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ABSTRACT
In the uniformity testing problem, we are given access to samples

from some unknown distribution µ on a fixed domain {1, ..,n}, and
our goal is to distinguish the case where µ is the uniform distribu-

tion from the case where µ is ϵ-far from uniform in L1 distance.
Centralized uniformity testing has been extensively studied, and it

is known that Θ(
√
n/ϵ2) samples are necessary and sufficient.

In this paper we study distributed uniformity testing: in a net-

work of k nodes, each node i has access to si samples from the

underlying distribution µ. Our goal is to test uniformity, while min-

imizing the number of samples per node, as well as the running

time. We consider several distributed models: the LOCAL model,

the CONGEST model, and a 0-round model where nodes cannot

communicate with each other at all. We give upper bounds for each

model, and a lower bound for the 0-round model. The key to our

results is analyzing the centralized uniformity-testing problem in

an unusual error regime, for which we give new upper and lower

bounds.
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1 INTRODUCTION
Suppose we have a distributed network tasked with monitoring

some environment or random process. Each network node draws

random samples from its environment, and together the nodes must

raise an alarm if the system’s state deviates significantly from nor-

mal. For example, we could have several routers drawing random

samples from the traffic they route, and trying to detect a denial-of-

service attack; or a sensor network monitoring temperatures at a

manufacturing plant, with their measurements subject to Gaussian
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noise. In each case, we have a “normal” or “expected” distribution η,
and an unknown distribution µ; the network nodes draw samples

from µ, and try to decide whether µ = η or whether µ is far from µ.
The problem we described above is a specific instance of distribu-

tion testing: we are given samples from some unknown distribution

µ, and must decide whether µ satisfies some property or whether

µ is far from all distributions that satisfy the property. Here, “far”

is usually taken to mean a large L1-distance, but other distance
measures have also been considered in the literature. Distribution

testing has been extensively studied, but to our knowledge, the

distributed case has not been considered so far.

We take first steps towards understanding the possibilities and

limitations of distributed testing of distributions. Specifically, we

study uniformity testing, where we wish to determine whether our

unknown distribution is the uniform distributionUn on {1, . . . ,n},
or whether it is ϵ-far from Un in L1 distance, for a distance param-

eter ϵ . Uniformity testing is especially interesting because in the

centralized setting, it is known that for any fixed distribution µ,
the problem of testing equality to µ can be reduced to uniformity

testing [10, 15]. This reduction continues to work in the distributed

setting: it is a filter (essentially, a randomized mapping), which each

node can independently apply to its samples using its own private

randomness, and then call the uniformity tester.

We consider a network of k nodes, where each node receives s
samples drawn independently from the unknown distribution µ.
Our goal is to minimize the number of samples s that each node

needs to draw, while also taking into consideration communication

and round complexity.

In the centralized setting it is known that Θ(
√
n/ϵ2) samples are

both necessary and sufficient for uniformity testing [21], so clearly

we cannot have s = o(
√
n/(ϵ2k)), otherwise the entire network does

not have enough samples to decide. This gives us a lower bound on

the number of samples at each node. At the other extreme, we know

that we can always take s = Θ(
√
n/ϵ2), so that a single network

node has enough samples to decide on its own. We ask whether

there is a middle ground: when s is large enough that the total

number of samples in the network is s · k = Ω(
√
n/ϵ2), but too

small for nodes to decide on their own (i.e., s = o(
√
n/ϵ2)), is there

an efficient distributed algorithm that allows the nodes to decide

whether the distribution is uniform or far from uniform?

We address this question in three models: the LOCALmodel, the

CONGEST model, and an intermediate “0-round model”. Next we

outline our results for each model.

0-round uniformity testing. We begin by studying a very simple

model where the nodes cannot communicate with each other at all:

each node examines its s samples, and decides whether to accept

or reject. As usual in distributed decision, the network as a whole
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is said to accept if all nodes accepted; otherwise the network re-

jects (“some node raised an alarm”). We refer to this as the “AND”

decision rule. Our goal is to ensure that if the underlying distribu-

tion is uniform, the network accepts with high probability, but if

the distribution is far from uniform, the network rejects with high

probability. Our main motivation for studying the 0-round model is

that we can use it to develop uniformity testers for the LOCAL and

CONGEST models: we gather as many samples as possible at as

few nodes as possible, and then have these nodes use the 0-round

tester to decide.

To solve uniformity testing in the 0-round model, we develop

a single-node tester Aδ , which gives us a “very weak signal”: for

some very small parameter δ , when we give Aδ samples from the

uniform distribution Un , it accepts w.p. 1 − δ ; but when we give

it samples from a distribution that is ϵ-far fromUn , it rejects w.p.

Θ(δ ) (i.e., small but noticeable probability). We show that we can

implement Aδ using O(
√
δn) samples, so when we take δ = o(1),

we save on individual sample complexity.

If we set δ = Θ(1/k), we expect that the uniform distribution

will be accepted by all nodes, while an ϵ-far distribution will be

rejected by at least one node. This is the behavior we are aiming

for. Unfortunately, moving from having at least one node reject in

expectation to having at least one node reject with high probability

is not so easy. The “AND” decision rule, where we reject if at least

one node wants to reject, is not robust where error probability is

concerned: in some situations, there exists an efficient algorithm

with success probability p, but if we want to increase the success
probability to p′ > p, we may not be able to do so efficiently [12].

The success probability we get by using Aδ as outlined above

depends on the distance parameter ϵ ; it is roughly 1/2 +Θ(ϵ2), and
amplifying to a constant success probability is expensive.

Ultimately, we are able to show the following: for a constant Cp
which depends on the desired success probability p,

Theorem 1.1. There exists a 0-round ϵ-uniformity tester, with error

probability at most p, which uses s samples per node, where

s = Θ

(
(Cp/ϵ

2) ·

√
n/kΘ(ϵ

2/Cp )
)
.

Motivated by the non-robustness of the standard “AND” decision

rule, we also consider a setup where the network uses a threshold

rule to decide: we fix some threshold T ∈ [k], and the network

is considered to reject iff at least T nodes want to reject. For this

model we can use standard amplification techniques, and our result

is substantially better:

Theorem 1.2. There exists a 0-round ϵ-uniformity tester in the

threshold decision model, with threshold T = Θ(1/ϵ4) that uses

Θ(
√
n/k/ϵ2) samples per player.

We later use the threshold 0-round tester to develop a (multi-

round) tester for the CONGEST model.

For 0-round uniformity testing with the AND decision rule, we

show the following lower bound, which matches Theorem 1.2 in

term of number of samples, up to the dependence on ϵ :

Theorem 1.3. For a sufficiently large constant ϵ ∈ (0, 1/2), any

anonymous ϵ-uniformity tester that achieves error at most 1/3 in

network of size k , has sample complexity Ω(
√
n/k/log(n)) per node.

An anonymous tester is one where all the nodes execute the

same algorithm. Note, however, that the algorithm can be random-

ized, so the nodes can choose random identifiers from some large

namespace, which will with high probability be unique.

0-round protocols with asymmetric costs. We develop an asym-

metric version of our 0-round uniformity tester, where each node v
can draw a different number of samples, sv , and has a different cost
per sample, cv . Our goal now is to minimize the maximum cost paid

by any node. We show, for example, that we can implement the

0-round threshold tester using s = Θ(
√
n/(ϵ2 · ∥T ∥

2
) samples, where

T is the inverse cost vector defined by Tv = 1/cv for each v ∈ V ,
and ∥·∥

2
is the L2-norm. Note that when all costs are equal to 1, we

have ∥T ∥
2
=
√
k , so we recover the symmetric case (Theorem 1.2).

We also analyze the asymmetric case with the AND-decision rule,

and generalize Theorem 1.1.

The CONGEST model. Our algorithms for the LOCAL and the

CONGEST model assume for simplicity that each node starts with

a single sample (s = 1), and that there are enough samples in the

whole network to solve uniformity (for s = 1, this means k ≥
√
n/ϵ2); the results generalize in a straightforward manner to larger

s . We develop a “sample-gathering” protocol for the CONGEST
model, which then allows us to use the 0-round uniformity tester

from Theorem 1.2. This yields the following:

Theorem 1.4. Uniformity testing can be solved in CONGEST in

O(D + n/(kϵ4)) rounds in k-node networks of diameter D.

The LOCAL model. For the LOCAL model, we gives a simple

strategy based on first finding a maximal independent set, and then

gathering samples at the MIS nodes. Here again we suffer from the

LOCAL model’s inability to amplify success probabilities (without

running for D rounds). Still, if each node initially has one sample,

then r rounds suffice to get success probability 1 − p, where

r = Θ

(
(Cp/ϵ

2) ·

√
n/kΘ(ϵ

2/Cp )
)
1/(1−Θ(ϵ 2/Cp ))

.

This hairy expression tends to Θ(
√
n/ϵ2) as ϵ → 0, as in this case

we cannot avoid collecting this many samples at one node (which

will take a long time, in case the graph is, e.g., a line).

For lack of space, many technical details are omitted here, and

will appear in the full version of the paper.

1.1 Related Work
Uniformity testing was the starting point for distribution testing.

It was first considered implicitly in [13, 17], as part of a tester

that estimated the expansion of a graph by testing whether the

distribution of a short random walk in the graph is uniform, or far

from uniform.

In [13, 17] it is shown that the number of samples needed for uni-

formity testing isΘ(
√
n). Following this work, the first explicit study

of property testing for distributions was in[4], which showed that

testing whether two distributions are far from each other requires

Θ(n2/3) samples. Later on, uniformity testing was shown to be

complete for the problem of testing equality between an unknown

input distribution and any fixed distribution [10, 15]. Distribution

testing has expanded into a wide field of work, in which a large
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variety of properties of distributions were considered. We refer

to [8, 11, 14, 16, 22] for background on property testing in general,

and on distribution testing in particular.

A reduction between uniformity testing and the simultaneous

communication complexity of Equality, using private randomness,

was shown in [5]. We use this reduction to give a lower bound on

distributed uniformity testing, but under a different error regime

than the classical model. As for Equality itself, its simultaneous

communication complexity with private randomness was studied

in [3, 7, 19], and another optimal simultaneous protocol is given

in [2]. In [6], the simultaneous Equality lower bound was revisited,

using an information theoretic approach. We use the technique

of [6] to prove a lower bound on simultaneous Equality with non-

standard error.

Very recently, [1] studied testing properties of distributions (in-

cluding uniformity testing) in a model similar to our 0-round model.

The focus of [1] is mostly orthogonal to ours. In [1], each player

receives only one sample, and can send a short message to a referee;

the referee then decides whether the input distribution satisfies the

property. The referee’s output can be an arbitrary function of the

messages it receives from the players. The focus in [1] is on the

trade-off between number of players (which controls the number

of samples) and communication per player. In contrast, our focus

here is on the number of samples required per player for a given

number of players, where each player is allowed to output only

one bit (accept/reject). We do not allow the "referee" to apply any

decision rule, and instead focus on the traditional "AND" rule, and

on a threshold rule. As a result, our results and [1] do not overlap.

2 PRELIMINARIES
Distributed uniformity testing. In the distributed ϵ-uniformity

testing problem, each network node i ∈ V is given a set of s iid
samples Si ∼ µs from an unknown distribution µ : Ω → [0, 1]. We

assume that the domain Ω is known in advance, and let n B |Ω | be

its size. (Our testers do not actually need to know Ω, only n, but
our lower bound assumes that Ω is known as well.) The goal is to

distinguish the case where µ is the uniform distribution U on Ω,
from the case where µ has L1 distance at least ϵ from U. (The L1
distance between a distribution µ and the uniform distribution is∑
ω ∈Ω

��µ(ω) − 1

n
��
.) We let Fϵ (U) denote the set of distributions on

Ω that are at least ϵ-far from uniform.

Although we generally aim to develop testers with constant error

probability, e.g. 1/3, along the way we construct testers with much

higher, and often asymmetric, error. In particular, we often need to

make sure that the uniform distribution is accepted with very high

probability (so that all nodes accept it), but any ϵ-far distribution is

only rejected with “not too small” probability (but much less than

1/2). This motivates the following definition, for centralized (i.e.,

single-node) testers with asymmetric error:

Definition 1 ((δ ,α)-gap tester). Fix δ ∈ (0, 1) and α > 1, and let P

be a family of distributions. An algorithmA is said to be a (δ ,α)-gap
tester for P using s samples if for any distribution µ,

(1) If µ ∈ P, then PrS∼µs [A(S) = 1] ≥ 1 − δ , and
(2) If µ is ϵ-far from P, then PrS∼µs [A(S) = 1] ≤ 1 − α · δ .

Here, A(S) is the random variable denoting the output of A on

samples S . We usually take α to be only slightly greater than 1.

When working with such a delicate error regime, the following

lemmawill be useful. It shows that in order to achieve the separation

required for a (δ ,α)-tester, some small but non-negligible amount

of information is required:

Lemma2.1. LetBp denote the Bernoulli distributionwith probability
p. For any δ ∈ (0, 1/4) and τ ∈ (1, 1δ ),

DKL (B1−δ ∥ B
1−τ δ ) ≥

δ

4

(τ − 1 − logτ ) .

Here,DKL (µ ∥ η) =
∑
x µ(x) log(µ(x)/η(x)) is the KL-divergence

between distributions µ and η, a measure of how different they are

from each other.

Distributed models. In addition to the standard distributed mod-

els, LOCAL and CONGEST, we consider a 0-round model. In this

model, each node outputs its decision without communicating with

the other nodes. We consider two decision rules: the AND rule,

where the network is said to accept iff all nodes accept; and the

threshold rule, where we fix a threshold T , and the network is said

to accept iff fewer than T nodes reject.

Simultaneous communication complexity. Our lower bound for

uniformity testing takes a detour through simultaneous communi-

cation complexity. Here, we have three players: Alice, Bob, and a

referee. Alice and Bob are given inputs X ,Y ∈ {0, 1}n , and each

player sends one message to the referee, who then outputs a value.

The goal is for the referee to compute some function f (X ,Y ) of
Alice and Bob’s inputs (which it cannot see directly). The cost of

a simultaneous protocol is the worst-case maximum length of a

message sent by Alice or Bob.

We are specifically interested in private-coin protocols, where

Alice and Bob each have private randomness that is not shared

with the other or with the referee. We let SMPδ0,δ1 (f ) denote the
minimum cost of a private-coin protocol, where if f (X ,Y ) = 1,

the referee outputs 1 w.p. ≥ 1 − δ1; and if f (X ,Y ) = 0, the referee

outputs 0 w.p. ≥ 1 − δ0.

3 0-ROUND DISTRIBUTED UNIFORMITY
TESTING

We begin our investigation of distributed uniformity testing by

studying the 0-round model, where no communication is allowed.

We show that we can develop a tester where the number of sam-

ples at each node is much smaller than Θ(
√
n/ϵ2) (i.e., no single

node can test uniformity on its own). Our strategy is to divide the

responsibility for rejecting: we ask each node to reject an ϵ-far
distribution with small (but noticeable) probability, but accept the

uniform distribution with very high probability. This ensures that

the network as a whole can distinguish an ϵ-far distribution from

the uniform distribution.

First, we show that a single node using s = Θ(
√
δn) samples

is able to achieve probability 1 − δ of accepting the uniform dis-

tribution, and probability at least (1 + Θ(ϵ2))δ of rejecting any

distribution that is ϵ-far from uniform.
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3.1 The Collision-Based Tester, Revisited
It is well established (see, e.g., [16]) that when testing uniformity

or any other symmetric property of distributions, all the relevant

information is captured by the histogram of the samples: namely,

one looks for collisions among the samples. Our challenge here is

that we want to use a very small number of samples, such that

the expected number of collisions is much smaller than one, and

the probability of seeing two collisions is negligible. Unlike the

optimal centralized uniformity tester [21], it is pointless for us to

start counting collisions, because we will probably never see more

than one.

For this reason, the tester we consider simply retrieves s samples

from the oracle, and accepts (i.e., returns "uniform") if and only if all

the samples are distinct. The question is: how large does s need to

be, to guarantee the gap we need for a (δ ,α)-gap uniformity tester?

We show:

Theorem 3.1 (Gap tester, informal). There is a (δ , 1 + Θ(ϵ2))-gap

tester that uses s = Θ(
√
δn) samples, provided δ is not too large

compared to ϵ , and n is not too small.

We then discuss ways of amplifying the success probability.

The more strict we get with the relations between δ , ϵ,n, the
better gap we have. Specifically, for the distributed setting we will

use a (δ , 1 + ϵ2/2)-gap tester, that uses s = Θ(
√
δn) samples, and

works provided that δ < ϵ4/64 and n > 64/(ϵ4δ ).
The analysis goes as follows: fix a distribution µ on a domain of

n elements, and let χ be the collision probability of µ:

χ = χ (µ) = Pr

X ,Y ∼µ
[X = Y ] =

∑
x ∈Supp(µ)

µ(x)2.

The uniform distribution has χ (U) = 1/n. At the heart of collision-
based uniformity testers is the following well-known property (see

the textbook [16]):

Lemma 3.2. If µ is ϵ-far from the uniform distribution, then χ (µ) >
(1 + ϵ2)/n.

Let s be such that s(s − 1) = 2δn; we assume that s is an integer

(and will make sure that this assumption is satisfied when we use

the tester).

In our analysis, we try to reach a gap as close as possible to 1+ϵ2,
but in fact we only reach 1 + γϵ2, where

γ B 1 −
1

s
−

√
2δ (1 + ϵ2) −

1

s +
√
2δ (1 + ϵ2)

ϵ2
. (1)

This is a “slack term” that approaches 1 as n/k → ∞.

Let S ∼ µs be a set of s iid samples from µ, and let Z be an

indicator for the event that there is a collision in S (that is, S contains
two identical samples). Our tester outputs 0 iff Z = 1. Our analysis

for the tester relies on a tight bound from [18] for the probability

of getting a collision in a set of s samples:

Lemma 3.3 (Theorem 3, [18]). For any distribution µ, we have

PrS∼µs [Z = 0] ≤ e−(s−1)·
√
χ ·

(
1 + (s − 1) ·

√
χ
)
.

Using this bound, we show:

Lemma 3.4. The single-collision tester satisfies:

(1) (1 − δ )-completeness: if µ = U is the uniform distribution, then

PrS∼µs [Z = 0] ≥ 1 − δ , and

(2) (α · δ )-soundness: if µ is ϵ-far from the uniform distribution, then

PrS∼µs [Z = 0] ≤ 1 − α · δ , where α = 1 + Θ(ϵ2).

Proof sketch. Suppose µ = U is the uniform distribution.

What is the probability that we see no collisions? It turns out

that Markov’s inequality gives a tight bound in this case, since

the probability for more than one collision is negligible. We have

Pr [Z ≥ 1] ≤ E [Z ] /1 =
(s
2

)
/n. Recall that we chose s so that

s(s − 1) = 2δn, that is,
(s
2

)
/n = δ ; thus, Pr [Z ≥ 1] ≤ δ , as desired.

Now suppose µ is ϵ-far from uniform. Then Lemma 3.3, together

with Lemma 3.2, yields

Pr [Z = 0] ≤ e−(s−1)
√
(1+ϵ 2)/n ·

(
1 + (s − 1)

√
1 + ϵ2

n

)
. (2)

To analyze the expression in (2), let us denote t B (s−1)
√
(1 + ϵ2)/n,

so that (2) takes the form: Pr [Z = 0] ≤ e−t (t + 1). From the Taylor

expansion e−x = 1−x+x2/2−O(x3)we know that e−x ≤ 1−x+x2/2
for all x ≥ 0, so

Pr [Z = 0] ≤

(
1 − t +

t2

2

)
(1 + t) = 1 −

1

2

(
t2 − t3

)
. (3)

Recall that we want to show that Pr [Z = 0] ≤ 1 − α · δ , where α is

as large as we can make it — we are aiming for α = 1+Θ(ϵ2). Thus,
our goal is to show that

(
t2 − t3

)
/(2δ ) ≥ 1 + Θ(ϵ2). We compute

the value of t2, and obtain t2 =
(
1 − 1

s

)
(1 + ϵ2) · 2δ . As for t3, we

are able to bound it from above by t3 ≤
√
2δ (1 + ϵ2) · t2. Plugging

these bounds into (3) shows that Pr [Z = 0] ≤ 1 − (1 + γϵ2)δ , as
required. �

3.2 From the Collision-Based Tester to a
Distributed Algorithm

Let Aδ be the (δ , 1 + Θ(ϵ2))-gap tester we developed in the pre-

vious section. This tester has very high failure probability: on a

distribution that is ϵ-far from uniform, it almost certainly accepts,

even though it should reject. We would like to use Aδ to obtain a

distributed 0-round algorithm in which the network as a whole has

only constant (e.g., 1/3) failure probability.

We consider two different approaches: first, we adapt the tester

to work with the “standard” distributed decision model, where on

YES-instances we require all nodes to accept, and on NO-instances

at least one node should reject. Unfortunately, this model is not

amplification-friendly: it does not allow us to reduce the error

probability by repeating our distributed tester several times and

taking, say, the majority. (Here we mean the majority decision of

the entire network, not the individual nodes.) Hence, the number of

samples required degrades significantly when we aim for constant

error.

The second model we consider is a threshold decision model,

where we can set a threshold T , and define that the network has

“accepted” an input if at least T nodes accepted, and otherwise

we say that the network “rejected”. This model is amenable to

amplification using standard techniques. We will use our results

for the threshold-decision model when we develop a multi-round

tester for the CONGEST model.
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3.2.1 The Standard Distributed Decision Model. Suppose we

want the network to decide correctly with probability at least 1 − p
on any distribution. With the standard decision model, it suffices

to require that if each node runs a tester B,

• For the uniform distribution, the probability that B rejects is

at most ln((1/(1−p))/(1−β))/k , where β B ln(1/(1−p))/(2k)
is a small slack term approaching 0 as k → ∞.

• For any distribution that is ϵ-far from uniform, the probabil-

ity that B rejects is at least ln(1/p)/k .

Essentially, B needs to be a (Θ(1/k), 1+Ω(1))-gap tester, where the
constant in the Ω(1) depends on the probability p. This ensures that
the uniform distribution is accepted by all nodes with probability

1 − p, while for any distribution that is ϵ-far from uniform, with

probability at least 1 − p some node rejects.

Our tester from the previous section, Aδ , has a gap of only

1 + Θ(ϵ2). We need to increase the gap to at least Cp , where Cp is

a constant that depends on the desired failure probability p. How-
ever, while doing so, we must preserve the very high acceptance

probability for the uniform distribution, to make sure that w.h.p.

the entire network accepts it.

A natural strategy to amplify the gap is to run the tester Aδ
independentlym times, and reject iff allm trials rejected. To reach

our desired gap of Cp , we need to take m = log
1+Θ(ϵ 2)(Cp ) =

Θ(Cp/ϵ
2) repetitions. However, the undesired side-effect of this

strategy is that the acceptance probability is now decreased: if we

started with probability δ of rejecting the uniform distribution,

the probability that m independent trials all reject the uniform

distribution is now δm . We require:(
1 − δm

)k
≥ 1 − p, (4)

and therefore δ = Θ(1/k1/m ).

We instantiate this scheme by having every network node run

m = Θ(Cp/ϵ
2) independent repetitions of the tester Aδ with δ =

Θ(1/k1/m ). When k,n are sufficiently large compared to 1/ϵ , we
obtain the tester described in Theorem 1.1. The full proof and the

exact calculations are somewhat laborious, and are omitted from

this text.

3.2.2 A Threshold-Based Tester. A significant improvement can

be made when we change the decision rule to threshold. While

asking each node to amplify its own gap by itself is very expensive,

if we let the whole network work together, we can leverage the weak

signal each node provides much more efficiently.

Proof of Theorem 1.2. We will again run the single-collision

tester Aδ , but this time we set the parameters so as to create a

large gap between the expected number of nodes that reject when

the distribution is uniform, and the expected number of rejections

when the distribution is ϵ-far from uniform.

Let Rv denote the event that node v rejects when it runs Aδ ,

and let R count the number of rejecting nodes in the network. Let

η(µ) B ES1, ...,Sk∼µs [R] denote the expected number of rejections

when all nodes run Aδ with samples drawn from µ. We simplify

the notation by writing the distribution µ in the subscript, instead

of the samples S1, . . . , Sk ∼ µs .
Recall thatAδ is a (δ , 1+γϵ2)-gap tester: that is, PrU [Rv = 1] ≤

δ , and for any µ ∈ Fϵ (U) we have Prµ [Rv = 1] ≥
(
1 + γϵ2

)
δ . For

our purposes here, it suffices to takeγ ≥ 1/2. Therefore,η(U) ≤ k ·δ ,
and for all µ ∈ Fϵ (U), η(µ) ≥ k ·

(
1 + ϵ2/2

)
δ . By Chernoff,

Pr

U
[R ≥ T ]

= Pr

U

[
R ≥ η(U) ·

(
1 +

T − η(U)

η(U)

)]
≤ e−((T−η(U))2/(3η(U)),

and for any µ ∈ Fϵ (U),

Pr

µ
[R < T ] = Pr

µ

[
R < η(µ) ·

(
1 −

η(µ) −T

η(µ)

)]
≤ e−(T−η(µ))

2/(2η(µ)).

Of course, we would like to put the threshold T in between the

two expectations η(U) and η(µ) for any µ ∈ Fϵ (U), such that the

probabilities above are both bounded by 1/3. It suffices to require

(for all µ ∈ Fϵ (U)):

η(U) +
√
3 ln(3)η(U) ≤ T ≤ η(µ) −

√
2 ln(3)η(µ). (5)

In order for a threshold T satisfying (5) to exist, we can take δ =
Θ(1/(ϵ4k)), which allows us to set T = Θ(1/ϵ4) (full details are
omitted). Plugging this value of δ into Theorem 3.1, we see that

s = Θ(
√
n/k/ϵ2) samples are sufficient. �

4 THE ASYMMETRIC CASE
We now generalize to the asymmetric case, where each node i can
ask to draw si samples, at a cost of ci per sample. The total cost of

node i is therefore si · ci . We would like to minimize the maximum

individual cost, C B maxi {si · ci }.
For convenience, we denote Ti B 1/ci . Our results will depend

on various norms of the vector T = (T1, . . . ,Tk ) of inverse costs.
The essential idea is to divide the responsibility we assign to

each node in accordance with the cost it pays, in a way that allows

“expensive nodes” (with high ci ) to draw fewer samples than “cheap

nodes” (with low ci ). Here, the responsibility of node i corresponds
to the part it plays in the network’s decision.

Since we are interested in optimizing the maximum individual

cost, C = maxi {si · ci }, we may as well allow all nodes to use the

same cost C (once we compute what C needs to be). Thus, for each

node i , we will choose si so that si · ci = C , that is, si = C ·Ti .
We will use the collision-based tester fromSection 3, but now

each node i will instantiate it with a different value δi . However,
all nodes will still use the same value of α as in the symmetric case.

4.1 The AND Decision Rule
Let us compute the number of samples si that each node i must

draw, when the final decision of the network is the AND of the

nodes’ individual decisions.

Each individual node will run a (δi ,αi )-gap tester. We will use

the same gap, αi = α , for all nodes, but different thresholds δi .
As we saw in the symmetric case, we can obtain a (δi ,α)-gap

tester by takingm repetitions of the testerAδ ′
i
from Section 3, with

δ ′i = δ
1/m
i andm = Θ(Cp/ϵ

2). The number of samples required by

node i is si =m ·

√
2δ ′in. Recalling that si = C ·Ti , we can express

this as:

δi =
(C ·Ti )

2m

(2n)mm2m .
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How are the various costs δi constrained? To ensure that the

network accepts the uniform distribution with sufficiently high

probability, we set the δi s so that

k∏
i=1

(1 − δi ) = 1 − p. (6)

We show that if we set the δi s so that (6) is satisfied, then soundness

also holds: any distribution that is ϵ-far from uniform is rejected

by at least one node, with probability at least 1 − p. Intuitively,
this is because: the probability of accepting an ϵ-far distribution is

given by

∏k
i=1(1− αδi ). Under the constraint (6), this expression is

maximized when when all δi s take the same value, i.e., when we are

back in the symmetric case. We know that in the symmetric case

all players created a tester of the same δ and α , and soundness was

satisfied; we show that taking asymmetric values for the δi s but
with all players using the same old α , can only tighten the bound,

that is, decrease the probability that an ϵ-far distribution is accepted.

We prove this intuition using the following technical lemma:

Lemma 4.1. Fix c ∈ (0, 1), a ∈ (1, 1/(1−c)) andX = (x1, . . . ,xk ) ∈

[0, 1 − c]k such that

fk (X ) :=

k∏
i=1

(1 − xi ) = c .

Denote Yk B dk · (1, . . . , 1) ∈ Rk , where dk B (1 − k√c), so that

fk (Yk ) = c . Then the function дk (X ) :=
∏k

i=1(1 − axi ) satisfies:

дk (X ) ≤ дk (Yk ).

Here, we are looking for a set {δi }
k
i=1 satisfying (6) above. For

simplicity, let us fix p = 1/3.

In the symmetric model, we ended up with each node being a

(δ ,α)-gap tester (recall the tester B), where δ = Θ(1/k) was the
value that satisfied the completeness for the whole network. Mean-

ing,

∏k
i=1(1 − δ ) u 1 − 1/3. We also had α = ln(1/p)/ln(1/(1 − p))

which we denoted as Cp , that was enough to satisfy the soundness

of the whole network. For p = 1/3, this turns out to be α u 2.7.

We can then use the lemmawith c =
∏k

i=1(1−δ ) u 2/3, a = α u
2.7 < 3 = 1/(1− c). The value dk is (by definition) exactly the same

value as δ , since (1−dk )
k = c = (1−δ )k . We now apply the lemma

with X = (δ1, . . . ,δk ). Given that the probability of accepting the

uniform distribution is good enough (i.e

∏k
i=1(1−δi ) = c), we want

to conclude the probability to accept ϵ-far distributions is not too

large. Following the lemma, this is given by дk (X ) =
∏k

i=1(1−αδi ).
Applying the lemma, we get

дk (X ) ≤ дk (Yk ) =
k∏
i=1

(1 − αdk ) =
k∏
i=1

(1 − αδ )

This last term is exactly the soundness the whole network had

when each player applied B in the symmetric case, which we know

to be low enough, by our choosing of α = Cp for p = 1/3.

Thus we have our soundness for the asymmetric case "for free"

when all players use the same α used in the symmetric case.

We now see that:

eln(1−p) = 1 − p =
k∏
i=1

(1 − δi ) ≤ e−
∑
δi = e

− C2m

(2n)mm2m ·(
∑
T 2m
i )

And therefore our algorithm has the cost of:

C =

√√√
2
m

√
ln(

1

1 − p
)m

√
n ·

1

| |T | |2m

where m = Θ(1/ϵ2). notice that for the symmetric case with k

players, indeed we get | |T | |2m =
√
k1/(2m) =

√
kΘ(ϵ

2)
, as before.

We now turn to prove the lemma:

Proof of Lemma 4.1. We prove the lemma by induction on the

dimension k .
For k = 1, the claim is trivial: we have a single-dimensional

vector, that is, a scalar x , which by the conditions of the lemma

satisfies x = 1 − c . We also have Y1 = d1 = 1 − c , and therefore

x = Y1 and д1(x) = д1(Y1).
Next, suppose the claim holds for all j < k , and let us prove it

for k . First, note that дk (Yk ) ≤ дk+1(Yk+1). Also, we can assume

that xi , 0 for all i ∈ [k], otherwise we can reduce the dimension

to k − 1 by eliminating the zero coordinates, and then apply the

induction hypothesis.

Consider the compact cube S = [0, 1 − c]k ⊂ Rk .
First, we look for solutions on the border of our constrained area,

that is, the intersection of the manifold fk (X ) = c and the border of
S . We note that each point on the border must have xi ∈ {0, 1 − c}
for some i , but this implies that either xi = 0 or otherwise x j = 0

for all j , i . Thus, this case is handled again by the induction

hypothesis, in a lower dimension.

Within the inner area of S , we apply the method of Lagrange

multipliers over k variables and withm = 1 constraints, where our

single constraint is fk (X ) = c . For brevity, from here and until the

end of the proof, we omit the subscript and simply use f ,д,Y ,d
instead.

We define h(X , λ) := д(X ) + λ · (f (X ) − c), and write the partial

derivatives:

∂ f

∂xi
(X ) = −Πj,i (1 − x j ) =

2/3

xi − 1

,

∂д

∂xi
(X ) = −aΠj,i (1 − ax j ) =

−a · д(X )

(1 − axi )
.

If X is a suspicious point inside of S , it must satisfy:

∀i . 0 =
∂h

∂xi
(X , λ) =

∂д

∂xi
(X ) + λ

∂ f

∂xi
(X ) =

−a · д(X )

(1 − axi )
− +

2/3λ

xi − 1

,

which implies that for all i ,

xi =
aд(X ) + 2/3λ

aд(X ) + 2/3λa
.

Since this holds for any i , and the r.h.s does not depend on i , we
get that our point must satisfy xi = x j for all i , j. In other words,

if X is a suspicious point, then X = m · (1, . . . , 1) for some m.

Plugging in the last derivative,
∂h
∂λ (X , λ) = f (x) −C = 0 (that is X

is on the manifold f (X ) = c), we get exactly that X = Y , and also

λ =
−aд(Y )(1−d )
2/3(1−ad) .
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We have now shown that Y is the only suspicious point inside

of S . To prove the lemma, we would like to show that Y is indeed

an extremal maximum inside S . By the bordered Hessian method,

a sufficient condition for this is that if we look at the sequence

of growing submatrices of the bordered Hessian of h(X , λ), the
sequence of determinants alternates signs.

We first calculate

∂2 f

∂xi∂x j
(X ) = Πk<{i, j }(1 − xk ) =

2/3

(1 − xi )(1 − x j )
,

∂2д

∂xi∂x j
(X ) = a2Πk<{i, j }(1 − axk ) =

a2д(X )

(1 − axi )(1 − ax j )
.

Therefore, we have:

(1) w B ∂2h
∂λ∂xi

(Y , λ) =
∂(f −c)
∂xi

(Y , λ) = 2/3

d−1 ,

(2) z B ∂2h
∂x j ∂xi

(Y , λ) =
∂2д

∂x j ∂xi
(Y )+λ

∂2f
∂x j ∂xi

(Y ) =
a2д(X )

(1−axi )(1−ax j )
+

λ 2/3

(xi−1)(x j−1)
,

(3)
∂2h

∂xi ∂xi
(Y , λ) =

∂2д
∂xi ∂xi

(Y ) + λ
∂2f

∂xi ∂xi
(Y ) = 0.

The bordered Hessian matrix is given by:

H (X , λ) =

(
∂2h
∂λ2 (X , λ)

∂2h
∂λ∂X (X , λ)

( ∂2h
∂λ∂X (X , λ))⊤ ∂2h

∂X 2
(X , λ)

)
So at point (Y , λ), denoting L B H (Y , λ) and using the equations

above, we have

L(i, j) =


0 i = j,

w i , j ∧ (i = 1 ∨ j = 1),

z otherwise.

Now, since we have only one constraint (m = 1), we need to look at

the upper left submatrices of each size starting from 2m+1 = 3, and

up to k +m = k + 1, and make sure the signs of their determinants

are alternating. We note that each such submatrix preserves the

structure of L itself. We now calculate the determinant for general

matrix of that form and of size t × t , which we will denote in Lt .
We know that the determinant can be viewed as a sum over all

permutation of the parity of the said permutation, times the product

of values in entries (i,σ (i). Formally we can write:

Det(Lt ) B
∑
σ ∈St

(−1)sgn(σ )Πt
i=1(Lt (i,σ (i))).

We notice a few facts that help us understand this expression:

(i) For any σ ∈ St that has a fixpoint, we get a summand of

0, which we can disregard. Therefore we only sum over the

derangements Dt (i.e., permutations with no fixpoint).

(ii) For any σ ∈ Dt , we must have σ (1) , 1, as well as σ (j) = 1 for

some j , 1. So all pairs (i,σ (i)) are (1, i0, (i1, 1) for i1, i0 , 1,

and all the rest are (i, j) with i , 1, j , 1. Together with the

form we have for Lt , we get that
∏t

i=1(Lt (i,σ (i))) = w
2zt−2,

for any σ ∈ Dt .

(iii) Letting E(Dt ) and O(Dt ) denote the number of even and odd

derangements of size t , respectively, it is known [20] that

E(Dt ) −O(Dt ) = (−1)t−1(t − 1).

Using these facts, we have:

Det(Lt ) =
∑
σ ∈Dt

(−1)sgn(σ )
t∏
i=1

(Lt (i,σ (i)))

= w2zt−2
∑
σ ∈Dt

(−1)sgn(σ ) = w2zt−2(−1)t−1(t − 1).

Sincew, z, t − 1 > 0, our sign only depends on the exponent of (−1),

so we have sgn(Det(Lt )) = (−1)t−1.

Starting at L3, we get a positive determinant, and the signs of

Det(L4), . . . ,Det(Lk+m ) alternate . According to the bordered Hes-

sian condition, we get thatY is indeed an extremal maximum inside

of S , proving the claim. �

4.2 The Threshold Model
In this model our solution let each player run Aδi . Following the

same analysis and Chernoff bounds we had before, we need only

to replace k · δ by

∑
i δi , and following the same calculations, we

will now need: ∑
i
δi = Θ(1/ϵ4)

In that model, each δi required that we take si =
√
2δin samples, and

again setting C = si/Ti for all players, we now get that δi =
C2T 2

i
2n ,

and we can write:

Θ(1/ϵ4) =
∑
i
δi =

S2

2n
·
∑
i
T 2

i

And therefore:

S = Θ(

√
n

ϵ2
) ·

1

| |T | |2

5 IMPLEMENTATION IN CONGEST
We now show how to solve uniformity testing in the CONGEST
model. We assume for simplicity that each node has a single sample;

generalizing to more samples is straightforward.

Our goal is to “concentrate” samples at a small number of nodes,

who will then use our 0-round uniformity tester with the samples

they collected. For this purpose, we define the τ -token-packaging
problem.

Definition 2 (Token packaging). Let τ ∈ N. In the τ -token pack-

aging problem, each node v ∈ V is initially given a single token

tv ∈ [n]. The goal is for the nodes to collectively output a set of mul-

tisets (“packages”) of tokens, S1, . . . , Sℓ ⊆ {tv | v ∈ V }, with each

node outputting zero or more packages. (The number ℓ of packages is

not fixed in advance.)

We require the following:

(1) Each package is of size exactly τ .
(2) Each token tv is included in at most one package (that is, we

require | {i | tv ∈ Si } | ≤ 1).

(3) All but at most τ − 1 tokens are included in some package (that

is, |{v | tv <
⋃
i ∈[ℓ] Si }| ≤ τ − 1).

Note that even though we did not impose an explicit requirement

on the number of packages, the problem definition implies that at

most ⌊k/τ ⌋ packages are produced, because we start out with n
tokens and each token can belong to at most one package.
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We also mention that even though the round complexity has the

diameter D in it, the players does not need to know the value of D
in advance in order to run the algorithm.

Theorem 5.1. For any τ ≥ 1, the τ -token packaging problem can

be solved in O(D + τ ) rounds in CONGEST.

We show how to solve τ -token packaging below, but first let us

explain how we use it:

Proof of Theorem 1.4. We start out with k samples, one at

each node. Fix a parameter τ for the package size. We package

our k tokens into ℓ = Θ(k/τ ) packages, and use the threshold-

based tester from Theorem 1.2 with ℓ nodes and τ samples at each

node, treating each package as a “virtual node”. (If node v outputs

p(v) packages, then we have node v simulate p(v) “virtual nodes”.)
To use the threshold-based tester, the number of samples at

each “virtual node” must satisfy τ = Ω(
√
n/ℓ/ϵ2). Recalling that

ℓ = Θ(k/τ ), we see that we should set τ = Θ(n/(kϵ4)). Thus, the
running time is O(D + n/(kϵ4)) rounds: O(D + τ ) rounds to solve

τ -token packaging, and an additional D rounds to compute the

threshold, by summing up the tree the number of virtual nodes that

want to reject. Finally, the root rejects iff the number of rejecting

nodes crosses the threshold, and the other nodes always accept. �

Solving token-packaging. The algorithm for token-packaging

works as follows: first, the network identifies the vertex r ∈ V with

the largest identifier, and then constructs a BFS treeT rooted at node

r . We will forward tokens up the tree: each tree nodev that receives

a total ofm(v) tokens from its subtree will keep p(v) B ⌊m(v)/τ ⌋
full packages to itself (i.e., p(v) · τ tokens), and send the rest of the

tokens, c(v) Bm(v) mod τ , up the tree.

We begin by having each node v compute the number c(v) of
tokens it needs to sent upwards. The computation proceeds up the

tree, as follows:

• If v is a leaf, then c(v) = 1.

• If v is not a leaf, and the children of v are u1, . . . ,ud , then

c(v) =

(
1 +

d∑
i=1

c(ui )

)
mod τ .

Next, for τ rounds, the nodes propagate tokens up the tree, with

each node v passing the first c(v) tokens it receives up to its parent,

and keeping the rest for itself. Note that c(v) < τ for allv ∈ V . After

τ rounds, the root r discards c(r ) tokens it received. Each node now

has an integer multiple of τ tokens, which it packages and outputs.

Correctness of the algorithm. Recall that each tree node first for-

wards all c(v) tokens it will ever forward up the tree, and then keeps
the remaining tokens for itself. Intuitively, we show that tokens

“pipeline” up the tree, so that every node has some new token to

send in each round from the beginning of the algorithm until it has

sent c(v) tokens. Since c(v) < τ , this means that after τ rounds, all

nodes are done sending up the tree, and all tokens have reached

their final destinations.

Let h(v) denote the height of node v in the BFS tree (that is, the

depth of its subtree, with leaves having depth one), let children(v)
be the children of v .

We show that σ rounds are enough for each node v to receive

and send up the c(v) < σ tokens it needs to forward up the tree,

and thereby establish the correctness of our algorithm. Formally,

we argue by induction on the height h(v) that:

Invariant 1. At any time t ≤ c(v),

(1) If ℓv (t) B |sentv (t)| is the number of tokens v sent up to its

parent by time t , then we have ℓv (t) = t ; and
(2) If t < c(v), then at time t node v has tokensv (t) , ∅.

(Recall that for the root, we interpret ℓv (t) as the number of tokens

it discarded.)

This shows that at time t = σ , each node v has already sent on

(or discarded, in the case of the root) c(v) tokens, because c(v) < σ .
An easy induction up the tree shows that after the algorithm

concludes, each node has an integer multiple of τ tokens, which it

packages and outputs. Tokens are only ever discarded at the root,

and the root r discards c(r ) < τ tokens; therefore, all but at most

τ − 1 tokens are packaged. Thus, our algorithm solves τ -token
packaging.

6 IMPLEMENTATION IN LOCAL
We assume again that each node initially has one sample. (This is

not essential.)

As in the CONGEST tester, we want to concentrate samples at a

small number of nodes, and then use the 0-round uniformity tester.

Because we do not care about congestion, in the LOCAL model

with O(r ) rounds, any node can send its sample to any node at

distance O(r ).
Let N t (v) denote the t-neighborhood of v ∈ V . Our strategy is

to first use Luby’s MIS algorithm to find a maximal independent set

on the graph Gr
(where for any u,v ∈ V , we have {u,v} ∈ E(Gr )

iff the distance between u,v in G is at most r ). Let S be the MIS we

compute. Each non-MIS node u ∈ V \ S must have some MIS node

in its r -neighborhood; node u selects some MIS nodev ∈ S ∩N r (u),
and routes its sample tov , by asking the nodes in its r -neighborhood
to forward the sample to v .

How many samples does each MIS node collect? For each v ∈ S ,
we know that there is no other MIS node in the r/2-neighborhood
ofv , otherwise S would not be an independent set ofGr

. Therefore,

all samples in N r/2(v) are routed to v . There are at least r/2 such

samples: because the graph is connected, we have |N r/2(v)| ≥ r/2.
This also implies that |S | ≤ ⌊2k/r⌋.

Now we call the 0-round tester from Theorem 1.1, with ⌊2k/r⌋
“virtual nodes” (the MIS nodes), each having r/2 samples. If we

take r = Θ

(
(Cp/ϵ

2) ·

√
n/kΘ(ϵ

2/Cp )
)
1/(1−Θ(ϵ 2/Cp ))

, then by Theo-

rem 1.1, we achieve success probability 1 − p.

7 LOWER BOUND FOR ANONYMOUS
0-ROUND UNIFORMITY TESTING

In this section we show that any anonymous 0-round distributed

uniformity tester requires at least Θ(
√
n/k) samples at some net-

work node in order to succeed with probability 2/3. An anonymous

tester is one where all network nodes execute the same randomized

algorithm. Note, however, that the nodes can make random choices,

and in particular, they can choose a random identifier from any

domain they desire. Technically, the anonymity requirement can be
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weakened further: what we need is that for any distribution µ that

is ϵ-far from uniform, all network nodes have the same probability

of rejecting µ.

Remark. The lower bound technique we use here cannot recover

the dependence on the distance parameter ϵ , which we believe

is Ω(1/ϵ2), in keeping with the centralized case. Throughout this

section we mostly treat ϵ as a constant.

For the lower bound, we start by showing that in order for a

single node to solve uniformity testing with (1 − τδ ,δ )-error, it

must draw Ω(
√
δn) samples. This lower bound is shown using the

reduction from the 2-party Equality function given in [5]:

Theorem 7.1 ([5]). Suppose we have a q-sample ϵ-uniformity tester,

for a sufficiently small constant ϵ , with error (δ0,δ1). Then we must

have SMPδ0,δ1 (Eq) ≤ q · logn.

Since we are interested in testers with asymmetric error, we

study Eq in the asymmetric-error regime.

7.1 Lower Bound for Equality with
Asymmetric Error

In this section we outline a lower bound on the simultaneous com-

munication complexity of the Equality function: Eq(X ,Y ) = 1 iff

X = Y . Specifically, we are interested in the case where if X = Y ,
the protocol is almost always right: it outputs 1 w.p. at least 1 − δ .
But if X , Y , we allow the protocol to almost always be wrong, and

we only require that it outputs 0 w.p. τ · δ , for some constant τ > 1.

Note that this means the gap between the acceptance probability

for YES-instances and for NO-instances is tiny, only Θ(δ ). Still, we
can show the following lower bound: let f (τ ) B τ − 1 − log(τ ).

Theorem 7.2. Let τ > 1 and δ < min {1/τ , 1/4}. For any τ ′ > τ

we have SMP(1−τ ′δ ),δ (Eq) = Ω(
√
f (τ )δn).

We adapt the information-theoretic lower bound for Eq with

constant error from [6] (fixing a mistake in [6] along the way). We

give only a high-level overview of the proof here.

Proof sketch for Theorem 7.2. Fix a simultaneous private-coin

protocol Π for equality, and let MA,MB be the messages sent by

Alice and Bob, respectively. (These are random variables, because

the protocol is randomized.) Let π (η) be the joint distribution of the

players’ messages, when their inputs are drawn from the distribu-

tion η. For a distribution µ on {0, 1}n , let µ= denote the distribution
on inputs (X ,Y ) where X ∼ µ and X = Y . And finally, let µ× be

the distribution where X ,Y are drawn independently from µ.
We would like to find a “hard distribution” µ on {0, 1}n , such

that: (1) when we draw the players’ inputs independently, we have

Prµ× [X = Y ] = o(1); but, (2) the distribution π (µ=) of messages the

referee sees when (X ,Y ) ∼ µ= is very similar to the distribution

π (µ×) of messages it gets when (X ,Y ) ∼ µ×. Together, (1) and (2)

mean the protocol has high error: the referee cannot distinguish

the distribution µ=, where the inputs are always equal, from the

distribution µ×, where they are almost never equal.

For a starting point, we examine the protocol’s behavior on the

uniform distributionU on {0, 1}n . This distribution certainly satis-

fies (1), as PrU×
[X = Y ] = 2

−n
. However, it does not necessarily

satisfy (2). For example, if Alice and Bob each send the referee the

parity of their input, then π (µ=) looks very different from π (µ×).
Thus, we modify the distribution, by fixing those parts of the input

that “the players talk about” to some constant value. In our exam-

ple, we would fix the parity of the input to, say, 0, and set our new

distribution to be uniform subject to a parity of 0. After this fixing,

the referee can no longer distinguish π (µ=) from π (µ×), as in both

cases it gets the bit ’0’ from each player.

Technically, we proceed as follows. We consider an “average”

set of messages B1, . . . ,Bm from Bob, and show that if we take

m = Θ(|MA |/(f (τ )δ )) messages and condition the input on these

messages, then with good probability we “neutralize” all but at most

f (τ ) · δ of the difference, measured in KL-divergence [9] between

π (µ=) and π (µ×). Intuitively, after this many messages, we have

probably already seen “everything Bob wants to say” that might

significantly tie his input with Alice’s messageMA.

We also show that since the referee accepts w.p. ≥ 1 − δ on

getting messages from π (µ=), but accepts w.p. ≤ 1 − τδ on seeing

π (µ×), these two distributions need to be “different”: they must

have KL-divergence at least f (τ ) · δ (see Lemma 2.1). Thus, we can

fix a set ofm messages from Bob and condition the input on them,

such that the referee can no longer distinguish π (µ=) from π (µ×)
with a gap of Θ(τδ ).

So far we glossed over an important point: if we are too aggres-

sive in fixing parts of the input, then we might violate our first

requirement, that Prµ× [X = Y ] be very small. (For example, if we

fix the entire input to 0
n
, then of course we satisfy requirement (2),

but at the cost of always having X = Y .) We must show that there

is a set B1, . . . ,Bm of messages from Bob that both “neutralizes”

the dependence with Alice and has low probability that X = Y . To
do this, we show that for “typical” messages B1, . . . ,Bm , when we

condition on these messages, the resulting distribution only loses

O(m · |MB |) bits of collision-entropy. The collision-entropy of a dis-

tribution η is defined as H2(η) = − log Pr(A,B)∼η× [A = B], so high

collision-entropy implies low probability of collision.
1
Recall that

we started from the uniform distribution, which has H2(U) = n,
so if we make sure that m · |MB | ≪ n, we guarantee that the

requirement (2) holds.

Combining our constraints we see that we requirem ≥ |MA | ·

f (τ )δ to make sure that the dependence between the players’ inputs

is sufficiently reduced, but we also needm · |MB | ≪ n to guarantee

small collision probability. If |MA | · |MB | = o(f (τ )δn), then indeed

there exists such anm, and we can construct our hard distribution

which fools the protocol. Therefore, by contradiction, we must have

max {|MA |, |MB |} = Ω(
√
f (τ )δn). �

At this point we have proven the lower bound for simultaneous

Equality with a gap of Θ(δ ). Since we see this problem as having

independent interest, we show that the bound is tight:

Lemma7.3. Fix a constantτ > 1. Then SMP(1−τ δ ),δ (Eq) = O(
√
δn).

It is known that SMP
1/3,1/3(Eq) = O(

√
n) [2], so this claimwould

be trivial if we were interested in expected communication; but here

we want small worst-case communication.

1
The mistake in [6] is that they used Shannon entropy to make this argument, but

high Shannon entropy does not imply low collision probability. We changed this part

of the proof.
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Proof of Lemma 7.3. We modify the protocol from [2].

Letm be an integer such that 3n ≤ m ≤ 4n and alsom = (6m0)
2

for somem0 ∈ N. (For sufficiently large n, there exists suchm.)

The protocol uses the Justesen error-correcting code: a mapping

C : {0, 1}m/3 → {0, 1}m , such that whenever X , Y , we have

∆(C(X ),C(Y )) ≥ m/6 (that is, C(X ) and C(Y ) differ in at leastm/6

places). Sincem = (6m0)
2
, we can view each codeword as a table

of size (6m0) × (6m0). We denote by C(X )i, j entry (i, j) of the table
(that is, location 6m0 · i + j of C(X )). For convenience, we view the

table as a torus, so that once we reach the last row or column we

wrap-around back to the first row or column.

Now, let t B
⌈√

24τδn
⌉
. Alice and Bob receive inputs X ,Y , and

both compute C(X ),C(Y ) ∈ {0, 1}m . Alice picks a random entry

(a1,a2) ∈ [6m0]
2
of the matrix, and sends (a1,a2), together with a

vertical “chunk” of t bits of her encoded input starting at (a1,a2):
she sends

C(X )a1,a2 ,C(X )a1+1 mod (6m0),a2 , . . . ,C(X )a1+t−1 mod (6m0),a2 .

Similarly, Bob picks a random entry (b1,b2) ∈ [6m0]
2
of the matrix,

and sends (b1,b2), together with a horizontal “chunk” of t bits: bits
C(X )b1,b2 ,C(X )b1+1 mod (6m0),b2 , . . . ,C(X )b1+t−1 mod (6m0),b2 .

The referee checks whether there is a location (i, j) sent by both

players. If so, he compares this location, and accepts iff C(X )i, j =

C(Y )i, j ; otherwise he simply accepts. this protocol accepts “yes”

instances with probability 1 − δ , and rejects “no” instances with

probability τδ . �

7.2 Small-Gap Uniformity Testing
We now return to our original question: uniformity testing with

asymmetric error. Using the reduction from [5] (Theorem 7.1), our

Equality lower bound implies:

Corollary 7.4. For a sufficiently large constant ϵ ∈ (0, 1/2), and for

any δ < 1,α > 1, the query complexity of a (δ ,α)-gap ϵ-uniformity

tester is Ω
(√

f (α)δn/log(n)
)
.

Using a constant α , we can now prove our lower bound for

distributed 0-round uniformity testing:

Proof of Theorem 7.2. Fix an anonymous distributed unifor-

mity tester A with sample complexity s per node, which achieves

error probability at most 1/3. Let us find lower bounds on δ and α ,
such that each network node must be a (δ ,α)-gap tester.

When the distribution is uniform, the probability that the net-

work accepts must satisfy (1 − δ )k ≥ 2/3, so we must have δ ≤

1 − (2/3)1/k ≤ ln (2/3) 1

k . On the other hand, when the distribu-

tion is ϵ-far from uniform, the probability that the network rejects

should be (1 − αδ )k ≤ 1/3, and so αδ ≥ 1−(1/3)1/k ≥ ln(
√
3)(1/k).

We see that we must have α ≥ (ln(
√
3)(1/k))/δ > 5/4. We now

plug in these parameters into Corollary 7.4, and see that each node

must draw Ω(
√
n/k) samples. �
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