
On Distributed Merlin-Arthur Decision
Protocols

Pierre Fraigniaud1, Pedro Montealegre2(B), Rotem Oshman3, Ivan Rapaport4,
and Ioan Todinca5

1 CNRS and Université de Paris, Paris, France
2 Universidad Adolfo Ibáñez, Santiago, Chile

p.montealegre@uai.cl
3 Tel-Aviv University, Tel Aviv-Yafo, Israel

4 DIM-CMM (UMI 2807 CNRS), Universidad de Chile, Santiago, Chile
5 Université d’Orléans, Orléans, France

Abstract. In a distributed locally-checkable proof, we are interested
in checking the legality of a given network configuration with respect
to some Boolean predicate. To do so, the network enlists the help of
a prover—a computationally-unbounded oracle that aims at convincing
the network that its state is legal, by providing the nodes with certifi-
cates that form a distributed proof of legality. The nodes then verify the
proof by examining their certificate, their local neighborhood and the
certificates of their neighbors.

In this paper we examine the power of a randomized form of locally-
checkable proof, called distributed Merlin-Arthur protocols, or dMA for
short. In a dMA protocol, the prover assigns each node a short certificate,
and the nodes then exchange random messages with their neighbors. We
show that while there exist problems for which dMA protocols are more
efficient than protocols that do not use randomness, for several natural
problems, including Leader Election, Diameter, Symmetry, and Count-
ing Distinct Elements, dMA protocols are no more efficient than standard
nondeterministic protocols. This is in contrast with Arthur-Merlin (dAM)
protocols and Randomized Proof Labeling Schemes (RPLS), which are
known to provide improvements in certificate size, at least for some of
the aforementioned properties.

Keywords: Distributed verification · Nondeterminism ·
Interactive computation · Interactive proof systems

1 Introduction

Nondeterminism is a fundamental concept in computer science. In particular,
the class NP, introduced almost half a century ago [6], lies at the heart of com-
putational complexity theory. Moreover, the P versus NP question is the largest
unsolved problem in theoretical computer science.

c© Springer Nature Switzerland AG 2019
K. Censor-Hillel and M. Flammini (Eds.): SIROCCO 2019, LNCS 11639, pp. 230–245, 2019.
https://doi.org/10.1007/978-3-030-24922-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-24922-9_16&domain=pdf
https://doi.org/10.1007/978-3-030-24922-9_16

On Distributed Merlin-Arthur Decision Protocols 231

One way to define the class NP is as a computationally-efficient proof system:
a language L is in NP if for any input x, a powerful but untrusted prover can
convince a polynomial time verifier to accept whenever x ∈ L, by providing the
verifier with a certificate (a proof). However, if x �∈ L, not certificate will cause
the verifier to accept.

This fundamental notion of nondeterminism (or polynomial time verification)
was extended in the 90s to interactive proof systems [10,11], a model that allows
back-and-forth interaction between the prover (Merlin) and the verifier (Arthur).
This interaction gave the model tremendous power, equivalent to PSPACE [18,22].

Different distributed counterparts of the class NP have been introduced:
locally checkable labelings [20], proof labeling schemes [16], non-deterministic
local decision [8], and others. In all these models, roughly speaking, a powerful
prover gives to every node v ∈ V a certificate c(v). This provides G = (V,E) with
a global distributed certificate. Then, every node v performs a local verification
using its local information together with c(v). Typically, the goal is to verify
whether G belongs to a particular class of graphs (planar, bipartite, connected,
k-colorable, etc.).

Very recently, these distributed NP models evolved—as already happened in
the centralized setting almost thirty years ago—towards the study of distributed
interactive proofs [14,19]. To state our results, let us recall some basic notions.

Distributed Languages. Let G be a simple connected n-node graph, let x :
V (G) → {0, 1}∗ be a function assigning a label to every node of G, and let
id : V (G) → {1, . . . ,poly(n)} be a one-to-one function assigning identifiers to
the nodes. (The identifiers are O(log n)-bit natural numbers.)

A distributed language is a Turing-Machine-decidable collection of triples
(G, x, id), called configurations. In this paper, we are interested in the following
distributed languages:
• leader = {(G, x, id) | x : V (G) → {0, 1} and |{v ∈ V (G) : x(v) = 1}| = 1},

the language of graphs where every node is marked with a bit x ∈ {0, 1}, and
we require that exactly one node be marked 1.

• amos = {(G, x, id)) | x : V (G) → {0, 1} and |{v ∈ V (G) : x(v) = 1}| ≤ 1},
the language of graphs where nodes are marked with a bit, and we require
that at most one node be marked (amos stands for “at most one selected”,
and was introduced in [8]).

• diameter≤k = {(G, x, id) | diam(G) ≤ k}, the language of graphs with
diameter at most k.

• symmetry = {(G, x, id) | G has a non-trivial automorphism}. (An automor-
phism of a graph G is a one-to-one mapping φ : V (G) → V (G) such that
{u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(G). It is not-trivial if it is not the
identity function.)

• countk = {(G, x, id) | x : V (G) → {0, 1}∗ and | {x(u) : u ∈ V } | = k}, the
language of graphs where every node has an input x(v) ∈ {0, 1}∗, and there
are exactly k distinct inputs.

None of these languages refer to the node identifiers, but languages like
spanning tree =

{
(G, x, id)) | {{id(v), x(v)}, v ∈ V (G)

}
forms a spanning tree of G

}

232 P. Fraigniaud et al.

do refer to the identifiers (here, x(v) refers to the id of the parent of v in the
tree).

In a locally-checkable proof, we ask a prover to provide the network nodes
with a certificate that should convince them that (G, x, id) ∈ L. The certificate
is a function c : V → {0, 1}∗ assigning to each v ∈ V a label c(v). The nodes
exchange their certificates with their neighbors, examine their own input, and
then decide whether to accept or reject; we require that (G, x, id) ∈ L iff there
is some certificate c that causes all nodes to accept.

Formally, a deterministic distributed verification algorithm is specified as a
collection of decision functions, A = {accv}v, where each function accv takes the
ids, inputs and certificates of v and its neighbors, and outputs a decision whether
to accept (1) or reject (0). We say that a (G = (V,E), x, id, c) is accepted by A
if for all v ∈ V we have accv({(id(u), c(u), x(v))|u ∈ N [v]}) = 1.

A decision algorithm A verifies a distributed language L if, for every config-
uration (G, x, id),

(G, x, id) ∈ L ⇐⇒ ∃c : V (G) → {0, 1}∗ | (G, x, id, c) is accepted by A.

The cost of the algorithm A is the maximum number of bits assigned to any
node in a certificate accepted by A, that is,

max
(G,x,id,c) accepted by A

max
v∈V

|c(v)|.

The class LCP(k), defined in [12], is the class of all distributed languages
that have a distributed verification protocol with cost k. Other variants exist in
the literature: proof labeling schemes [16] are defined similarly, except that at
every node v, the verification algorithm does not take as input the data x(u)
of neighbors u ∈ N(v), only the neighbors’ certificates; non-deterministic local
decision, defined in [8], is also similar, but the certificate c may not depend on
the identifiers of the nodes (i.e., it is not used by the decision function).

Merlin-Arthur Protocols. Merlin-Arthur (MA) protocols extend locally-
checkable proofs by allowing the nodes to use randomness when deciding whether
to accept or reject. The prover remains nondeterministic, and it does not see the
randomness of the nodes when choosing a certificate. After the prover assigns
certificates to the nodes, each node randomly chooses a message, from a dis-
tribution specified by the protocol. This message is broadcast to all neighbors
of the node, and then each node decides whether to accept or reject, based on
its input and neighbors (including their ids), its certificate, and the messages it
received from its neighbors.

Formally, an MA protocol is specified by two collections of functions, A =
({msgv}v , {accv}v). After receiving a certificate assignment c : V → {0, 1}∗, the
protocol executes in two stages:

(1) Each node v generates a message m(v), by calling the function msgv, which
takes as input id(v), {id(u) : u ∈ N(v)}, x(v), c(v), and a random string
r(v). The message m(v) is broadcast to v’s neighbors.

On Distributed Merlin-Arthur Decision Protocols 233

(2) Each node v uses the function accv to decide whether to accept or reject;
accv takes as input id(v), {(id(u),m(u)) : u ∈ N(v)}, x(v), c(v), r(v).

For a given protocol A, the acceptance probability of (G, x, id, c) under A is the
probability that all nodes accept the configuration (G, x, id) with certificate c.
The probability here is taken over the nodes’ internal randomness (the random
strings r(v)).

A Merlin-Arthur protocol verifies a distributed language L with success prob-
ability p ∈ (0, 1/2) if, for every configuration (G, x, id),
{

(G, x, id) ∈ L =⇒ ∃c : V (G) → {0, 1}∗ | Pr[A accepts (G, x, id, c)] ≥ p
(G, x, id) /∈ L =⇒ ∀c : V (G) → {0, 1}∗, Pr[A accepts (G, x, id, c))] ≤ 1 − p.

A Merlin-Arthur protocol can be viewed as the non-deterministic version of
randomized decision. It can also be viewed as the randomized version of locally
checkable proofs (the randomized version of proof-labeling schemes has been
considered in [3]).

The cost of an MA protocol is defined as the size of the longest certificate
c(v) accepted by a node v in any configuration on n nodes (the size may grow
with n). (The standard definition of two-party MA protocols also charges for
the communication between the players, which in our case corresponds to the
messages m(v). However, the lower bounds we prove apply even if the messages
have unbounded length, as they depend more on the local knowledge of the nodes
even after seeing the certificates.)

Given a distributed language L, we define its Merlin-Arthur complexity,
denoted dMAp(L), as the minimum cost of a Merlin-Arthur protocol that decides
L with success probability p.

Note that our definition above does not provide node v with the inputs
and neighborhoods of its neighbors; this is similar to proof-labeling schemes
(although we also provide ids), and dissimilar to locally-checkable proofs. How-
ever, it is easy to modify our lower bounds so that the view of a node is the
same as it would be in a locally-checkable proof, except that instead of seeing
the certificates of its neighbors, it only sees the messages they generated.

Comparison with Other Randomized One-Round Models of Verifica-
tion. Let us point out how dMA protocols relate to two other models.

In an Arthur-Merlin distributed decision protocol (or dAM for short) [14],
each node v sends a random string to the prover, and the prover responds by
providing each node with a certificate (which can depend on the random strings
of all the nodes). Each node then makes its decision based on its own randomness,
its neighborhood, and its neighbors’ certificates. The order of interaction is the
opposite of dMA schemes, where the prover first commits to the certificates, and
then the nodes send random messages. As we show in this paper, this reverse
order gives dAM protocols more power than dMA protocols, at least in some
scenarios.

Another related model is randomized proof labeling schemes (RPLS) [3].
These are very similar to dMA protocols, except that the certificate size is

234 P. Fraigniaud et al.

unbounded, and the protocol is only charged for the randomized messages the
players send to each other. It was shown in [3] that any property admits an RPLS
that is exponentially cheaper than the best proof labeling scheme; however, the
construction in [3] not only does not reduce the certificate size, it in fact blows
it up, by a factor of up to n. We show in this paper that this is inherent: if we
do care about the certificate size, then randomness does not always help.

1.1 Our Results

Both amos and leader have proof-labeling schemes using certificates on
O(log n) bits. (A tree rooted at the leader if any, or at an arbitrary node oth-
erwise, suffices.) The next result shows that one cannot do better, even using
randomization for the verification part.

Theorem 2.2. Any 2-sided error dMA protocol for amos with success probabil-
ity larger than 4/5 requires certificates on Ω(log n) bits. Any 1-sided error dMA
protocol for amos requires certificates on Ω(log n) bits. The same result holds
for leader.

In contrast, whenever randomization is used before interacting with the
prover, amos can be decided with certificates on O(1) bits.

Theorem 2.1. For every k ≥ 1, there exists a dAM protocol for amos with
success probability 1 − 1/2k, using (k + 1)-bit certificates at each node.

This shows that the gap between dAM and dMA (with success probability
≥ 4/5) is potentially unbounded. Next, we show that a certain class of reduc-
tions from 2-party communication complexity can be adapted to show dMA
lower bounds as well. As a consequence, we obtain lower bounds on diameter,
symmetry, and count.

Corollary 3.1. Let 0 ≤ ε < 1/3. Then, dMA1−ε(diameter≤6) = Ω(n/ log n).
That is, every Merlin-Arthur protocol with success probability at least 1 − ε that
is able to decide whether the diameter of the input graph is at most 6 requires
certificates on Ω(n/ log n) bits.

Corollary 3.2. Let 0 ≤ ε < 1/3. Then, dMA1−ε(symmetry) = Ω(n2).

Corollary 3.3. Let 0 ≤ ε < 1/3. Then, dMA1−ε

(
countn/2+1

)
= Ω(n).

Our lower bounds are shown by adapting existing tools for proving lower
bounds on locally-checkable proofs and in CONGEST, thus showing that some
types of lower bounds extend easily to dMA.

On Distributed Merlin-Arthur Decision Protocols 235

1.2 Related Work

This paper is very much related to two recent contributions on distributed
interactive proofs. The concept of distributed interactive proofs was introduced
in [14]. Among other results, [14] proves that symmetry admits a dMAM proto-
col with O(log n)-bit certificates, and a dAM protocol with O(n log n)-bit certifi-
cates. Moreover, it is also proved that any dAM protocol for symmetry requires
certificates on Ω(log log n) bits. Graph non-isomorphism has also been studied
in [14]—every node is given the adjacency list of a node in some graph H, and
the nodes have to collectively decide whether the actual network G is isomorphic
to H. It is proved that this problem admits a dAMAM protocol with certificates
on O(n log n) bits.

The recent paper [19] carried on the investigations in [14]. In particular,
[19] proves that non-symmetry can be decided by a dAMAM protocol with
O(log n)-bit certificates. It is also proved, using general reductions from circuit
computation, that graph non-isomorphism can be decided by an interactive pro-
tocol with a constant number of interaction rounds between Arthur and Merlin,
and certificates on O(log n) bits. Another variant of graph non-isomorphism is
also considered in [19]—every node is given two subsets of incident edges, and the
nodes have to collectively decide whether the resulting subgraphs of the actual
network G are isomorphic. It is proved that this problem admits a dAMAM
protocol with certificates on O(log n) bits.

Problem diameter≤k has been studied, in the framework of distributed
verification algorithms, in [5]. More precisely, in the proof-labeling scheme model,
the authors show, for the certificate size, an upper bound of O(n log n) and a
lower bounds of Ω(n/k). They manage to improve the previous upper bound by
introducing approximation ([5] defines approximate proof-labeling schemes).

2 Warmup: Deciding AMOS and LEADER

As a warm-up, let us consider the distributed language amos, for “at most one
selected”, introduced in [8]. Recall that for every configuration (G, x, id), we
have (G, x, id) ∈ amos if and only if x(v) ∈ {0, 1} for every v ∈ V (G) and
|{v ∈ V (G) : x(v) = 1}| ≤ 1. A node v with x(v) = 1 is said to be selected.
This language is therefore similar to leader, apart from the fact that having
no leader is a legal configuration.

It is shown in [8] that amos cannot be decided deterministically in sublinear
time without a prover, as a configuration with two selected nodes that are at
distance n − 1 from one another cannot be detected. On the other hand, using
randomization (but still without a prover), amos can be decided in zero rounds
with success probability p = (

√
5 − 1)/2: every selected node accepts with prob-

ability p, and the non-selected nodes all accept. A legal configuration is accepted
with probability exactly p, while an illegal one is accepted with probability at
most p2 = 1 − p. In fact, [8] shows that p is the best success probability possible
for a sublinear-time randomized algorithm.

236 P. Fraigniaud et al.

A locally checkable proof for amos can simply be designed using certificates
on O(log n) bits. On a legal instance, every node is given a pointer to a neighbor,
on O(log n) bits, such that the set of all pointers encodes a spanning tree T rooted
at an arbitrary node if there are no selected nodes, and rooted at the selected
node otherwise. The certificate also includes O(log n) bits forming a distributed
proof that T is indeed a spanning tree (see [16]). The verification algorithm
consists, for every node v, to check that T is indeed a spanning tree. In addition,
a node with x(v) = 1 that is not the root of T rejects. It was shown in [12]
that O(log n)-bit certificates is the best that can be achieved, that is, there is no
locally checkable proofs for amos with certificates on o(log n) bits.

Remark 2.1. With the previous example we can see the power of the dMA model
in comparison with proof labelling schemes and randomized local decision. Sup-
pose that we want to decide amos∩bipartite (i.e., whether the input is a bipar-
tite graph with at most one selected node). We can combine a one-bit certificate
(for bipartiteness) with local randomness (for at-most-one-selected) in order to
get a one-bit Merlin-Arthur protocol for amos ∩ bipartite with probability of
success at least

√
5−1
2 .

The following result is a simple illustration of the power of Arthur-Merlin
protocols, by showing that one can design an Arthur-Merlin protocol for amos
with success probability as close to 1 as desired, with certificates on O(1) bits.
For leader, we refer to [19] which describes a dMAM protocol using O(1)-bit
certificates, but with one more interaction between Arthur and Merlin.

Theorem 2.1. For every k ≥ 1, there exists a dAM protocol for amos with
success probability 1 − 1/2k, using (k + 1)-bit certificates at each node.

Proof. Let k ≥ 1. Every node picks k bits at random. On a legal instance, and
given these k random bits at each node, Merlin sends −1 to every node if there
are no selected nodes, and otherwise sends the bit string randomly selected by
the selected node. The verification algorithm is as follows. Every node checks
that the certificate given by Merlin is the same as the one given to its neighbors.
If this test is passed, then a non-selected node systematically accepts, and a
selected node accepts only if the bit string sent by Merlin is identical to the one
it randomly generated. If there are more than one selected nodes, the probability
that they all pick the same random string is at most 1/2k, thus the verification
succeedes with probability at least 1 − 1/2k. �

In contrast, the following results illustrates the limitation of Merlin-Arthur
protocols, by showing that such protocols cannot achieve success probability
much larger than

√
5−1
2 = 0.61 . . . whenever using certificates on o(log n) bits.

Theorem 2.2. Any 2-sided error dMA protocol for amos with success probabil-
ity larger than 4/5 requires certificates on Ω(log n) bits. Any 1-sided error dMA
protocol for amos requires certificates on Ω(log n) bits. The same result holds
for leader.

On Distributed Merlin-Arthur Decision Protocols 237

Proof. The intuition of the proof is simple. Consider a configuration I1 ∈ amos
consisting of an n-node cycle with a unique selected node v. Let us then take two
copies of I1, remove the edge e opposite to v in both, and create a cycle with 2n
nodes by glueing the two resulting paths. Let us call this latter configuration I2.
We have I2 /∈ amos. Let us consider a dMA protocol P for amos with success
probability larger than 2/3. We have Pr[P accepts I1] > 2/3 with the appropriate
certificate assignment c to the nodes of I1, and Pr[P rejects I2] > 2/3 for every
certificate assignment to the nodes of I2. On the other hand, for the certificate
assignment c, since the nodes have the same view in I1 and I2, as far as the
certificates are concerned, we get, by the union bound, that Pr[P rejects I2] <
1/3 + 1/3 = 2/3, yielding a contradiction. There is however a gap between this
intuition and a correct proof. In particular, as nodes have identities, one cannot
claim that the extremities of the removed edge e do not “see” the difference
between I1 and I2. glueing legal instances to create illegal instances in which the
nodes cannot distinguish which one they belong to requires some more work.

The sophisticated glueing technique introduced in [12] allowed Göös and
Suomela to show that there is no locally checkable proof for amos and leader
with certificates of size o(log n) bits. This glueing technique can also be used
to prove that the same result holds for dMA protocols with success probability
larger than 4/5. To see why, let us first briefly summarize the construction in [12].

Let n be even, and let us consider an arbitrary partition of {1, . . . , n2} of
the form (Ai, Bi)i∈{1,...,n} such that {1, . . . , n2} = (∪n

i=1Ai) ∪ (∪n
i=1Bi), where

|Ai| = |Bi| = n/2 for every i ∈ {1, . . . , n}. The elements of Ai are enumerated
as Ai[1], . . . , Ai[n/2] for every i ∈ {1, . . . , n}, and the same for every Bi. Let
A = {Ai, i = 1, . . . , n} and B = {Bi, i = 1, . . . , n}.

Given (A,B) ∈ A × B, let RA,B be the n-node ring (v1, . . . , vn), where
id(vi) = A[i] for i = 1, . . . , n/2, and id(vn−i+1) = B[i] for i = 1, . . . , n/2. For
every node v in the ring, let �A,B(v) ∈ {0, 1} be its input label, specifying whether
v is selected or not. Assume that only one node is selected in each RAi,Bj

for
i, j ∈ {1, . . . , n}, and that this node is at distance at least 2 from the nodes
vn−1, vn, v1, v2, with respective identities Bj [2], Bj [1], Ai[1], Ai[2], which form a
path of length 4 in RAi,Bj

.
For (A,B) ∈ A × B, let cA,B(v) be the certificates assigned to the nodes

of RA,B with such a unique selected node, leading all nodes to accept, with
probability > 4/5. Finally, for every node v, let LA,B(v) = (�A,B(v), cA,B(v)),
and set

LA,B = (LA,B(vn−2), LA,B(vn−1), LA,B(vn), LA,B(v1), LA,B(v2), LA,B(v3)).

Let us consider the complete bipartite graph Kn,n with bipartitions A and B,
and let us color every edge {A,B}, (A,B) ∈ A×B, with LA,B . Since LA,B is on
o(log n) bits, it can be shown that the colored Kn,n contains a monochromatic
4-cycle. Let (A1, B1, A2, B2) be such a cycle. The two n-node rings RA1,B1 and
RA2,B2 are then glued to form a 2n-node ring S by removing the edge {vn, v1}
in both n-node rings, and connecting the copy of v1 in one ring to the copy
of vn in the other ring. Note that there are two selected nodes in the ring S.

238 P. Fraigniaud et al.

Since LA1,B1 = LA2,B1 = LA2,B2 = LA1,B2 , no nodes can distinguish whether
they are in one of the four small (legal) rings RAi,Bj

, i, j ∈ {1, 2}, or in the large
(illegal) ring S.

We are now ready to apply the intuition provided at the beginning of
the proof to the construction in [12]. Let us consider a dMA protocol P for
amos with success probability larger than 4/5. For every i, j ∈ {1, 2}, we have
Pr[P accepts RAi,Bj

] > 4/5, with the appropriate certificate assignment ci,j given
to the nodes of RAi,Bj

. Also, Pr[P rejects S] > 4/5 for every certificate assign-
ment to the nodes of S. However, consider S with the certificate assignment
c consisting in giving the certificates defined by ci,i to the nodes coming from
RAi,Bi

in S, for i = 1, 2. By union bound, we have

Pr[∃v ∈ S : P rejects at vwithcertificatec(v)]

≤ Pr[∃v ∈ {v4, . . . , vn−3} : P rejects at v in RA1,B1 with certificate c1,1]

+ Pr[∃v ∈ {v4, . . . , vn−3} : P rejects at v in RA2,B2 with certificate c2,2]

+ Pr[∃v ∈ {vn−2, vn−1, vn, v1, v2, v3} : P rejects at v in RA2,B1 with certificate c2,1]

+ Pr[∃v ∈ {vn−2, vn−1, vn, v1, v2, v3} : P rejects at v in RA1,B2 with certificate c1,2].

Each of the four terms on the right hand side of the equation above is smaller
than 1/5. It follows that, with the certificate assignment c, we have Pr[∃v ∈ S :
P rejects at v] < 4/5, which contradicts the fact that the success probability of
P is larger than 4/5.

The proof above applies to leader as well since all legal configurations con-
sidered in the proof have exactly one selected node, and all illegal configurations
have exactly two selected nodes. For both amos and leader, the proof also
applies to 1-sider error protocols, since, for such protocols, the union bound
yields Pr[∃v ∈ S : P rejects at v] = 0, that is, P is incorrect with probability 1
for S with certificate c. �
Remark 2.2. Both leader and amos have locally checkable proofs with 2-bit
certificates, whenever restricted to trees. Indeed, for leader, the certificate at
every node v in a legal instance consists of the distance of v to the leader in the
tree, modulo 3. The same for amos, apart that, if there is no leader, then the
distance is from an arbitrary node of the tree. Such certificates enable to identify
a unique root of the tree, which is the only node allowed to be leader (it must be
selected in leader, but do not need to be selected in amos).

3 The Canonical 2-Party Reduction

In this section we show that a widely-used class of reductions from 2-party
communication complexity, which is typically used to prove lower bounds in
CONGEST, also yields lower bounds on dMA. These reductions are typically
used to relate the round complexity of a deterministic or randomized algorithm
in CONGEST to the deterministic or randomized communication complexity of
some 2-party problem, but here we use them as reductions from nondeterministic
communication complexity.

On Distributed Merlin-Arthur Decision Protocols 239

Let Lcomm be a two player communication complexity language with
instances of the form (x, y) ∈ X × Y , where both X and Y are finite sets.
Let Ldist be a distributed language. We consider in this section distributed lan-
guages that represent “pure graph properties”. Therefore, the instances are of
the form (G, id), where G is a graph and id is the list of the identifiers of the
nodes. In fact, for simplicity, we are going to consider the instances as being
just graphs (and the ids will be fixed). In other words, a distributed interactive
protocol Pdist that solves Ldist, needs to implicitly answer whether G ∈ Ldist.

A reduction from Lcomm to Ldist is an explicit transformation of instances
(x, y) of Lcomm into instances Gx,y of Ldist such that (x, y) ∈ Lcomm if and
only if Gx,y ∈ Ldist. If the reduction is such that Gx,y ∈ Ldist has the specific
structure we are going to define in the sequel, we say that the reduction is
canonical . We consider here only reductions that generate graphs over a fixed
set V = {1, . . . , n} of nodes, for any specific n.

The definition below captures “clean-cut” reductions where each player
“owns” part of the graph, with a fixed cut between the two parts. Many reduc-
tions in the literature have this structure, or can be easily modified to have
it.

Definition 3.1. Let s : N → N be a computable function. A reduction from
Lcomm to Ldist is said to be s-canonical if there is some fixed partition V =
(V1, V2) of the node set of the graph, such that for all (x, y) ∈ X × Y ,

• The neighborhood of any node in V1 in Gx,y does not depend on y, and the
neighborhood of any node in V2 in Gx,y does not depend on x.

• Consider the cut E(V1, V2) = {{u, v} ∈ E(Gx,y) : u ∈ V1, v ∈ V2}. Let Vc be
the vertices of the cut (i.e., endpoints of edges in the cut). Then Vc does not
depend on either x or y, and |Vc| ≤ s(n).

Nondeterministic Communication Complexity. A 2-party nondetermin-
istic protocol Π is modelled as a collection Π = {Πc}c∈{0,1}� of deterministic
protocols. On inputs x, y, the protocol begins with the prover presenting Alice
and Bob with a proof c ∈ {0, 1}�; the players then execute the protocol Πc cor-
responding to the proof c. The cost of Π is defined to be � + maxc |Πc|, where
|Πc| is the worst-case number of bits sent by Πc on any input.

The protocol Π solves Lcomm if, for any input (x, y), we have (x, y) ∈ Lcomm

iff there exists a proof c ∈ {0, 1}� such that Πc accepts (x, y).
We denote by N(Lcomm) the nondeterministic cost of solving Lcomm, i.e., the

cost of the best nondeterministic protocol that solves Lcomm. It is known, for
example, that Disjointness has nondeterministic cost Ω(n).

Theorem 3.1. If there exists an s-canonical reduction from Lcomm to Ldist,
then, for every ε < 1/3,

dMA1−ε (Ldist) = Ω
(
N(Lcomm)

s(n)

)
.

240 P. Fraigniaud et al.

Proof. Consider a dMA protocol P that solves Ldist with success probability
at least 1 − ε and using p(n)-bit certificates. Our goal is to show that p(n) =
Ω

(
N(Lcomm)

s(n)

)
, by constructing a nondeterministic protocol Π for Lcomm with

communication cost O(p(n) · s(n)).
On input (x, y), the protocol Π proceeds as follows:

(1) Alice (resp. Bob) locally constructs Gx,y[V1] from x (resp., Gx,y[V2] from
y). Note that both players agree on the neighborhoods of the cut nodes
Vc, because the reduction is canonical: these nodes’ neighborhoods do not
depend on either x or y.

(2) The prover presents Alice and Bob with a proof π ∈ {0, 1}p(n)·s(n), which
the players interpret as an assignment of certificates to the cut nodes Vc.

(3) Alice (resp. Bob) enumerates over all possible assignments of p(n)-bit cer-
tificates to the nodes in V1 \ Vc (resp. V2 \ Vc), and checks whether there is
an assignment that, together with the certificates π of the cut nodes, causes
all nodes of V1 (resp. V2) to jointly accept with probability at least 1 − ε.

(4) The players inform each other whether they can find such an assignment.
The players accept iff both were able to find some assignment that makes
all nodes in V1 (resp. V2) accept.

Note that both Alice and Bob can perform step (3) above without need of
communication: after fixing the certificates π of the nodes Vc on both sides of
the cut, the acceptance probability of any node in V1 does not depend on y, and
vice-versa. This is because the neighborhood of any node in V1 does not depend
on y, and vice-versa.

Clearly, the cost of Π is s(n) · p(n) + 2. It remains to prove its correctness:

• Suppose that (x, y) is a YES-instance of Lcomm. We are going to show the
existence of a certificate c̃ that causes both Alice and Bob to accept.

By definition of the reduction, Gx,y is a YES-instance of Ldist, so there exist
certificates C to the nodes of Gx,y such that, with probability at least 1 − ε,
all nodes accept. Let π be the restriction of the certificates to the nodes
of Vc. In Π, the prover can give π to the players, causing them to accept:
when enumerating over all possible certificates, Alice and Bob will each find
the restriction of C to the nodes on their side of the graph (V1 and V2,
respectively), and since C causes all nodes to accept w.p. ≥ 1−ε, in particular
it causes all nodes of V1 (resp. V2) to accept w.p. ≥ 1 − ε.

• Suppose that (x, y) is a NO-instance of Lcomm. We need to show that there is
no certificate π that can be given to Alice and Bob to cause them to accept.

Suppose for the sake of contradiction that there is such a certificate π, and
let Cx, Cy be the extensions of π to the nodes of V1 (resp. V2) that cause
them all to accept with probability at least 1 − ε. Now consider the global
certificate assignment C = (Cx, Cy) where in the distributed dMA protocol
P, the prover assigns Cx to the nodes of V1 and Cy to the nodes of V2. By the

On Distributed Merlin-Arthur Decision Protocols 241

union bound, when assigned C, the probability that either some node in V1 or
some node in V2 (or both) reject is at most 2ε. Overall, we see that the proof
is accepted by all nodes with probability at least 1− 2ε > 1− 2 · (1/3) = 1/3,
which is a contradiction, because Gx,y �∈ Lcomm. �

3.1 Lower Bound on DIAMETER

It is known that, for every k ≥ 1, diameter≤k ∈ LCP(O(n log n)), i.e., has
a locally checkable proof—actually, a proof-labeling scheme—using certificates
on O(n log n) bits [5]. (For this certificate, the prover constructs a BFS tree
from every node of the graph.) We show that allowing randomization in the
verification of the proof does not help.

Let disj be the two-player problem the players receive sets x, y ⊆ [n], and
their goal is to accept iff x ∩ y = ∅.

Our canonical reduction from disj to diameter≤6 is a simple modification
of a reduction of Censor-Hillel, Khoury and Paz [4]. The reduction of [4] mostly
has the static structure required for a canonical reduction, and it has a sparse
cut, of size s(n) = O(log n); however, it is not O(log n)-canonical, only because
the neighborhoods of the cut nodes may depend on x or on y. This is easily
solved by replacing each edge in the cut by a path of length 3 (subdividing the
edge by inserting two auxiliary nodes). Let Gx,y be the resulting graph. After
this modification, (x, y) are disjoint iff the diameter of Gx,y is at most 6, and
the new reduction is O(log n)-canonical. Thus, we obtain:

Lemma 3.1. There exists an O(log(n))-canonical reduction from disj to
diameter≤6.

By Theorem 3.1, we have:

Corollary 3.1. Let 0 ≤ ε < 1/3. Then, dMA1−ε(diameter≤6) = Ω(n/ log n).

The proof uses the fact that N(disj) = Ω(n) (see, e.g., the textbook [13]).

3.2 Lower Bound on SYMMETRY

It is known that symmetry is among the most difficult graph properties to
verify in a distributed manner, in the sense that every locally checkable proof
for symmetry requires certificates on Ω(n2) bits [12], while all distributed lan-
guages on n-node graphs can be verified using a certificate on O(n2) bits at each
node [16]. We show that allowing randomization in the verification of the proofs
does not help.

We extend the symmetry lower bound of [12] to dMA. The lower bound
in [12] is not formally stated as a reduction; it essentially “re-proves” the 2-party
nondeterministic lower bound for Equality. By observing that this lower bound
is in fact a canonical reduction, we obtain a dMA lower bound.

Let eqD be the two-player communication language where the players receive
inputs x, y ∈ D, and their goal is to output 1 iff x = y. Here, D is some domain

242 P. Fraigniaud et al.

of size N , which, following [12], we take to be a set of equivalence classes of
all n-node asymmetric graphs, under the isomorphism equivalence relation. It is
known that |D| = 2Θ(n2) [7].

Let symmetry be the distributed language defined on the set of all graphs,
where the YES-instances are graphs having non-trivial automorphisms. Obvi-
ously, all the graphs in D are NO-instances of symmetry.

Theorem 3.2 ([12], re-phrased). There exists a 2-canonical reduction from eqD
to symmetry that transforms instances (Gx, Gy) ∈ D2 into graphs Gx,y of size
2n + 2.

For completeness, we repeat the argument of [12], and show that it is a
2-canonical reduction:

Proof. Let V1 = {1, . . . , n + 1}, V2 = {n + 2, . . . , 2n + 2}. On inputs Gx, Gy,
Alice and Bob construct the following graph: Alice constructs a copy of some
graph in the equivalence class Gx over the nodes {1, . . . , n}, and Bob constructs
a copy of some graph in Gy over nodes {n + 3, . . . , 2n + 2}. In addition, Alice
connects node n + 1 to node n, Bob connects node n + 2 to n + 3, and “both
players” add the edge {n + 1, n + 2}.

The reduction is 2-canonical because there is only one edge in the cut. Cor-
rectness follows from the fact that, since Gx and Gy contain only asymmetric
graphs, and they are equivalence classes of the isomorphism relation, the result-
ing graph Gx,y is symmetric iff Gx = Gy. �

Since the nondeterministic cost of eqD is |D| [13], we obtain:

Corollary 3.2. Let 0 ≤ ε < 1/3. Then, dMA1−ε(symmetry) = Ω(n2).

3.3 Lower Bound on count

Finally, we observe that the notion of a canonical reduction is easily extended
to languages where the nodes have input in addition to the graph: to do this,
we require a transformation from the communication problem Lcomm to config-
urations (Gx,y, d) (keeping the ids fixed, as before), such that (x, y) ∈ Lcomm iff
(Gx,y, d) ∈ Ldist. We require all the conditions from the previous section; more-
over, the input d(u) of any neighbor u ∈ N(v) for v ∈ V1 (resp. V2) may not
depend on y (resp. x). With this additional restriction, Theorem 3.1 continues
to hold.

For example, consider the problem of counting the number of distinct ele-
ments in the input. Cast as a decision problem, we define it as countk =
{(G = (V,E), d) : | {d(u) : u ∈ V } | = k}.

In [21], Patt-Shamir showed by reduction from disj that counting the number
of distinct elements in the input of an n-node network requires ˜Ω(n) rounds in
CONGEST, even if randomization is allowed. A similar argument was used in [2]
to show that streaming algorithms for counting the number of distinct elements
require linear memory (indeed, [2] shows that this holds either for randomized
exact algorithms, or for deterministic approximate algorithms). Implicitly, the

On Distributed Merlin-Arthur Decision Protocols 243

argument of [2] shows that the nondeterministic cost of disj with input sets of
size n/4, and with the promise that either x ∩ y = ∅ or |x ∩ y| ≥ n/100, is Ω(n).

The reduction of [21] is “almost” 2-canonical. We modify it slightly to make
it 2-canonical; this involves restricting the size of the input sets, and fixing the
input of the cut nodes.

Lemma 3.2. There is a 2-canonical reduction from disj with sets of size n/4
to countn/2+1 in networks of size n/2 + 2.

Proof. The modified reduction features a line network of n/2 + 2 nodes,
1, . . . , n/2 + 2, with Alice controlling nodes 1, . . . , n/2 + 1 and Bob controlling
nodes n/2 + 2, . . . , n/2 + 2. Nodes n/2 + 1, n/2 + 2, which are the cut nodes,
always receive ⊥ as their input (where ⊥ is some fixed element that is not in
the universe of Disj). Let x =

{
x1, . . . , xn/4

}
, y =

{
y1, . . . , yn/4

}
be the inputs

of Alice and bob. Alice assigns each node i the input xi, and Bob assigns each
node n/2 + 1 + j the input yj .

If x ∩ y = ∅, then the total number of distinct elements in the input is
|x| + |y| + 1 = n/2 + 1, whereas if x ∩ y �= ∅, the number of distinct elements is
smaller. �

For deterministic algorithms, using the argument from [2], this can be
extended to a sufficiently small constant approximation (e.g., 1 ± 1/100).

We obtain:

Corollary 3.3. Let 0 ≤ ε < 1/3. Then, dMA1−ε

(
countn/2+1

)
= Ω(n).

Let us make two further remarks about verifying the approximate number of
distinct elements in line networks. First, there is an O(log n)-bit dAM scheme for
this problem: we can simulate the execution of the streaming algorithm from [2],
which uses O(log n) bits of randomness and O(log n) bits of memory, and gives
a constant approximation. In the simulation, the first node in the line sends
the prover O(log n) bits of randomness r, which serve to specify a pairwise-
independent hash function in [2]. The prover responds by sending r to all the
nodes, and also, it tell each node i the state of the streaming algorithm of [2]
after processing the inputs of the first i nodes, using the hash function indicated
by r. The nodes verify that they all received the same value of r, and also that,
if node i received state si and node i + 1 received state si+1, then indeed, with
randomness r, the algorithm of [2] transitions from state si to state si+1 upon
processing the input of node i. This idea can be extended to arbitrary networks,
by using mergeable sketches [1], asking the prover to specify a spanning tree, and
“summing” the sketches up the tree.

Next, we observe that Ω(log n) is in fact a lower bound on the dAM-cost of
computing the exact number of elements in a network. This can be shown by
the following argument, which is very similar to a recent Ω(log n) lower bound
for the dAM-cost of symmetry [15].

Theorem 3.3. We have dAM(countn/2) = Ω(log n).

244 P. Fraigniaud et al.

Proof. Given an �-bit dAM protocol for countn/2, we construct a 2O(�)-bit,
private-coin, randomized two-party protocol for Disj with sets of size n/4 (with-
out a prover). Since disj requires Ω(n) bits of communication, we conclude that
� = Ω(log n).

The protocol proceeds as follows: given inputs (x, y), the players construct
the network from Lemma 3.2, but they use only n/2 nodes in total (with each
player responsible for n/4 nodes), and omit the input ⊥ (it is not necessary here).
Then, Alice and Bob each sample a private random string rA, rB (respectively).
We say that a pair of �-bit certificates c, c′ is rA -good if there is an assignment
of certificates to all the nodes in Alice’s side, where the cut nodes receive the
certificates c and c′ (respectively), such that when their randomness is rA (here,
rA represents a list of the random string of each node on Alice’s side), all nodes
on Alice’s side accept when their randomness is rA. Similarly, we say that c, c′

is rB -good if the same holds for Bob’s side with randomness rB . Alice and
Bob announce to each other the list of pairs c, c′ that are rA-good and rB-good,
respectively. This requires 22� bits. Finally, the players accept iff there is some
pair c, c′ that is good for both players.

It is easy to verify (see, e.g., [14]) that the probability that the players accept
is exactly the probability that a prover has of convincing all nodes of the network
to accept. Therefore, the protocol correctly solves disj. �
As a final remark, the argument above also yields an Ω(log log n) lower bound on
the dAM cost of deciding whether the number of distinct elements is (1±1/100)k,
for k = Θ(n). We use the same reduction, but reduce from the gap version
of disj, where it is promised that either x ∩ y = ∅ or |x ∩ y| ≥ n/100. This
problem has randomized private-coin communication complexity Ω(log n) (as its
deterministic cost is Ω(n) [2], and the private-coin randomized cost of a problem
is never exponentially better than its deterministic cost [13]). Interestingly, our
upper bound of O(log n) on approximating the number of distinct elements could
be improved to O(log log n), if the nodes had shared randomness. We could then
simulate the famous Flajolet-Martin streaming algorithm [9], which assumes
perfectly random hash functions, and requires O(log log n) bits of memory.

Acknowledgements. Partially supported by CONICYT PIA/Apoyo a Centros Cien-
tíficos y Tecnológicos de Excelencia AFB 170001 (P.M. and I.R.), Fondecyt 1170021
(I.R.) and CONICYT via PAI + Convocatoria Nacional Subvención a la Incorporación
en la Academia Año 2017 + PAI77170068 (P.M.). Rotem Oshman is supported by ISF
i-core Center for Excellence, No. 4/11.

References

1. Agarwal, P.K., Cormode, G., Huang, Z., Phillips, J.M., Wei, Z., Yi, K.: Mergeable
summaries. ACM Trans. Database Syst. 38(4), 26:1–26:28 (2013)

2. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

On Distributed Merlin-Arthur Decision Protocols 245

3. Baruch, M., Fraigniaud, P., Patt-Shamir, B.: Randomized proof-labeling schemes.
In: 34th ACM Symposium on Principles of Distributed Computing (PODC),
pp. 315–324 (2015)

4. Censor-Hillel, K., Khoury, S., Paz, A.: Quadratic and near-quadratic lower bounds
for the CONGEST model (2017). arXiv preprint arXiv:1705.05646

5. Censor-Hillel, K., Paz, A., Perry, M.: Approximate proof-labeling schemes. In: Das,
S., Tixeuil, S. (eds.) SIROCCO 2017. LNCS, vol. 10641, pp. 71–89. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72050-0_5

6. Cook, S.A.: The Complexity of theorem-proving procedures. In: Proceedings of
the Third Annual ACM Symposium on Theory of Computing (STOC 1971), New
York, NY, USA, pp. 151–158. ACM (1971)

7. Erdős, P., Rényi, A.: Asymmetric graphs. Acta Math. Hungar. 14(3–4), 295–315
(1963)

8. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local dis-
tributed computing. J. ACM 60(5), 35:1–35:26 (2013)

9. Flajolet, P., Martin, G.N.: Probabilistic counting algorithms for data base appli-
cations. J. Comput. Syst. Sci. 31(2), 182–209 (1985)

10. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity
or all languages in NP have zero-knowledge proof systems. J. ACM (JACM) 38(3),
690–728 (1991)

11. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

12. Göös, M., Suomela, J.: Locally checkable proofs in distributed computing. Theory
Comput. 12(1), 1–33 (2016)

13. Kushilevitz, E., Nisan, N.: Communication Complexity, pp. 1–189. Cambridge Uni-
versity Press, New York (1997). ISBN 978-0-521-56067-2

14. Kol, G., Oshman, R., Saxena, R.R.: Interactive distributed proofs. In: 37th ACM
Symposium on Principles of Distributed Computing (PODC), pp. 255–264 (2018)

15. Kol, G., Oshman, R., Saxena, R.R.: AM Lower Bound for Symmetry. Private
communication (2019)

16. Korman, A., Kutten, S., Peleg, D.: Proof labeling schemes. Distrib. Comput. 22(4),
215–233 (2010). https://doi.org/10.1007/s00446-010-0095-3

17. Kushilevitz, E., Nissan, N.: Communication Complexity. Cambridge University
Press, Cambridge (2006)

18. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive
proof systems. J. ACM 39(4), 859–868 (1992)

19. Naor, M., Parter, M., Yogev, E.: The power of distributed verifiers in interactive
proofs (2018). CoRR abs/1812.10917

20. Naor, M., Stockmeyer, L.J.: What can be computed locally? SIAM J. Comput.
24(6), 1259–1277 (1995)

21. Patt-Shamir, B.: A note on efficient aggregate queries in sensor networks. Theor.
Comput. Sci. 370(1–3), 254–264 (2007)

22. Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)

http://arxiv.org/abs/1705.05646
https://doi.org/10.1007/978-3-319-72050-0_5
https://doi.org/10.1007/s00446-010-0095-3

	On Distributed Merlin-Arthur Decision Protocols
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Warmup: Deciding AMOS and LEADER
	3 The Canonical 2-Party Reduction
	3.1 Lower Bound on DIAMETER
	3.2 Lower Bound on SYMMETRY
	3.3 Lower Bound on count

	References

