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Abstract
In the directed minimum spanning tree problem (DMST, also called minimum weight arborescence),
the network is given a root node r, and needs to construct a minimum-weight directed spanning tree,
rooted at r and oriented outwards. In this paper we present the first sub-quadratic DMST algorithms
in the distributed CONGEST network model, where the messages exchanged between the network
nodes are bounded in size. We consider three versions: a model where the communication links are
bidirectional but can have different weights in the two directions; a model where communication is
unidirectional; and the Congested Clique model, where all nodes can communicate directly with
each other.

Our algorithm is based on a variant of Lovász’ DMST algorithm for the PRAM model, and
uses a distributed single-source shortest-path (SSSP) algorithm for directed graphs as a black
box. In the bidirectional CONGEST model, our algorithm has roughly the same running time
as the SSSP algorithm; using the state-of-the-art SSSP algorithm, we obtain a running time of
Õ(min(

√
nD,

√
nD1/4 + n3/5 + D)) rounds for the bidirectional communication case.

For the unidirectional communication model we give an Õ(n) algorithm, and show that it is
nearly optimal. And finally, for the Congested Clique, our algorithm again matches the best known
SSSP algorithm: it runs in Õ(n1/3) rounds.

On the negative side, we adapt an observation of Chechik in the sequential setting to show
that in all three models, the DMST problem is at least as hard as the (s, t)-shortest path problem.
Thus, in terms of round complexity, distributed DMST lies between single-source shortest path and
(s, t)-shortest path.
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1 Introduction

Finding a lightweight spanning subgraph of a network is among the most fundamental
problems in distributed computing. The classical example is the minimum-weight spanning
tree (MST) problem, which has received extensive attention: its round complexity in the
CONGEST model was tightly characterized in a series of papers (e.g [14, 26, 15, 8, 9, 22, 17,
23, 10]). Generalizations, such as minimum-weight k-vertex-connected and k-edge connected
subgraph, have also been studied (e.g [10, 5, 31]). To date, almost all distributed algorithms
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16:2 A Distributed Algorithm for Directed Minimum-Weight Spanning Tree

for MST and related problems have been for undirected graphs, with symmetric edge weights.
However, in many settings, the cost associated with an edge is not necessarily symmetric: for
example, in a wireless network, the energy required to send a message to a specific node can
depend on contention and noise in that node’s vicinity, and in peer-to-peer cellular phone
mesh networks, the price of communicating across a given link could be dictated by market
forces. If we have a single node that needs to repeatedly broadcast to the entire network,
or to collect information from the entire network, can we quickly find a cheap spanning
tree—oriented downwards (or upwards)—allowing it to do so?

The directed minimum-weight spanning tree (DMST) problem asks exactly this question:
we have a weighted graph G, where edge weights are not necessarily symmetric, and a fixed
root node r. Our goal is to construct a minimum-weight directed spanning tree, rooted at r
and oriented downwards (or upwards).

Although the DMST problem has been extensively studied in the sequential setting [32, 7,
2, 6, 28, 29, 13], to date there has not been a distributed solution for DMST that runs quickly
and does not use a lot of communication. In fact, prior to our work, no non-trivial (i.e., sub-
quadratic) algorithm for the CONGEST model was known. In this paper we give distributed
DMST algorithms for three variants of the CONGEST model: (a) undirected communication
networks with asymmetric edge weights; (b) directed communication networks; and (c) the
Congested Clique model, where the communication network is the complete graph (a clique).

Undirected MST is known to require Θ̃(
√
n+D) rounds [30, 10]. Clearly, we cannot hope

for DMST to require less, as MST is a special case of DMST. Furthermore, in some scenarios
(e.g., sequential dynamic graph algorithms), DMST is believed to be significantly harder than
MST. Surprisingly, we show that when the underlying communication network is undirected
and has a small diameter, DMST is no harder than MST. In fact, we show that in undirected
networks, DMST essentially “reduces” to directed single-source shortest path (SSSP), so that
up to a logarithmic factor, its round complexity is bounded from above by the running time
of the best SSSP algorithm that can handle asymmetric weights (currently [12]). On the
other hand, we show that DMST is no easier than (s, t)-shortest path—this is already known
in the sequential setting (see Section 6), and we show that it also holds in all three variants
of the CONGEST model. Therefore, DMST’s round complexity is sandwiched between SSSP
and (s, t)-shortest path.

Background. The best sequential algorithm for DMST is Gabow et al.’s implementation of
Edmonds’ algorithm [7, 13]. It performs a series of contractions, where every vertex v 6= r

deducts the weight of its minimum-weight incoming edge from all its incoming edges, and
then each zero-weight directed cycle is contracted into a single vertex. Eventually, we are
left with a zero weight tree; the weight of the DMST is then given by the sum of all the
weights deducted during the algorithm’s run (See Section 4 for details). Actually finding the
DMST is not immediate, and requires recursively undoing the contractions and carefully
adding edges to the DMST at each step. (Counter-intuitively, the lightest incoming edge of
any given node does not necessarily belong to a DMST, and in fact, even the lightest edge in
the entire graph might not belong to it.)

The drawback of Edmonds’ algorithm in a parallel setting is that it may require n− 1
contractions to contract the entire graph, and the contractions are not easy to parallelize.
In [24], Lovász gave a PRAM algorithm that “speeds up” this process, and contracts the entire
graph in O(logn) parallel steps. In CONGEST, Lovász’ algorithm cannot be implemented
efficiently as-is, for several reasons—including the fact that it uses all-pairs shortest path
(APSP) as a subroutine (APSP requires linear time in CONGEST [1]), and that certain steps
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of the algorithm would lead to too much congestion if we try to implement them in CONGEST.
We modify Lovász’ algorithm to obtain a variant that lends itself to an efficient distributed
implementation, and then give implementations for the three variants of CONGEST. The
implementations overcome several challenges that are not encountered in undirected MST,
such as the fact that in each step we need to run SSSP inside many disjoint subgraphs, but
each component can have a diameter that is much larger than the diameter of the network as
a whole. If we called SSSP directly inside each component, our running time would depend
on the largest diameter encountered during the run, which could be linear in the worst case.
We show how to overcome this difficulty in Section 5.

Our results. We give one “meta-algorithm” for DMST, and then implement it in the three
models we consider (undirected, directed, and Congested Clique). For the bidirectional
CONGEST model and the Congested Clique, we show that given an efficient algorithm for
single-source shortest paths (SSSP), we can find a DMST in roughly the same running time.
Specifically, let T (n,D) be the time required in CONGEST to compute SSSP in undirected
graphs of size n and diamter D, with non-negative, asymmetric integer weights, and let
ASSSP be an SSSP algorithm with running time T (n,D). We prove:

I Theorem 1 (Informal). There is a DMST algorithm for undirected CONGEST with asymmet-
ric weights that runs in Õ(T (n,D)) rounds. Moreover, the DMST algorithm is deterministic
if ASSSP is deterministic.

We take extra care to ensure that our “reduction” from DMST to SSSP be deterministic, so
that if in the future an efficient deterministic SSSP algorithm is discovered, we can use it to
get a deterministic DMST algorithm.

Plugging in the randomized Las-Vegas SSSP algorithm of [12], we obtain the following
algorithm for the undirected CONGEST model with asymmetric edge weights:

I Theorem 2. In the undirected CONGEST model with asymmetric weights, there is a
randomized DMST algorithm that always succeeds, and requires Õ(min(

√
nD,
√
nD1/4 +

n3/5 +D)) rounds in expectation.

For small diameter networks, D = O(polylog(n)), our algorithm is optimal up to polylog-
arithmic factors, and nearly matches the lower bound for undirected MST [30]. For larger
diameter, we can also write the running time as Õ(n2/3 +D), a slightly weaker bound than
the one stated in Theorem 2. Since our algorithm calls the SSSP algorithm as a black box,
any improvement in SSSP will yield an improved DMST algorithm as well.

A similar result holds for the Congested Clique. At present, the best SSSP algorithm for
that model runs in Õ(n1/3) rounds [3], and so we obtain an Õ(n1/3)-round DMST algorithm
for the Congested Clique. For the directed communication model, we give a deterministic
algorithm with running time Õ(n), and we show that this is tight (up to a logarithmic factor).
The algorithm and the lower bound assume that the weight of each edge (u, v) is known only
to its destination v, and that G is strongly connected. These results are described in full
version of the paper [11].

As Theorem 2 shows, in the undirected CONGEST model, the DMST problem is no
harder than single-source shortest path. Is the converse true? For the sequential setting,
this is conjectured to hold, and Chechick showed [4] that DMST is at least as hard as the
(s, t)-shortest path problem. We give a reduction that allows the proof from [4] to work in
the distributed setting, showing that DMST is no easier than (s, t)-shortest path in all three
distributed models we consider.

DISC 2019
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For lack of space, we only give a high-level overview of the algorithm for the undirected
case, and defer many technical details—as well as pseudo-code and proofs of correctness—to
the full version of the paper [11]. The other two models (directed networks and the Congested
Clique) are also relegated to the the full version of the paper. Finally, we focus here on
computing the weight of the DMST, and defer the details of how to find the DMST edges
(which is requires some details) to the last section of the paper.

We note that our algorithm naturally extends to approximating DMST using an ap-
proximate SSSP algorithm for directed graphs with non-zero weights. Using this extension,
a c-approximation directed SSSP algorithm yields a clog n-approximation of the DMST
(meaning we require an (1 + 1

Ω(log n) )-approximate SSSP algorithm in order to get a con-
stant or sub-constant DMST approximation using this method). The best known (1 + ε)-
SSSP approximation algorithm for directed graphs in CONGEST has round complexity of
Õ((
√
nD1/4 + D)/ε) [12], which yields an (1 + 1

polylog n )-approximation of the DMST in
Õ(
√
nD1/4 +D) rounds. We defer the details to the full version of the paper.

2 Related Work

Distributed MST is one of the most fundamental problems in CONGEST, with a wide range
of works, a very short subset of which include [14, 26, 15, 8, 9, 22, 17, 23, 10]. In particular,
Ghaffari et al.[15] gave a simple MST algorithm using a framework called low-congestion
shortcuts. This framework also serves as the basis for our DMST algorithm, as it allows
to handle connected components that grow too large for their nodes to communicate with
each other directly. Our algorithm also uses procedures from [19, 10] to deterministically
decompose a directed tree into few components with relatively small diameter. Several lower
bounds were shown by [27, 8, 30], proving that in the CONGEST model, finding the MST’s
weight takes Ω̃(

√
n+D) rounds ,even for any approximation factor of up to poly(n) .

Minimum Directed MST (or Minimum weight Arborescence) had been extensively studied
in the sequential model. The first algorithms for DMST in the sequential setting were
independently found by [32, 7, 2]. A faster implementation was given by Tarjan [6], which
included ideas from [28, 29]. The most efficient known implementation of Edmonds’ algorithm
in the sequential setting is due to [13], with running time O(m+ n logn).

A parallel NC algorithm for DMST was given by Lovász [24]. Humblet [21] showed
a distributed O(n2) round algorithm for DMST with message complexity O(n2). To our
knowledge, ours is the first DMST algorithm for CONGEST that has better than the trivial
round complexity of O(n2).

Our algorithm uses a directed single source shortest path algorithm as a black-box.
Recently, two such algorithms were developed [16, 12]. The best known running time for for
both directed and undirected graphs is Õ(min(

√
nD,
√
nD1/4 +n3/5 +D)) due to Nanongkai

et al. [12]. In [12] an (1 + o(1))-approximation in time Õ(
√
nD1/4 +D) for the directed case

was shown. In the undirected case, [20] gave a deterministic (1 + o(1))-approximation in
time Õ(n1/2+o(1) +D1+o(1)). In the Congested Clique, Censor-Hillel et al.[3] gave a Õ(n1/3)
APSP algorithm for directed graphs based on algebraic methods.

3 Preliminaries

Let G = (V,E,wG) be a weighted directed graph, with a special root vertex r ∈ V . We
assume throughout that r has a directed path to every node in G. We construct a spanning
tree rooted at r and oriented downwards. (To obtain a tree oriented upwards towards
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r, we can simply reverse all edge directions.) For convenience, if (u, v) 6∈ E, then we set
wG(u, v) =∞. Also, given a vertex set A ⊆ V , we denote by G(A) the subgraph induced on
G by A. We sometimes abuse notation by writing u ∈ H when u is a vertex of a subgraph H.

We assume w.l.o.g. that edge weights are integers in the range [0, ...,poly(n)]. This is not
essential; negative weights and larger weights are easily handled, although if weights require
more than O(logn) bits to represent, the SSSP algorithm will use more rounds.

For two nodes u, v, let distG(u, v) be the weight of the shortest path from u to v according
to the weight function wG. Given a subgraph H of G and two nodes u, v ∈ H, we let
distH(u, v) denote the weight of the shortest path using only vertices of H from u to v. For
a subgraph H, let In(H) = {(u, v) ∈ E|v ∈ H ∧ u /∈ H} be the set of edges entering H.

4 Overview of the Algorithm

In this section we give a high-level overview of our DMST algorithm, which is based on
Edmonds’ and Lovász’ algorithms.

As it runs, the algorithm performs contractions, where a set of vertices is merged into one
super-vertex. Here we describe the “meta-algorithm” that runs on the graph of super-vertices,
and later we will show how this meta-algorithm is implemented on the actual network (where,
of course, we cannot merge nodes).

The active edges. Throughout its run, the algorithm maintains a set of zero-weight directed
edges, denoted H, with the property that every (super-)vertex except r has in-degree 1 in H.

To initialize H, each node v chooses a minimum-weight incoming edge (u, v), deducts its
weight from all incoming edges, and adds (u, v) to H. (If there is more than one incoming
edge with the minimum weight, then we choose arbitrarily.)

The weakly-connected component of H that contains the root is called the root component.
The remaining weakly-connected components of H are called active components, and denoted
H1, . . . ,Hk. Since the in-degree in H is 1, each active component is a directed cycle, with
trees rooted at some of the cycle’s vertices and oriented outwards (see Fig. 2). We abuse
notation by thinking of each Hi as both a set of edges and as a graph (the weakly-connected
component). We let C(Hi) denote the directed cycle that “lies at the heart” of the active
component Hi.

The following property is helpful when trying to determine which vertices belong to a
given active component: if we know some vertex v that lies on the cycle C(Hi), then the
vertices of Hi are exactly those vertices reachable from v along the directed edges of H.

Edmonds’ contractions. Edmonds’ algorithm makes a series of steps, where in each step,
(1) Each vertex v deducts the weight of its minimum-weight incoming edge from all its

incoming edges, and remembers the weight it subtracted. (We must connect v to the
DMST by some incoming edge, so we will pay at least the weight of its lightest incoming
edge.)

(2) Each vertex adds one zero-weight incoming edge to H.
(3) Any newly-created zero-weight directed cycles in H are contracted into a single vertex.

(This does not change the weight of the DMST.)
Eventually, we are left with only the root component, on which the H edges induce a directed
spanning tree of weight zero. The weight of the DMST is then given by the total weight
subtracted by all the nodes during the run. Then, we must “undo” the constructions and
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16:6 A Distributed Algorithm for Directed Minimum-Weight Spanning Tree

compute the edges of the DMST; we defer this part to the end of the paper, and focus for
now on computing the weight of the DMST.

Each step of Edmonds’ algorithm contracts at least two vertices, but unfortunately, it
does not necessarily merge each active component with another active component: an active
component might spend many steps contracting nested cycles of inner vertices, one after the
other. While each step reduces the number of vertices by at least 1, we might require as
many as n steps to contract the entire graph.

Figure 1 An active component in which Edmonds’ algorithm contracts only two vertices at a
time. In the worst case Ω(n) contractions occur before the active component is merged with another
component.

Lovász’ algorithm can be viewed, somewhat inaccurately, as a way to “jump ahead”:
roughly speaking, instead of spending a lot of time contracting nested cycles inside an active
component, Lovász finds the first edge coming in from outside the component that would be
added to H, and then performs in one fell swoop all the nested contractions leading up to
that point. (This is not accurate, as we explain below; one step of Lovász cannot always
be decomposed into steps of Edmonds.) After O(logn) “mega-steps”, we are left with only
the root component, and then we are done. See the full version of the paper [11] for a more
detailed description of Lovász’ algorithm.

The “mega-steps” of Lovász are difficult to implement in CONGEST: in each step, the
algorithm computes all-pairs shortest-paths (APSP, which can be solved efficiently in PRAM),
and it finds paths that may cut across many active components, leading to congestion. We
give a less eager mechanism for speeding up Edmonds’ algorithm, which is quite similar
to Lovász but can be performed in parallel on all the active components in CONGEST;
essentially, we show that the steps of Lovász’ algorithm can be confined inside the active
components without cutting across them, while preserving correctness and the fast running
time.

Our modified meta-algorithm. Our meta-algorithm is obtained from Edmonds by asking:
“what contractions would Edmonds’ algorithm make inside an active component Hi before it
adds to H an incoming edge of Hi, thereby merging it with another component?” We would
like to jump ahead to that point.

Recall that Edmonds selects at each step the minimum-weight incoming edge of a node,
adds it to H, and (eventually) contracts the resulting zero-weight cycle. It turns out that as
it slowly consumes nodes inside Hi and eventually some node outside Hi, Edmonds implicitly
finds the lightest path from a node outside Hi that immediately enters Hi and stays inside
Hi until it arrives at some node of the cycle C(Hi) (see Fig. 2); i.e., a path of the form
u, v1, . . . , vk such that (a) u 6∈ Hi, (b) we have vj ∈ Hi\C(Hi) for each j = 1, . . . , k, and
finally, (c) vk ∈ C(Hi).

Let β be the weight of this path. Edmonds does not progress only along the path; it
contracts nodes inside Hi that can reach the cycle C(Hi) with paths of increasing weight,
until the weight reaches β. Our meta-algorithm finds the edge (u, v1) and the weight β,
and contracts all nodes x ∈ Hi that have distHi

(x,C(Hi)) ≤ β (including v1). (Lovász also
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computes β, but it does it differently: it uses all-pairs shortest-paths to find the shortest
distance from any node outside Hi to the cycle C(Hi), without insisting that the path have
the form we described above. As a result, Lovász may find paths that start at a node u,
wander outside Hi for a while (along zero-weight edges), enter Hi and leave it, and eventually
enter Hi “for good” and go to the cycle C(Hi). Lovász then makes a more aggressive
contraction, merging all the nodes visited by such a path of weight at most β.)

Figure 2 Our algorithm performs in one step three steps of Edmonds’ algorithm: it contracts
the zero-weight directed cycle of component A and makes two more contractions, finally adding an
incoming edge of A to H. Component A then merges with B, and possibly with other components.
Edges initially in H are shown as solid lines, edges that are added to H during Edmonds are shown
as double lines.

We now give a more formal description. In each step of our meta-algorithm, we find in
parallel for each active component Hi an incoming edge (u, v) ∈ In(Hi), with v ∈ Hi and
u 6∈ Hi, that minimizes the internal distance to the cycle, β(u, v) := w(u, v)+distHi

(v, C(Hi)).
(Recall that distHi

(v, C(Hi)) is the distance inside Hi from node v to any node of the cycle
C(Hi); only paths using edges of Hi can be used.)

For an active component Hi, let βi = min(u,v)∈In(Hi) β(u, v) be the “minimum entering
distance” associated with Hi. This is the weight that would be subtracted by Edmonds’
algorithm in all the contractions internal to Hi, plus the first step that connects Hi to another
active component.

Our algorithm finds an edge (u, v) that has β(u, v) = βi (that is, an edge that minimizes
β(u, v)). Then, we contract the zero-weight cycle C(Hi), together with all nodes inside Hi

that have distance at most β(u, v) to the cycle C(Hi). Formally, the set of nodes we contract
into one super-vertex is given by

Ui := {v ∈ Hi | distHi
(v, C(Hi)) ≤ βi} . (1)

We represent a super-vertex as the set of all original graph vertices that were merged into it;
merging super-vertices means replacing them by their union.

For the new super-vertex S, we update the weights in the contracted graph (in which S
is a vertex):

w′(x, y) =


minz∈S β(x, z)− βi if y = S,

minz∈S w(z, y) if x = S,

w(x, y) otherwise.

After the contraction, the incoming edge (u, S), which replaces (u, v) (the edge that had
β(u, v) = βi) and now has weight zero, is added to H. This causes Hi to merge with the
active component to which u belongs (see Fig. 2).

DISC 2019
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Because every active component merges with another active component in each iteration,
the number of components is reduced by at least half, and therefore after O(logn) iterations,
the edge set H has only one weakly-connected component—the root component. At this
point, the weight of the DMST is computed by summing all the βi’s that were subtracted
during the entire run, and the algorithm terminates.

In the full version of the paper [11], we prove that unlike Lovász’ algorithm, each step of
our meta-algorithm can be decomposed into a series of Edmonds’ contractions, and we give
an example showing the difference between Lovász’s algorithm and our variant.

5 Implementation in CONGEST

In this section we explain, on a high level, how we translate our meta-algorithm to the
CONGEST model. We start by introducing the main ingredients that go into the implement-
ation.

The meta-graph and the physical graph. We refer to the “real” nodes of the communication
network as physical vertices or physical nodes. Super-vertices are simply sets of physical
vertices, but each super-vertex has a unique identifier, which is the ID of some physical
vertex in it. We often conflate a super-vertex with its ID. Let S be the set of all super-vertex
IDs (as we said, these are simply IDs from V , but for clarity we use different notation).

During the run of our algorithm, each physical vertex v keeps track of sId(v), the ID of
the super-vertex that contains it in the meta-graph. Node v also knows which of its physical
edges correspond to meta-edges in H: that is, for each physical edge {v, u}, node v knows
whether or not (sId(v), sId(u)) ∈ H.

Given a physical network graph G = (V,E,w) and a mapping sId : V → S of physical
nodes onto super-vertices, the meta-graph that corresponds to G and sId is a multi-graph,
where two super-vertices S1, S2 ∈ S are connected by all the edges that connect physical
vertices (u, v) ∈ E such that u ∈ S1, v ∈ S2. (Although our modified algorithm above is
stated for graphs rather than multi-graphs, it is easy to see that its correctness translates
immediately to multi-graphs as well.) For each super-vertex S ∈ S, there is a single incoming
meta-edge (T, S) in H (recall that all nodes have in-degree exactly 1 in H). The meta-edge
(T, S) may correspond to many physical edges; the algorithm chooses one such edge, (u, v) ∈ E
such that u ∈ T and v ∈ S, and defines entry(S) = v to be “the physical entry-point of S”.

Soft contractions. Since we cannot contract vertices of the communication network, we
replace contractions with soft contractions, which have the same effect but change only the
weight function and the super-vertex mapping.

I Definition 3 (Soft contraction). Fix a physical graph G = (V,E,wG), a mapping sId :
V → S of physical vertices to their super-vertices, a set H ⊆ S2 of zero-weight directed
meta-edges, an active component Hi, and a set A ⊆ S of super-vertices to contract. Define
G∼A = (V,E,wG∼A

) to be the physical graph with the same vertices and edges as G, but with
the following weight function:

wG∼A
(u, v) =


wG(u, v) + distG(A)(v, C(Hi))− βi if u ∈ V \A and v ∈ A,
0 if u, v ∈ A and (u, v) ∈ E,
wG(u, v) otherwise.
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The soft contraction operation updates the weights as above, and replaces the mapping sId
with sId ′, where sId ′(v) = sId(v) if v 6∈ A, and sId ′(v) = A.id. The id of A is the id of some
’leader’ vertex v ∈ A.

Intuitively, a soft contraction is the same as the meta-step we defined in Section 4, but
instead of merging vertices, it simply zeroes out the weight of the edges between them. We
prove that if we take A = Ui (as defined in (1) above), then the soft contraction operation is
equivalent to the meta-step we defined in Section 4, and decreases the weight of the DMST
by βi.

Small and large components. As usual in MST algorithms, after we perform some meta-
steps of the algorithm, some super-vertices may become so large that we cannot afford for
their physical nodes to communicate with each other directly. We resolve this in the usual way
(see, e.g., [15, 10]): super-vertices are classified into “small” super-vertices, which comprise at
most

√
n physical nodes, and “large” super-vertices, comprising more than

√
n nodes. The

small super-vertices are small enough that we can compute on them directly (in parallel).
As for large super-vertices, there are at most

√
n of them, and the entire network helps them

carry out their computation. For example, if we have large super-vertices S1, . . . , Sk, and
we want each physical vertex of Si to learn some value xi, then we will propagate all values
x1, . . . , xk throughout the entire network, and each physical vertex v ∈ Si will pick out the
value xi it needs to learn.

We remark that unlike undirected MST, in our case there is a distinction between a super-
vertex and an active component. (In distributed implementations of Boruvka’s undirected
MST algorithm, there are super-vertices, but there is no notion of “active component”.)
In addition to computing on all the super-vertices in parallel, our algorithm also carries
out steps on the active components in parallel, but an active component consists of many
super-vertices, some small and some large. This presents some complications compared to
the undirected case.

Centers. A key part of our algorithm is concerned with finding some super-vertex that
lies on the cycle C(Hi) of an active component. This cycle may consist of any number of
super-vertices, themselves comprising many physical-vertices. To find a super-vertex on the
cycle, we “chop up” the cycle into more manageable parts: we select a center set, a set of
Õ(
√
n) super-vertices (always including the root super-vertex), with the property that for

any H-path S1, . . . , Sk of super-vertices, if the total number of physical vertices in S1, . . . , Sk

is at least
√
n, then at least one super-vertex Si is a center.

Centers are often used in shortest-path computations (e.g., [12, 16, 25] in the CONGEST
model, and many other examples in dynamic algorithms and distance oracles), but here we
use them in a non-standard way: we construct a center graph representing the reachability
relation between centers, and use this graph to find the cycle C(Hi) and determine which
super-vertices are reachable from it.

Running SSSP on many disjoint components in parallel. During our algorithm we en-
counter the following scenario: we have a collection of vertex-disjoint connected subgraphs
G1, . . . , Gk ⊆ G, with one marked node vi ∈ Gi in each component, and also some external
node r 6∈

⋃
i Gi. The diameter of the entire graph G is D, but the diameter of each Gi can

be arbitrarily large. We wish to compute, in parallel for all i, the distances distVi
(vi, u)
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(that is, the distance from vi to each node inside its component Vi, using only nodes of Vi).1
Moreover, we want to “pay” only in terms of the diameter D of the entire network, not the
diameters of the individual components. This rules out running a separate SSSP instance
inside each component using only its internal edges.

Our solution is to simulate one execution of SSSP on a “virtual network” G′, defined
as follows. The vertices of G′ are the vertices of G, but we also add, for each v ∈ V (G), a
“shadow vertex” v′. The edges of G′ are

(a) all edges that are internal to some subgraph Gi, with their original weights; (b) the
“shadow copies” (u′, v′) of all edges in E, with weight zero; (c) for each marked node vi,
we add a zero-weight edge (v′i, vi) from vi’s shadow to vi, and also an edge (vi, v

′
i) in the

opposite direction, with “infinite” (or sufficiently large) weight.
The network G′ can be simulated efficiently by the nodes of G, by having each node

simulate itself and its shadow. Note that the edges we added allow for such a simulation;
for example, two shadow nodes only need to communicate in G′ if their corresponding “real
nodes” can communicate in G. Also, diam(G′) ≤ 2 diam(G) + 1.

Now, to simultaneously compute all the distances distVi
(vi, u), we simulate a call to SSSP

from node r′, the shadow of r, in G′. A lightest path from r′ to a node u ∈ Vi traverses the
shadow network from r′ to v′i at zero cost, then moves to vi with no cost, and then traverses
from vi to u inside the “real” copy of Gi. Thus, the distance from r′ to u ∈ Vi in G′ is
exactly distVi(vi, u). See full paper for details.

5.1 The Algorithm
We now give a more detailed description of our algorithm (while still omitting many technical
details). The algorithm runs in O(logn) iterations. At the beginning of each iteration, each
node v ∈ V knows an identifier sId(v) for its super-vertex (initially, s(v) = v), it knows
which of its edges correspond to meta-edges in H, and it knows whether or not it is part of
the root component.

Nodes do not necessarily know which active component they belong to at any given
moment; the first part of each iteration of our algorithm is concerned with finding the current
active components, after some of them were merged at the end of the previous iteration.
Nevertheless, it is convenient to think of the algorithm as “operating in parallel” on all the
active components.

Each iteration proceeds as follows, in parallel for each active component Hi:
(1) We find some super-vertex c(Hi) ∈ C(Hi) that lies on the cycle of Hi, and disseminate

the ID of c(Hi) to all physical nodes in Hi. In particular, we must determine which
super-vertices belong to Hi. This is described in Section 5.2.

(2) We compute shortest paths from all super-vertices of Hi to C(Hi): this is done by a
single call to SSSP, as described above, using c(Hi) as the marked node in component
Hi. We use reverse edge weights, so that instead of computing shortest paths from c(Hi)
we compute shortest paths to c(Hi). Note that since C(Hi) is a cycle of zero-weight
edges, the distance to c(Hi) is also the distance to all nodes of C(Hi).

(3) We find an incoming edge ei = (u, v) ∈ In(Hi) that minimizes the “entering distance”,
β(u, v) = w(u, v) + distHi(v, C(Hi)), and disseminate ei and βi = β(ei) to all nodes of
Hi. This is done using the small component/large component methodology, but some

1 The keen-eyed reader might notice that the directions here are reversed—in Section 4 we wanted
distances to a node of C(Hi), and now we ask for distances from some node to all others in the
component. We handle this by reversing all edge directions.
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care is needed (as done in [15, 18]. see procedure LearnMin in the full version for details
[11]).

(4) Finally, having computed βi and ei = (u, v) ∈ In(Hi), we soft-contract Hi with threshold
βi, “virtually merging” all super-vertices with distance at most βi to C(Hi) into one
super-vertex. The ID of the new super-vertex is set to c(Hi). We add edge ei to H,
which has the implicit effect of merging Hi with another active component.

After O(logn) iterations, no active components remain, and we have only the root
component. We now compute a spanning tree of the network graph, and use it to sum the
values of βi subtracted throughout the algorithm. The root of the DMST returns this value
as the weight of the DMST.

5.2 Finding A Cycle Super-Vertex and Identifying the Active
Component

In this section we show how to find, for each active component Hi, some super-vertex
c(Hi) on the cycle C(Hi). When we begin this part of the algorithm, the physical nodes
know which of their edges are in H, but they do not know which active component (i.e.,
which weakly-connected components of H) they belong to. Part of our goal is to identify
the boundaries of the active components, in preparation for finding a minimum-distance
incoming edge of each active component; this is accomplished by disseminating c(Hi) to all
nodes that can be reached from the cycle C(Hi) along paths of H-edges. Thus, c(Hi) serves
as an active component ID, which all physical nodes of Hi agree on.

As we said above, in order to identify long cycles and paths, we cut them into shorter
pieces by choosing a set of centers. Formally, we need the following property:

I Definition 4. A set of super-vertices T ⊆ S, which includes the root super-vertex, is said
to be a good center set if |T | ≤ 4

√
n, and for any H-path S1, . . . , Sk, if |

⋃k
i=1 Si| ≥

√
n

(that is, if S1, . . . , Sk together contain at least
√
n physical vertices), then T includes some

super-vertex Si.

A good center set can be constructed deterministically in a very similar manner to either the
star-decomposition of [19], or using the fragment joining of [10]. Details regarding this can
be found in the full version of the paper [11].

In the sequel we assume that we have such a set, Centers.
Recall that in H, every super-vertex has in-degree exactly 1. For a super-vertex S (not

necessarily a center), we define pred(S) to be the first center we reach by starting from
S and traversing backwards along reverse H edges. (Note that a super-vertex can be its
own predecessor, if it is a center and is part of a directed cycle in H that includes no other
centers.)

The center graph is the graph induced by pred:

I Definition 5 (The center graph, H∗). The center graph induced by H and Centers, denoted
H∗, is given by H∗ = (Centers, {(pred(c), c) | c ∈ Centers}).

For an active component Hi, let H∗i be the subgraph of H∗ induced by the centers
Centers ∩Hi selected from Hi. Note the following properties: (1) Like H, the center graph
H∗ also has in-degree 1, except for the root (always selected as a center), which has no
incoming edges; (2) If Hi includes a center, then H∗i is a weakly-connected component of
H∗; (3) Whenever C(Hi) includes at least one center, H∗i contains a non-empty cycle C(H∗i )
(possibly one center with a self-loop), whose vertices are the centers from C(Hi).
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Figure 3 The center graph, overlayed on the super-vertex graph. Bold vertices represent centers,
and dashed arrows represent the edges of the center graph.

Finding c(Hi). After setting up the centers and the center graph, to find some super-vertex
from the cycle C(Hi), we divide into three cases, depending on whether the active component
Hi and its cycle C(Hi) include more than

√
n physical nodes or not.

I. Hi is a “small component”, including at most
√
n physical nodes: then in particular,

the physical size of the cycle C(Hi) does not exceed
√
n. We can find C(Hi) by having

each super-vertex start a forward-BFS along the edges of H for O(
√
n) rounds, and

always propagating the ID of the smallest super-vertex heard so far; after O(
√
n) rounds,

some super-vertex receives back its own ID, and this super-vertex then becomes c(Hi).
We inform all nodes of Hi by propagating the ID of c(Hi) for O(

√
n) rounds. This is

handled by procedure FindSmallCycles (see details in full version [11]).
II. C(Hi) is “small” (at most

√
n physical nodes), but Hi is “large” (more than

√
n nodes):

in this case, procedure FindSmallCycles still selects some super-vertex c(Hi) ∈ C(Hi)
just as above. However, we cannot afford to disseminate the ID of c(Hi) throughout
Hi by broadcasting it, because Hi is too large. Instead, we add c(Hi) to the center set
Centers, and handle its dissemination below.

III. C(Hi) is “large”: then C(Hi) includes at least one center, and we can identify C(Hi)
by examining the center graph H∗ and looking for the corresponding cycle there.

In cases (II) and (III), after FindSmallCycles is called, C(Hi) includes at least one cen-
ter: either it was there before, or if the cycle was too small, we added some center in
FindSmallCycles. Therefore, the component H∗i that corresponds to Hi in the center graph
contains a cycle C(H∗i ).

After calling FindSmallCycles, every super-vertex S learns the identity of pred(S).
Because every H-path of physical size at least

√
n includes a center, for each super-vertex S

(not necessarily a center), the physical distance from the entry vertex of pred(S) to some
physical vertex in S is at most

√
n. Thus, the super-vertex pred(S) can “tell S” that it is its

predecessor by doing a forward BFS for
√
n rounds (we omit the details here).

The center graph has O(
√
n) edges: its in-degree is 1, and even after adding some centers

in step II, we still have O(
√
n) centers, because a center is only added for active components

of physical size >
√
n. Thus, we can afford to disseminate all edges of H∗ throughout the

network, in O(
√
n+D) rounds.

Finally, each physical node v locally examines the graph H∗, and constructs the weakly
connected components of H∗. It associates itself with the correct component H∗i by choosing
the component of H∗ that contains the center pred(sId(v)), that is, the predecessor of its
own super-vertex. If H∗i includes the root, then v sets the root’s ID as its active component
ID. Otherwise, node v finds C(H∗i ), selects the center with the smallest id c ∈ C(H∗i ), and
sets cId(v) = c.
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6 DMST vs. (s, t)-Shortest Path

We have shown that the DMST problem is no harder than single-source shortest path. In
this section we adapt a reduction of Chechick [4] from the sequential setting to CONGEST,
showing that distributed DMST is at least as hard as (s, t)-shortest path, where we are given
two vertices s, t and must find the shortest directed path from s to t. The reduction holds
for all three models we consider in this paper (assuming we work with strongly-connected
graphs): it simply modifies the graph on which we want to solve (s, t)-SP, so that any DMST
on the graph will reveal the shortest path from s to t. We take care that the modified graph
can be simulated by the original graph without much additional communication.

Given a graph G = (V,E), we define a graph G′ as follows (see Fig. 4): G′ contains all
vertices and edges of G, and in addition, for each vertex v ∈ V , we add a “shadow vertex” v′,
with a zero-weight edge (v′, v). For each original edge (u, v) we add a “shadow edge” (u′, v′),
again with weight zero. Finally, we add the zero-weight edge (t, t′) (where t is the target
node).

Observe that all the edges we added to G′ are either shadow edges or edges incoming
into vertices of G, except for the edge (t, t′), which is outgoing from t. Therefore, in G′, we
did not create any path from s to t that was not already in G.

I Lemma 6. The weight of the DMST of G′ rooted at s is the weight of the (s, t)-shortest
path in G.

Proof. Let W ′ be the weight of the DMST of G′ rooted at s, and let d be the weight of
the shortest path from s to t in G. It is easy to see that W ′ ≥ d, because the DMST must
contain some path from s to t, and in G′ we did not create any path from s to t that was
not already in G.

To show that W ′ ≤ d, consider the following DMST: take a shortest path π from s to t
in G, and add all its edges to the DMST. In addition, take edge (t, t′), and some arbitrary
directed spanning tree of the shadow vertices, comprising only shadow edges and oriented
outwards from the root t′. (Such a spanning tree exists, because we can take a directed
spanning tree of G rooted at t and “copy it” onto the shadow edges.) Finally, for each v ∈ V
that is not on π, add the edge (v′, v). The resulting tree is spanning and oriented outwards
from s, and its weight is exactly d, because other than the edges of π, it uses only zero-weight
edges. J

I Theorem 7. The asymptotic round complexity of DMST in CONGEST is at least that of
(s, t)-shortest path.

Proof. Given a DMST algorithm A and a graph G, we can solve (s, t)-shortest path on G
by constructing G′ and simulating the execution of A on G′. Each vertex v of G simulates
itself and its shadow vertex v′. To simulate one round of A on G′, each vertex sends to its
neighbors the messages that it would send under A on its own edges, and also the messages
its shadow vertex would send on its edges under A. This increases the communication by
only a constant factor. J

7 Finding the Directed Minimum-Weight Spanning Tree

In this section we describe how to find the edges of the DMST, after contracting the
entire graph into one component. This is an adaptation of the unpacking procedore from

DISC 2019



16:14 A Distributed Algorithm for Directed Minimum-Weight Spanning Tree

Figure 4 Local reduction of (s, t)-shortest path to DMST. The shadow nodes are shown in white.
The rightmost figure shows the DMST.

LovaszD́MST algorithm [24], implemented in CONGEST. Again, some technical details are
omitted here.

Recall that when we performed contractions, we looked for an edge that minimizes the
entering distance into Hi,

β(u, v) := w(u, v) + distHi(v, C(Hi)),

and we denoted this minimum distance by

βi = min
(u,v)∈In(Hi)

β(u, v).

For an active component Hi, let GBi denote the contracted graph in which, starting from G,
we contracted the cycle C(Hi), together with all vertices inside Hi that have distance up to
βi from C(Hi) (or rather, from the active component ID, c(Hi)), into one super-vertex. We
now describe how to “undo” the contraction, so that we can unpack GBi back into G and
add the correct edges to the DMST.

Unpacking a super-vertex. Consider a graph R with a set H of active edges, and let T ′
be a DMST of the contracted graph R′ = RBi. Let w,w′ be the weight functions of R,R′
respectively. Let s =

⋃
Ui(βi) be the new super-vertex in R′ formed by merging together all

vertices with distance at most βi from C(Hi) in R.
We define an unpacking operation that constructs from T ′ a new tree, denoted T ′iC, for

the original graph R, as follows:
The new tree agrees with T ′ on all edges that are not adjacent to s: for any edge
e = (s1, s2) where s1, s2 6= s we have (s1, s2) ∈ T ′iC if (s1, s2) ∈ T ′.
Let (u, s) be the edge in T ′ that is incoming into s (there must be such an edge, since T ′
is spanning). Let v∗ ∈ s be the vertex that minimizes β(u, v) among all incoming edges
into s. We add to T the edge (u, v∗) and the lightest-weight path π from v to C(Hi) in
R(Hi).
If T ′ contains an outgoing edge (s, x) from s, each such edge is again replaced by an edge
(y, x), where y ∈ s, that has w(y, x) = miny′∈s w(y′, x).
Finally, we add to T the edges Hi \ dest(π), where dest(π) is the set of edges in R whose
destinations are nodes on π.

I Lemma 8 (Variant of [24], Claim 2). If T ′ is a DMST of R′ = RBi, then T ′iC is a DMST
of R.
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Unpacking the DMST. Now we describe how we “unpack” the entire DMST, starting from
the final state of the algorithm where the graph has been contracted until only the root active
component remains. The algorithm we describe here is run by the physical vertices of G, and
it runs in log(n) iterations, indexed downwards, logn, . . . , 1, where the j-th iteration unpacks
the super-vertices created at step j. Let

{
Ht

1, . . . ,H
t
ki

}
be the set of active components in

iteration i.
We may assume w.l.o.g. that in an SSSP algorithm for directed graph with non-negative

integer weights, each node also outputs a parent in a SSSP tree (e.g [12]). We require the
nodes to store these edges; specifically, each node needs to remember, for each contraction, its
edges in the reverse shortest-paths tree from c(Hj) that was computed during the contraction.

Each super-vertex created during the current iteration is unpacked in parallel, and the
edges taken into the DMST are the edges described above. When choosing which of their
edges to add, the only computation nodes cannot perform locally is to find the shorest-path
edges from v∗ into c(H(v∗)). We handle this using centers, just as we did in Section 5.2: if
the path is short, we can find it by doing a short BFS; and if the path is long, it will contain
at least one vertex, and we can use the center graph to have the vertices of the path learn
that they are on the path and add edges accordingly.
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