk ) = 0 w.p. at least 2/3. Our goal in this paper is

to prove lower bounds on the number q of samples required by each

player, as a function of the universe size n, the proximity parameter

ε , and the number of players k .
We say that the referee uses the AND decision rule if we set

f (x1, . . . ,xk ) =
∧
i xi , and the threshold decision rule with thresh-

old t if f (x1, . . . ,xk ) = 1 exactly when

∑
i xi > k − t .

Fourier analysis. Consider the vector space of real-valued func-

tions from the boolean cube f : {−1, 1}n → R, with the inner

product

⟨f ,д⟩
def
= E

x ∈{−1,1}n
[f (x) · д(x)].

Here and throughout the paper, unless we say otherwise, expec-

tations are taken with respect to the uniform distribution, and we

omit the distribution from the subscript. This inner product also

induces the ℓ2-norm over the space of real-valued functions:
2

∥ f ∥
2
=

√
⟨f , f ⟩ =

√
E
x

[
f (x)2

]
.

The Fourier basis of the vector space of functions f : {−1, 1}n → R
is the set of character functions, {χS : {−1, 1}n → {−1, 1}}S ⊆[n],

where each χS is given by

χS (x) :=
∏
i ∈S

xi .

(We adopt the convention that if S = ∅, then
∏

i ∈S xi = 1.)

The set of character functions forms an orthonormal basis under

the inner product defined above. Any function f : {−1, 1}n → R
can be written as a linear combination of characters,

f (x) =
∑
S ⊆[n]

f̂ (S) · χS (x).

This is called the Fourier transform of f . Because {χS }S ⊆[n] is an

orthonormal basis, the coefficients f̂ (S) have a particularly simple

form: f̂ (S) = ⟨f , χS ⟩.
Two particularly useful properties of the Fourier transform are

the following. First, the inner product of two functions can be

written in terms of their Fourier coefficients:

2
We use here the expectation form, which is simply the usual ℓ2-norm but divided by

the domain size.

Session 5 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

230



PODC ’19, July 29-August 2, 2019, Toronto, ON, Canada Meir, Minzer and Oshman

Fact 2.1 (Plancherel/Parseval). For any f ,д : {−1, 1}n → R, we
have ⟨f ,д⟩ =

∑
S ⊆[n] f̂ (S) · д̂ (S). In particular, when f = д, we have

∥ f ∥2
2
=

∑
S ⊆[n] f̂ (S)

2.

Next, let us view the function f : {−1, 1}n → R as a random

variable, which is sampled by choosing a uniformly random x ∈

{−1, 1}n and computing f (x). Now consider the expectation of this

random variable, denoted µ(f ) = Ex [f (x)], and its variance,

var (f ) = E
x

[
f (x)2

]
− E

x
[f (x)]2 .

These can be expressed in terms of the Fourier coefficients of f :

Fact 2.2. For any f : {−1, 1}n → R we have µ(f ) = f̂ (∅) and
var(f ) =

∑
S,∅ f̂ (S)

2.

Notation. In our lower bound, we work with a family of distribu-

tions, {νz }z∈Z (for some universeZ). We use the notation Ez [νz ]
to denote the distribution obtained by sampling a uniformly ran-

dom z ∈ Z and applying νz ; that is, Ez [νz ] (ω) = (1/|Z|)
∑
z νz (ω)

for any element ω in the domain.

We use the notation µ(f ) to indicate the expected value of a

Boolean function f over the uniform distribution, and we also

sometimes abuse notation by using µ to denote the uniform distri-

bution itself. (This has a good reason: for a Boolean function f , if
we think of f as the indicator for some event, then indeed µ(f ) is
both the probability of the event and the expected value of f under

the uniform distribution.)

3 THE HARD DISTRIBUTIONS
Our proof uses a family of distributions introduced in [16] to show

the lower bound of Ω(
√
n/ε2) on centralized uniformity testing.

However, in order to use the machinery of Boolean analysis, we

would like to view them as distributions on the vertices of the

Boolean cube (while in [16] and others, typically the domain of the

distribution is thought of as {1, . . . ,n}). To this end, we think of

our universe as n = 2
ℓ+1

, two copies of the Boolean cube {−1, 1}ℓ ,

where the last bit is used to match each vertex from the “left” cube to

a vertex from the “right”. We represent the elements of the universe

as pairs (x , s), where x ∈ {−1, 1}ℓ and s ∈ {−1,+1}. Thus, the

element (x ,+1) (from the left cube) is “matched” to (x ,−1) (from
the right).

The uniform distribution on 2
ℓ+1

assigns equal weight to all

vertices. We construct a distribution that is ε-far from uniform by

perturbing the vertices of the left cube, adding +ε/n or −ε/n weight

to each one, and compensate by making the opposite adjustments

on the right cube (so that the resulting object is still a distribution,

i.e., the weights sum to 1). In other words, if we decide to add ε/n
weight to (x ,+1), then we compensate by removing ε/n weight

from (x ,−1), and vice-versa.

Formally, let z : {−1, 1}ℓ → {−1, 1} be a “perturbation vector”

deciding whether to add or remove weight from each x ∈ {−1, 1}ℓ

on the left cube. For each such z, we define the distribution νz ,
supported on {−1, 1}ℓ × {−1, 1} :

νz (x , s) =
1 + s · z(x) · ε

n
.

The distribution resulting from drawing q independent samples

from νz is denoted by ν
q
z , and is given by

ν
q
z (x1, s1, . . . ,xq , sq ) =

q∏
i=1

1 + siz(xi )ε

n
.

The distribution ν
q
z has a particularly nice representation in terms

of the characters {χS }S ⊆[q]:

Claim 3.1. ν
q
z (x1, s1, . . . ,xq , sq ) =

1

nq
∑

S ⊆[q]
ε |S | χS (s)

∏
j ∈S

z(x j ).

Proof. Expanding the definition, we see that

q∏
i=1

1 + siz(xi )ε

n
=

1

nq

q∏
i=1

(1 + siz(xi )ε)

=
1

nq

∑
S ⊆[q]

∏
i ∈S

siz(xi )ε =
1

nq

∑
S ⊆[q]

ε |S | χS (s)
∏
i ∈S

z(xi ).

�

For convenience, we write ν
q
z (x , s) = ν

q
z (x1, . . . ,xq , s1, . . . , sq )

instead of ν
q
z (x1, s1, . . . ,xq , sq ) (i.e., we “collect” all the xi s and the

si s).

Informal discussion. Let us make a few remarks that may be help

understand why the familiy

{
ν
q
z
}
z for a random z is supposed to be

hard to distinguish from a uniform distribution. First, we observe

that for any (x , s) ∈ {−1, 1}ℓ+1, the expected mass of νz (x , s) is

E
z
[νz (x , s)] =

1

n
+

1

n
εsE

z
[z(x)] =

1

n
,

so the average of the distributions νz is precisely the uniform dis-

tribution. What happens when we take q independent samples, i.e.,

consider ν
q
z ? It is no longer true that the average probability of any

specific observation of q samples is equal to its probability under

the uniform measure — this is what allows uniformity testers to

work; specifically, we can distinguish the uniform distribution from

an ε-far distribution by counting collisions [10, 13, 16]. The Fourier
transform provides a convenient tool to measure the difference

between the mixture Ez [νz ] and the uniform distribution. It also

allows us to make explicit the fact that a tester only gains informa-

tion by counting collisions, that is, looking for samples that repeat

themselves.

For any distribution η : {−1, 1}m → R, the distribution ηq of

q iid samples from η can be viewed as a non-negative function,

ηq : {−1, 1}m ·q → R+, and thus we can consider its Fourier trans-

form, ηq =
∑
S ⊆[m ·q] η̂

q (S)χS . Applying Fact 2.2, we see that the
coefficient of the empty character is

η̂q (∅) = E
w ∈{−1,1}m·q

[
ηq (w)

]
=

1

2
m ·q

∑
w

ηq (w) =
1

2
m ·q ,

regardless of which distribution η we take. For the uniform dis-

tribution, the other Fourier coefficients are zero (that is, µq =

µ̂q (∅) · χ∅ = 1/2m ·q
). Therefore, the difference between ηq and

the uniform distribution is given by all the non-empty coefficients.

A hard distribution should be “well-spread” over many Fourier

coefficients, so that we cannot distinguish it by approximating

some particularly heavy coefficient of the distribution; we want the

non-zero coefficients to be small and rare.
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This property holds for the distributions ν
q
z : fixing x , we get

using Claim 3.1 that ν
q
z (x , s) has the Fourier transform

дx (s) =
1

nq

∑
T ⊆[q]

bx (T )ε
|T | χT (s),

where bx (T ) = Ez [
∏

i ∈T z(xi )] ∈ {0, 1}.

If x = (x1, . . . ,xq ) has no “collision” with respect to T , that is, if
xi , x j for all i , j ∈ T , thenbx (T ) = 0: we choose the signs z(xi ) ∈
{−1, 1} independently at random, so we get cancelation. In fact, to

get cancelation, it suffices to have at least one value y ∈ {−1, 1}ℓ

that appears an odd number of times in the multiset {xi }i ∈T . On
the other hand, suppose the multiset {xi }i ∈T is “perfectly paired

up”, with every y ∈ {−1, 1}ℓ appearing an even number of times

(possibly zero). Then

bx (T ) = E
z


∏

y∈{−1,1}ℓ
z(y)2

 = 1.

We see that the only non-zero Fourier coefficients correspond to

“bad pairs” (x ,T )where the multiset {xi }i ∈T is “perfectly paired up”.

In our proof, we show that for a small number of samplesq, such bad
pairs are rare, and therefore the spectrum of our distribution is very

similar to that of the uniform distribution, where all non-empty

characters are 0.

4 VIEWING THE PLAYERS’ BEHAVIOR AS A
BOOLEAN FUNCTION

The behavior of each of our k players can be modeled as a Boolean

function,G : {−1, 1}(ℓ+1)q → {0, 1}, which tells the player what bit

to send upon seeing a set of q samples, S ∈ {−1, 1}(ℓ+1)q . Define:

• νz (G) = ES∼νqz
[G(S)] = PrS∼νqz

[G(S) = 1]: the probability

the player sends 1 when the input distribution is νz .
• µ(G) = ES∼µq [G(S)] = PrS∼µq [G(S) = 1]: the probability

the player sends 1 when the input distribution is uniform

(µ). More explicitly,

µ(G) =
1

nq

∑
x,s

G(x , s).

We are interested in bounding the typical difference between the

behaviour of a player on the uniform distribution and on νz ,

νz (G) − µ(G). (1)

We want to show that for a "typical" z, the probability of sending

1 is very close to the probability under the uniform distribution.

When all players behave this way, the referee cannot distinguish

whether the distribution is uniform or far from uniform.

For notational convenience, as we did above, we write G(x , s)
instead of G(x1, s1, . . . ,xq , sq ) for the output of a player when re-

ceiving (x1, s1), . . . , (xq , sq ) as queries (where x = (x1, . . . ,xq ),
s = (s1, . . . , sq )). The following lemma expresses the difference

in behaviour of G under νz and µ using Fourier coefficients, and

will be used several times in our proofs. Just as we did above, we

fix x , and study the behavior of the function Gx (s) = G(x , s).

Lemma 4.1. Let G : {−1, 1}(ℓ+1)q → {0, 1} , and consider the func-
tion Gx : {−1, 1}

q → {0, 1} defined by Gx (s) = G(x , s). Then

νz (G) − µ(G) =
2
q

nq

∑
S,∅

∑
x

ε |S |
∏
j ∈S

z(x j )Ĝx (S).

The proof is a simple calculation (using Claim 3.1), and it is

deferred to the full version.

Consider the term

∏
j ∈S z(x j )Ĝx (S) appearing in the sum; since

the z(x j )s are chosen iid from {−1, 1}, whenwe take the expectation

over z, we will again get the type of “odd cancelation” that we

pointed out above, and only the “evenly paired up” summands will

survive. This is key to our proof.

4.1 The Main Lemmas
Our lower bounds rely on the following lemmas, which bound the

difference we see in a player’s behavior when fed uniform samples

compared for samples from νz , for a random z.
The lower bound against referees that can use any decision rule

(Theorem 1.1) relies on the following:

Lemma 4.2. Let q 6
√
n

20ε2 , G : {−1, 1}(ℓ+1)q → {0, 1} . Then

E
z

[
|µz (G) − µ(G)|2

]
6

(
20

q2ε4

n
+
qε2

n

)
var(G).

Here, var(G) = Ex,s
[
G(x , s)2

]
−Ex,s [G(x , s)]

2
denotes the vari-

ance of G, as explained in Section 2.

The lower bound against the AND decision rule (Theorem 1.2)

uses the following bound, which improves on Lemma 4.2 when the

bit G is highly-biased — that is, when its variance is low:

Lemma 4.3. Letm ∈ N. Suppose q 6 min

( √
n

40m2ε2 ,
√
n

(40m2ε2)m+1

)
.

Then����Ez [µz (G)] − µ(G)

���� 6 (
q
√
n
+

(
q
√
n

)
1/(2m+2)

)
40m2ε2var(G)

2m+1
2m+2
.

Finally, for the lower bound against thresholds (Theorem 1.3), we

need the following lemma, which essentially interpolates between

the two previous lemmas, and gives a better bound when G has

medium variance.

Lemma 4.4. There exists a constant C > 0, such that the following

holds. Let m ∈ N, and assume q 6 min

( √
n

((40m)2ε2)m+1 ,
√
n

(40m)2ε2

)
.

Then

E
z

[
|νz (G) − µ(G)|2

]
6
2ε2q

n
var(G)+

C

(
q
√
n
+

q1/(m+1)

√
n
1/(m+1)

)
m2ε2var(G)2−1/(m+1).

In Section 5 we prove a somewhat weaker version of Lemma

4.2, to illustrate the main ideas behind our approach. We also give

the proof of Lemma 4.3 . The proofs of Lemma 4.2 and Lemma 4.4

use similar ideas and appear in the full version of the paper. Then,

in Section 6, we show how these lemmas can be used in order to

prove our distributed lower bounds (Theorem 1.1, Theorem 1.2 and

Theorem 1.3).
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5 A SIMPLIFIED LEMMA
We prove the following weaker version of Lemma 4.2:

Lemma 5.1. Let q 6
√
n

4ε2 , G : {−1, 1}(ℓ+1)q → {0, 1} . Then����Ez [νz (G)] − µ(G)

���� 6 4qε2
√
n

√
var(G).

Proof. We begin by writing out the expression inside the abso-

lute value using Lemma 4.1:

E
z
[νz (G)] − µ(G) =

2
q

nq

∑
S,∅

∑
x

ε |S |E
z


∏
j ∈S

z(x j )

Ĝx (S). (2)

For each S ⊆ [q] and x = x1, . . . ,xq , we are interested in the

multiset

{
x j

}
j ∈S of points that appear in x in indices covered by

S . Observe that if there exists a point a ∈ {−1, 1}ℓ that appears an

odd number of times in

{
x j

}
j ∈S , then the contribution of x to (2)

is zero (the “odd cancelation” we pointed out before): to see this,

let R =
{
j ∈ S | x j = a

}
⊆ S be all the places in S where a appears

in x . Because the coordinates of z are independent, we can write

E
z


∏
j ∈S

z(x j )

 = Ez(a)
[
z(a) |R |

]
· E
z({−1,1}ℓ\{a })


∏
j ∈S\R

z(x j )

 ,
but Ez(a)

[
z(a) |R |

]
= 0, since |R | is odd and z(a) takes the values 1

or −1 with equal probability.

Hence, for a summand to make a non-zero contribution to (2),

every point a ∈ {−1, 1}ℓ must appear an even number of times in

the multi-set xS :=
{
x j

}
j ∈S . We refer to this property as an “evenly

covered” multi-set xS . Let

XS =
{
x ∈ ({−1, 1}ℓ)q | xS is evenly covered

}
.

What happens when xS is evenly covered? Inside the product∏
j ∈S z(x j ), every value z(a) ∈ {−1, 1} for a ∈ {−1, 1}ℓ appears an

even number of times, so the product is 1. Thus, (2) simplifies to

E
z
[νz (G)] − µ(G) =

2
q

nq

∑
S,∅

∑
x ∈XS

ε |S |Ĝx (S). (3)

Our goal now is to bound the absolute value of (3), by showing

that for a given set S , the set XS of x ’s that are evenly covered by S
is typically very small.

Proposition 5.2. The following holds:
(1) |XS | depends only on |S |, and is 0 when |S | is odd.
(2) |XS | 6 (|S | − 1)!!(n/2)q−|S |/2.

Note that here, the notation N !! is the double-factorial, the prod-

uct of all integers from 1 to N that have the same parity as N .

Proof. The number of x ’s that are evenly covered by S depends

only on |S | by symmetry. Furthermore, if |S | is odd, then no x can

be evenly covered by S (some point must appear an odd number of

times in xS ).
Now assume that {S} is even, and let us bound |XS |. Observe that

the following process can produce all points in XS : write 2r = |S |,
S = {j1, . . . , j2r }. Pick a matching on S , and for each matched pair

(ji1 , ji2 ) choose a common value, x ji
1

= x ji
2

∈ {−1, 1}ℓ . For i < S ,

pick xi ∈ {−1, 1}ℓ arbitrarily.

This process generates all the points in XS , but it over-counts,

since some points can be generated in more than one way. Still, the

size of XS is upper-bounded by the number of outputs the process

can produce, which is (2r−1)!!(2ℓ)r+(q−2r ) = (2r−1)!!(n/2)q−r . �

Since |XS | depends only on |S |, we sometimes write |X2r | instead

of |XS | when |S | = 2r . Partitioning the summation in (3) by the size

of S , we get

(3) =
2
q

nq

������
q/2∑
r=1

ε2r
∑

S : |S |=2r

∑
x ∈XS

Ĝx (S)

������ . (4)

The inner sum is upper-bounded using the following claim.

Proposition 5.3. For any 1 6 r 6 q/2, we have������ ∑
S : |S |=2r

∑
x ∈XS

Ĝx (S)

������ 6 qr
(n
2

)q−r/2 √
var(G)

Proof. We essentially argue that (a) for each S , there are not
many x ∈ XS (by Proposition 5.2); and (b) for each x , the sum of

the Fourier coefficients Ĝx (S) is bounded (using Fact 2.2). Formally,

applying Cauchy-Schwartz, we get������ ∑
S : |S |=2r

∑
x ∈XS

Ĝx (S)

������ 6
√ ∑

S : |S |=2r

∑
x ∈XS

1
2

√ ∑
S,x ∈XS

Ĝx (S)2

=

√(
q

2r

)
|X2r |

√ ∑
S,x ∈XS

Ĝx (S)2.

Using Proposition 5.2 to bound |X2r |, and the fact that

( q
2r

)
6 q2r

(2r )! ,

the first term is upper-bounded by√(
q

2r

)
|X2r | 6

√
q2r

(2r )!
·
√
(2r − 1)!! ·(n/2)(q−r )/2 6 qr (n/2)(q−r )/2.

The second term is upper bounded by the square root of∑
S,∅,x ∈XS

Ĝx (S)
2 6

∑
x

∑
S,∅

Ĝx (S)
2 =

∑
x

var (Gx ) (By Fact 2.2)

=
(n
2

)q (
E
x

[
E
s

[
Gx (s)

2
] ]

− E
x

[
E
s
[Gx (s)]

2

] )
6

(n
2

)q (
E
x,s

[
Gx (s)

2
]
− E
x,s

[Gx (s)]
2

)
=

(n
2

)q
var(G),

where the last inequality uses Jensen’s inequality.

The claimed bound follows by combining the two upper bounds.

�

Plugging Proposition 5.3 into (4), we see that

(4) 6
q/2∑
r=1

(
2

n

)r/2
ε2rqr

√
var(G) 6

√
var(G)

∞∑
r=1

(
2qε2
√
n

)r
.

Since q 6
√
n

4ε2 , the last infinite series is dominated by twice its first

summand, finishing the proof. �
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5.1 Proof of Lemma 4.3
The proof of Lemma 4.3 uses the same technique of Lemma 5.1 as

well as the following additional ingredients.

Level inequalities. Let f : {−1, 1}n → {0, 1} . Since the sum of

squares of fourier coefficients of a function is µ(f ), its weight on
any given Fourier level is upper bounded by µ. The famous KKL

lemma, due to Khan, Kalai and Linial [14], gives an improved bound

for the weight that lies on low levels whenever the average of the

function µ(f ) is small.

Lemma 5.4 ([14]). Let f : {−1, 1}n → {−1, 1} be a function whose
average is µ, 1 6 r 6 n, and δ > 0. Then∑

|S |6r

f̂ 2(S) 6 δ−r µ
2

1+δ .

A moment estimation. For x ∈ {−1, 1}(ℓ+1)q , let

ar (x) =
��{S | |S | = 2r ,

{
x j

}
S is evenly covered

}�� .
By interchanging the order of summation,∑

x
ar (x) =

(
q

2r

)
|X2r | .

Switching to expectation notations and using the upper bounds

on binomial coefficient and |X2r | from 3.1, we get

E
x
[ar (x)] 6

(
q2

n

)r
.

This estimate has been used in the proof of Lemma 5.1. For Lemma

4.3 we require more detailed information on ar (x) in the form of

higher moments. Letting 1E(x,S ) be the indicator of the event xS is

evenly covered, we have the identity

ar (x) =
∑

|S |=2r

1E(x,S ),

and since we understand the dependencies among 1E(x,S ) quite

well, we may prove good bounds on higher moments of ar (x).

Lemma 5.5. Letm, r ∈ N.

(1) If q >
√

n
2
, then

E
x

[
ar (x)

m ]
6 (4m)2mr

(
q√
n/2

)
2mr

.

(2) If q <
√

n
2
, then

E
x

[
ar (x)

m ]
6 (4m)2mr

(
q√
n/2

)
2r

.

Proof. Expanding out the definition of ar (x) as the sum of in-

dicators, we have

E
x

[
ar (x)

m ]
= E

x


∑

S1, ...,Sm

1E(x,S1) · · · 1E(x,Sm )


=

min(2mr,q)∑
j=2r

∑
| J |=j

∑
S1∪...∪Sm=J

E
x

[
1E(x,S1) · · · 1E(x,Sm )

]
.

Denote J = S1∪. . .∪Sm . Note that whenever 1E(S1,x ) · · · 1E(Sm,x ) =

1, each element in the multi-set

{
x j

}
j ∈J must appear at least twice

(otherwise, for some Si , this element appears only once in xSi ,
preventing it from being evenly covered). We denote this event

by B(x , J ), letting j = |J |, and noting that 2r 6 j 6 2mr . We can

now write (potentially adding zeroes for convenience, since for

2mr > i > q, we have
(q
i
)
= 0)

E
x

[
ar (x)

m ]
6

2mr∑
j=2r

(
q

j

) (
j

2r

)m
Pr

x
[B(J ,x)].

We again follow a process in order to bound the probability of the

event B(x , J ): fix J . Observing the multi-set x J of j elements: we

choose half of them to be the leaders, then give those leaders a “free”

value, and restrict the rest to only have values that were assigned

to some leader. We note that any x that fulfills B(x , J ) is outputted
by this process. Indeed: the multi-set x J can have at most ⌊j/2⌋
distinct elements. Putting them aside, the rest must have values

that were already chosen. Counting outputs of the process, we have

the bound:

Pr

x
[B(J ,x)] 6

( j
⌊j/2⌋

)
n ⌊j/2⌋ ⌈j/2⌉ ⌊j/2⌋

nj
.

Simplifying, this is at most (2j)j/2n−j/2, and thus

E
x

[
ar (x)

m ]
6

2mr∑
j=2r

qj

j!

(
ej

2r

)
2mr

(2j)j/2n−j/2

6
2mr∑
j=2r

(
ej

2r

)
2mr

qj
(
2

n

) j/2
.

Bounding the first term in the sum using j 6 2mr , we get that

E
x

[
ar (x)

m ]
6 (em)2mr

2mr∑
j=2r

(
q

√
2

n

) j
.

If q >
√
n/2, the above sum is dominated by 2mr times the sum-

mand for j = 2mr , and we get the desired upper bound. Else,

q <
√
n/2 and the above sum is dominated by 2mr times the sum-

mand for j = 2r , and we get the desired upper bound. �

Proof of Lemma 4.3. As in the proof of Lemma 5.1, we have

that the difference is equal to

2
q

nq

������
q/2∑
r=1

ε2r
∑

|S |=2r

∑
x ∈XS

Ĝx (S)

������ , (5)

We now use the fact that the function is biased. We will apply

Holder’s inequality, leveraging our stronger bounds from Lemma

5.4 and Lemma 5.5. Fix level r . Using Cauchy-Schwarz (for the

summation over S), we have that:������ ∑
x, |S |=2r

1E(x,S )Ĝx (S)

������ 6 ∑
x

√
ar (x)

√ ∑
|S |=2r

Ĝx (S)2. (6)

Let δ = 1

2m+1 , and fix an x . Note that Gx , 1 − Gx have the same

weight on level 2r , so let us assume without loss of generality that
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µ(Gx ) 6 1

2
(otherwise we apply the following argument on 1−Gx ).

Applying Lemma 5.4, the weight on level 2r of Gx is at most:∑
|S |=2r

Ĝx (S)
2 6 δ−2r µ(Gx )

2

1+δ 6 2δ−2r var(Gx )
2

1+δ ,

In the second inequality we used the fact that µ(Gx ) 6 1

2
, thus

var(Gx ) = µ(Gx )(1 − µ(Gx )) > 1

2
µ(Gx ). (which is also applied to

either Gx or 1 −Gx ).

Hence, plugging this in we have that 6 is at most:

δ−r
∑
x

√
ar (x) · var(Gx )

1

1+δ . (7)

We now apply Holder’s inequality with powers
1+δ
δ , 1 + δ to get

the above sum is at most

δ−r

(∑
x

ar (x)
(1+δ )/(2δ )

) δ
1+δ

(∑
x

var(Gx )

) 1

1+δ

.

Turning the last sum into expectation and using Jensen’s inequality

we have∑
x

var(Gx ) =
(n
2

)q
E
x
[var(Gx )] 6

(n
2

)q
· var(G).

Plugging this back into (6), turning the other sum into expectation,

and using δ = (2m + 1)−1, we conclude:��������
∑
x,S

|S |=2r

1EĜx (S)

�������� 6 (2m+1)r
(n
2

)q
var(G)

2m+1
2m+2

(
E
x
ar (x)

m+1
) 1

2m+2

.

(8)

To upper bound this and finish the proof, we wish to apply

Lemma 5.5 and for that we have to consider the two cases q >
√
n/2

and q <
√
n/2 separately.

Case q <
√
n/2. In this case, applying Lemma 5.5 we see that

E
x

[
ar (x)

m+1] 6 (5(m + 1))2(m+1)r

(
q√
n/2

)
2r

,

so by (8) we get that��������
∑
x,S

|S |=2r

1E(x,S )Ĝx (S)

�������� 6 (20m2)r
(n
2

)q
var(G)

2m+1
2m+2

(
q√
n/2

) r
m+1

.

Summing over values of r , we get

(5) 6 var(G)1−1/(2m+2)
q/2∑
r=1

(
20m2q1/(m+1)ε2

√
n
1/(m+1)

)r
.

Using q 6
√
n

(40m2ε2)m+1 , the sum is upper bounded by twice the

summand for r = 1, so overall we get that

(5) 6 40m2ε2
(
q
√
n

)
1/(2m+2)

var(G)1−1/(2m+2).

Case q >
√
n/2. As before, applying Lemma 5.5 to (8) we get������ ∑

x, |S |=2r

1E(x,S )Ĝx (S)

������ 6 (20m2)r
(n
2

)q
var(G)

2m+1
2m+2

(
q√
n/2

)r
Therefore,

(5) 6 var(G)1−1/(2m)

q/2∑
r=1

(
20m2ε2q

√
n

)r
.

Using q 6
√
n

40m2ε2 , the sum is upper bounded by twice the sum-

mand for r = 1, and so

(5) 6 40m2ε2
q
√
n
var(G)1−1/(2m+2).

�

6 APPLYING THE LEMMAS
In this section, we show how to use our analysis from previous

sections to prove lower bounds for computational tasks in the

distributed computing model. A similar approach was taken in [1]

for the case q = 1, i.e.,t each player receives a single query.

6.1 Uniformity Testing Lower Bounds
In this section, we use Lemma 4.2 with standard tools from infor-

mation theory to prove a lower bound on the individual sample

complexity of uniformity testing.

Theorem 6.1. There exists C > 0, such that the individual sample
complexity q of uniformity testing in a k-player protocol, in which

each player outputs r -bits is at least C
ε2 min

(√
n

√
k
, nk

)
.

Remark. We note that the lower bound holds even when the players

have shared randomness. When each player has one sample (q = 1),

this theorem recovers the lower bound k = Ω( nε2 ) of [1].

We prove that for any fixing of the random coins, if q is too small,

the protocol fails to distinguish uniform from ε-far from uniform

with sufficiently high probability. This implies Theorem 6.1 for

randomized protocols.

Thus, fix the randomness of the protocol, and denote the message

that player j sends to the referee by G j : {−1, 1}
(ℓ+1)q → {0, 1}.

Denote the decision function of the referee by R : {0, 1}k → {0, 1},

and consider the following distributions:

• µG1, ...,Gk : the joint distribution of the bits the players send

when they are fed samples from the uniform distribution,

• νz
G1, ...,Gk

: the joint distribution of the bits the players send

when they are fed samples from νz .

Upon receiving messages drawn from µG1, ...,Gk , the referee should

accept with high probability (the input distribution is uniform);

upon receiving messages drawn from νz
G1, ...,Gk

, the referee should

reject with high probability (the input distribution is far from uni-

form). Therefore, these two distributions need to be “very different”

from each other, as this difference is all that allows the referee to

make the correct decision.
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There are many ways to measure the difference between two

distributions; here we will use the KL divergence,

D (P |∥ Q) =
∑
ω ∈Ω

P(ω) log
P(ω)

Q(ω)
.

The reason we use KL divergence is that it is additive:

Fact 6.2 (Additivity of KL divergence). If X ,Y are independent
under two distributions PX ,Y and QX ,Y , then

D
(
PX ,Y |∥ QX ,Y

)
= D (PX |∥ QX ) + D (PY |∥ QY ) ,

where PX , PY (resp. QX ,QY ) are the marginal distributions of X ,Y
under P (resp. Q).

In our case, for any fixed z, the players’ samples are independent

from each other under νz ; this means their bitsG1, . . . ,Gk are also

independent. Similarly, when the samples are from the uniform

distribution, the players are independent. Therefore, for any z,

D
(
νzG1, ...,Gk

|∥ µG1, ...,Gk

)
=

k∑
j=1

D
(
νzG j

|∥ µG j

)
. (9)

Proof of Theorem 6.1. First, we bound from below the expected

divergence Ez

[
D

(
νz
G j

|∥ µG j

)]
required for the referee to succeed.

To succeed with probability 1 − δ , we need to have

E
z
D

(
νzG1, ...,Gk

|∥ µG1, ...,Gk

)
=

k∑
j=1
E
z
D

(
νzG j

|∥ µG j

)
>

1

10

log

1

δ
.

Thus, the average player needs to have average divergence

E
z

[
D

(
νzG j

|∥ µG j

)]
>

1

10k
log

1

δ
(10)

between the bit they send on uniform input and the bit they send

when the input is ε-far from uniform.

Next, using Lemma 4.2, we bound the divergence from above, in

terms of the number of samples each player has, and the number of

players. We use a well-known relationship between the KL diver-

gence and another measure of distance, called ξ -squared divergence:

Fact 6.3. [4] For any α , β ∈ (0, 1), let B(α),B(β) be Bernoulli random
variables with parameters α , β . Then

D (B(α) |∥ B(β)) 6
(α − β)2

var (B(β)) ln 2
.

Using this fact, for every j since player j has q samples, we have

E
z

[
D

(
νzG j

|∥ µG j

)]
6

1

ln 2

E
z

[
(µz (G j ) − µ(G j ))

2

var(G j )

]
(11)

6
1

ln 2

(
20

q2ε4

n
+
qε2

n

)
. (12)

In the last inequality we used Lemma 5.1, assuming q 6
√
n

20ε2 (since

otherwise we are already done).

Combining (10) and (12), we get that

max

(
q2ε4

n
,
qε2

n

)
> Ω

(
log(1/δ )

k

)
, (13)

and rearranging establishes the claimed lower bound on q. �

6.2 Extensions of Theorem 6.1
Lower bound for longer answers. One may generalize the proof

of Theorem 6.1 to the case each player message consists of r -bit

answer. We model by a function Gi : {−1, 1}
(ℓ+1)q → {0, 1}r .

Theorem 6.4. There exists C > 0, such that the individual sample
complexity of uniformity testing in a k-player protocol, in which each

player outputs r -bits is at least C
ε2 min

( √
n

√
2
r k
, n
2
r k

)
.

The proof is similar to the proof of Theorem 6.1, and thus omitted.

Asymmetric-cost model. The question of uniformity testing in

the LOCALmodel has been reduced in [7] to the simultaneous case,

however the reduction pointed towards a generalized setting, in

which the players have a fixed amount of time, τ , and each player i
samples at its own sampling rate Ti , collecting qi = Ti · τ samples.

In [7], an algorithm for this more generalized settings was shown

with time τ = O
( √

n
ε2 · ∥T ∥

2

)
, where ∥T ∥

2
=

√
T 2

1
+ . . . +T 2

k .

Our proof shows that, assuming that qi > 1/(20ε2) for all i (no
player is “too slow"), this time complexity is in fact best possible

(up to constant factors). Indeed, repeating the proof of Theorem 6.1

we have:

Ω (log(1/δ )) 6
k∑
j=1
E
z

[
D

(
νzG j

|∥ µG j

)]
6

k∑
j=1

2q2i ε
4

n
=

2τ 2ε4

n
∥T ∥2

2
,

and after re-arranging and fixing δ = 1/3, we obtain the tight lower

bound of τ = Ω
( √

n
ε2 · ∥T ∥

2

)
.
3

Remark. Inequality (13) can also recover known lower bounds for

the centralized setting. For k = 1, we get a lower bound for the

centralized model with error probability δ , matching the bound

from [5]. We can also consider asymmetric error probabilities: let δ1
be the probability that the protocol rejects the uniform distribution,

and let δ0 be the probability that the protocol accepts an ε-far from
uniform distribution. Then we can replace the term log(1/δ ) by
D (B(δ1) |∥ B(1 − δ0)). This shows that the highly biased tester of

[7] is optimal in its sample complexity.

From a slightly different angle, it is natural to ask how many

players are needed to test uniformity where q is thought of as

fixed (as in [1]). For q 6 1/ε2, inequality (13) implies that k >
n/(qε2) players are needed (generalizing the case where q = 1).

For q > 1/ε2, we get the bound k > n
q2ε4 , which is tight by the

collision-based distributed tester of [7].

6.3 Distributed Uniformity Testing with the
AND Rule

In this section we show how to use Lemmas 5.1, 4.3 to prove lower

bounds for uniformity testing of distributions in a simple distributed

computing model. In this model, given messages b1, . . . ,bk from

the k players, the decision of the referee is b1 ∧ . . . ∧ bk .

Remark. Using the AND rule, it is easy to show that q > 1 is

necessary for uniformity testing to be testable in the distributed

model at all (a proof appears in the full version).

3
Note that if Ti = 1 for all i , then we are back to the symmetric case, and indeed we

get the same bound since ∥T ∥
2
=
√
k .
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Theorem 6.5. There exists c > 0 such that the following holds. If
k 6 2

c/ε then any k-player’s protocol for solving uniformity testing

must use at least Ω
( √

n
log(k)2ε2

)
queries.

Proof. Let d be large enough constant. For any ε > 1/d2, we
have that 1/ε and k are both bounded by a constant, and in partic-

ular we only demand to show q = Ω(
√
n), which is evident from

Theorem 6.1. We therefore may assume that ε 6 1/d2.

We now show that if k 6 2
1/(d ·ε )

, and q 6
√
n

8d log(k )2ε2 , then

no distributed protocol succeeds in distinguishing the uniform

distribution and randomly chosen νz . We note that in this regime

of parameters, the conditions of Lemma 4.3 hold form = log(k),
and we will apply it this way.

Let Gi (x) be the message player i sends to the referee upon

receiving queries x , and denote the probability it says 1 when x
is sampled according to the uniform distribution by 1 − ξi . Since
D accepts the uniform distribution, U, with probability > 2

3
, we

know that

e
−

k∑
i=1

ξi
>

k∏
i=1

(1 − ξi ) = Pr [Referee accepts U] >
2

3

,

i.e.

k∑
i=1

ξi 6 ln(3/2).

Choosem = log(k) and apply Lemma 4.3 for each i , to get that

E
z
[µz (Gi )] > 1 − ξi − 40m2ε2ξ

2m+1
2m+2
i (q/

√
n + (q/

√
n)1/(2m+2)).

We note that by the assumption on q,

q/
√
n 6

1

d log(k)2ε2

and subsequently

(q/
√
n)1/(2m+2) = O(ε−1/(1+logk )).

So we get that

E
z
[µz (Gi )] > 1 − ξi −O

(
1

d

)
ξ

2m+1
2m+2
i +O(ε2 log2 kε

−1
1+logk

)ξ
2m+1
2m+2
i .

Elementary calculus shows that for 1 6 k 6 2
1/(d ·ε )

, the maxi-

mum of ε2 · log2 k · ε−1/(1+logk ) is obtained at one of the endpoints,
and using ε 6 1/d2 we see that this maximum is at most O( 1d ).
Therefore,

E
z
[µz (Gi )] > 1 − ξi −O

(
1

d

)
ξ

2m+1
2m+2
i .

Denote by Ei (z) the event that (xi , si ) was sampled according to

νz and Gi (xi , si ) = 1. Then

Pr

z,xi ,si
[Ei (z)] = E

z
[µz (Gi )] > 1 − ξi −O

(
1

d

)
ξ

2m+1
2m+2
i ,

and thus by considering the complement events and using the

Union Bound, we get that:

Pr

z

[
∩ki=1Ei (z)

]
= 1 − Pr

z

[
∪ki=1Ei (z)

]
> 1 −

k∑
i=1

Pr

z

[
Ei (z)

]
> 1 −

k∑
i=1

ξi −O

(
1

d

) k∑
i=1

ξ
2m+1
2m+2
i .

The sum of the ξi is at most ln(3/2) 6 1

2
. By Holder’s inequality,

the sum of the second term is:

k∑
i=1

ξ
2m+1
2m+2
i 6 k1/(2m+2)

( k∑
i=1

ξi

) 2m+1
2m+2

6 k1/(2m+2) = O(1),

where we usedm = log(k).
Collecting these estimates with the previous inequality, we con-

clude that

Pr

z

[
∩ki=1Ei (z)

]
>

1

2

−O(1/d).

Choosing sufficiently large constant d , the last probability is larger

than 1/3, and thus the protocol would accept with probability

greater than 1/3. This means that all events Ei (z) holds with proba-

bility 1/3, in which case the referee would accept. Stated otherwise,

the protocol accepts an ε-far from uniform distribution with proba-

bility > 1

3
, and thus fails. �

REFERENCES
[1] Jayadev Acharya, Clément L. Canonne, and Himanshu Tyagi. 2018. Distributed

Simulation and Distributed Inference. CoRR abs/1804.06952 (2018).

[2] Tugkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick

White. 2000. Testing that distributions are close. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000. 259–269.

[3] Clément L. Canonne. 2015. A Survey on Distribution Testing: Your Data is Big.

But is it Blue? Electronic Colloquium on Computational Complexity (ECCC) 22
(2015), 63.

[4] Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory
(Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience,

New York, NY, USA.

[5] Ilias Diakonikolas, Themis Gouleakis, John Peebles, and Eric Price. 2018. Sample-

Optimal Identity Testing with High Probability. In 45th International Colloquium
on Automata, Languages, and Programming, ICALP 2018. 41:1–41:14.

[6] Ilias Diakonikolas and Daniel M. Kane. 2016. A New Approach for Testing Prop-

erties of Discrete Distributions. In IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016. 685–694.

[7] Orr Fischer, Uri Meir, and Rotem Oshman. 2018. Distributed Uniformity Testing.

In Proceedings of the 2018 ACM Symposium on Principles of Distributed Computing,
PODC 2018. 455–464.

[8] Pierre Fraigniaud, Mika Göös, Amos Korman, and Jukka Suomela. 2013. What

Can Be Decided Locally Without Identifiers?. In Proceedings of the 2013 ACM
Symposium on Principles of Distributed Computing (PODC ’13). 157–165.

[9] Pierre Fraigniaud, Amos Korman, and David Peleg. 2011. Local Distributed

Decision. 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science
(2011), 708–717.

[10] Goldreich and Ron. 2002. Property Testing in Bounded Degree Graphs. Algorith-
mica 32, 2 (01 Feb 2002), 302–343.

[11] Oded Goldreich. 2016. The uniform distribution is complete with respect to

testing identity to a fixed distribution. Electronic Colloquium on Computational
Complexity (ECCC) 23 (2016), 15.

[12] Oded Goldreich. 2017. Introduction to Property Testing. Cambridge University

Press.

[13] Oded Goldreich and Dana Ron. 2000. On Testing Expansion in Bounded-Degree

Graphs. Electronic Colloquium on Computational Complexity (ECCC) 7, 20 (2000).
[14] J. Kahn, G. Kalai, and N. Linial. 1988. The influence of variables on Boolean func-

tions. In [Proceedings 1988] 29th Annual Symposium on Foundations of Computer
Science. 68–80.

[15] Amos Korman, Shay Kutten, and David Peleg. 2010. Proof Labeling Schemes.

Distrib. Comput. 22, 4 (2010), 215–233.
[16] L. Paninski. 2008. A Coincidence-Based Test for Uniformity Given Very Sparsely

Sampled Discrete Data. IEEE Transactions on Information Theory 54, 10 (2008),

4750–4755.

Session 5 PODC ’19, July 29–August 2, 2019, Toronto, ON, Canada

237


	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 The Hard Distributions
	4 Viewing the Players' Behavior as a Boolean Function
	4.1 The Main Lemmas

	5 A Simplified Lemma
	5.1 Proof of Lemma  4.3 

	6 Applying the Lemmas
	6.1 Uniformity Testing Lower Bounds
	6.2 Extensions of Theorem 6.1
	6.3 Distributed Uniformity Testing with the AND Rule

	References



