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ABSTRACT
In this paper we initiate the study of property testing in multi-party

communication complexity, focusing on testing triangle-freeness

in graphs. We consider the coordinator model, where we have k
players receiving private inputs, and a coordinator who receives

no input; the coordinator can communicate with all the players,

but the players cannot communicate with each other. In this model,

we ask: if an input graph is divided between the players, with each

player receiving some of the edges, how many bits do the players

and the coordinator need to exchange to determine if the graph is

triangle-free, or far from triangle-free? We are especially interested

in simultaneous communication protocols, where there is only one

communication round.

For general communication protocols, we show that Õ(k(nd)1/4+
k2) bits are sufficient to test triangle-freeness in graphs of size n
with average degree d . We also give a simultaneous protocol using

Õ(k
√
n) bits whend = O(

√
n) and Õ(k(nd)1/3)whend = Ω(

√
n). We

show that for average degree d = O(1), our simultaneous protocol

is asymptotically optimal up to logarithmic factors. For higher

degrees, we are not able to give lower bounds on testing triangle-

freeness, but we give evidence that the problem is hard by showing

that finding an edge that participates in a triangle is hard, even

when promised that the graph is far from triangle-free.

1 INTRODUCTION
The field of property testing asks the following question: for a given

property P , how hard is it to test whether an input satisfies P , or
is ϵ-far from P , in the sense that an ϵ-fraction of its representation

would need to be changed to obtain an object satisfying P? Property-
testing has received extensive attention, including graph properties

such as connectivity and bipartiteness [20], properties of Boolean

functions (monotonicity, linearity, etc.), properties of distributions,

and many others [15, 19, 32]. The usual model in which property-

testing is studied is the query model, in which the tester cannot

“see” the entire input, and accesses it by asking local queries, that is

by only viewing a single entry in the object representation at a time.

For example, for graphs represented by their adjacency matrix, the
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tester might ask whether a given edge is in the graph, or what

is the degree of some vertex. The efficiency of a property tester

is measured by the number of queries it needs to make. One can

also distinguish between oblivious testers, which decide in advance

on the set of queries, and adaptive testers, which decide on the

next query after observing the answers to the previous queries.

It is known that for many graph properties, one-sided oblivious

testers are nomore than quadraticallymore expensive than adaptive

testers [22].

In this paper we study property testing from a different per-

spective, that of communication complexity. We focus on property

testing for graphs, and we assume that the input graph is divided

between several players, who must communicate in order to de-

termine whether it satisfies the property or is far from satisfying

it. Each player can operate on its own part of the input “for free”,

without needing to make queries; we charge only for the number of

bits that the players exchange between them. This is on one hand

easier than the query model, because players are not restricted to

making local queries, and on the other hand harder, because the

query model is centralized while here we are in a distributed setting.

This leads us to questions such as: does the fact that players are

not restricted to local queries make the problem easier, or even

trivial? Which useful “building blocks” from the world of property

testing can be implemented efficiently by multi-party protocols?

Does interaction between the players help, or can we adopt the

“oblivious approach” represented by simultaneous communication

protocols?

Beyond the intrinsic interest of these questions, our work is

motivated by two recent lines of research. First, [9, 18], study

property testing in the CONGEST model, and show that many

graph property-testing problems can be solved efficiently in the

distributed setting. As pointed out in [18], existing techniques for

proving lower bounds in the CONGEST model seem ill-suited to

proving lower bounds for property testing. It seems that such lower

bounds will require some advances on the communication com-

plexity side, and in this paper we make initial steps in this direction.

Second, recent work has shown that many exact problems are hard

in the setting of multi-party communication complexity: Woodruff

et al. [35] proved that for several natural graph properties, such

as triangle-freeness, bipartiteness and connectivity, determining

whether a graph satisfies the property essentially requires each

player to send its entire input. We therefore ask whether weaken-

ing our requirements by turning to property testing can help.

In this paper we focus mostly on the specific graph property of

triangle-freeness, an important propertywhich has received awealth

of attention in the property testing literature. It is known that in

dense graphs (average degree Θ(n)) there is an oblivious tester for
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triangle-freeness which is asymptotically optimal in terms of the

size of the graph (i.e., adaptivity does not help)[2, 17], and [3] also

gives an oblivious tester for graphs with average degree Ω(
√
n). The

closest parallel to oblivious testers in the world of communication

complexity is simultaneous communication protocols, where the

players each send a single message to a referee, and the referee

then outputs the answer.We devote special attention to the question

of the simultaneous communication-complexity of testing triangle-

freeness.

1.1 Our contributions
Our results are summarized in Table 1 below.

d = Θ(1) d = O (
√
n) d = Ω(

√
n)

Unrestricted Õ (k 4
√
nd + k2)

Simultaneous Õ (k
√
n), Ω(k 6

√
nd + 3

√
nd ) Õ (k 3

√
nd )

“Extended one-way” Ω(
6
√
nd ) —

Table 1: Summary of our results for the various models of
communication complexity and settings of the average de-
gree d .

Basic building-blocks. We show that many useful building-blocks

from the property testing world can be implemented efficiently in

the multi-player setting, allowing us to use existing property testers

in our setting as well. For some primitives — e.g., sampling a random

set of vertices — this is immediate. However, in some cases it is less

obvious, especially when edge duplication is allowed (so that several
players can receive the same edge from the input graph). We show

that even with edge duplication the players can efficiently simulate

a random walk, estimate the degree of a node, and implement other

building blocks. For lack of space, this part of the paper is relegated

to the appendix.

Upper bounds on testing triangle-freeness. For unrestricted com-

munication protocols, we show that Õ(k
4
√
nd+k2) bits are sufficient

to test triangle-freeness, where n is the size of the graph, d is its av-

erage degree (which is not known in advance), and k is the number

of players. When interaction is not allowed (simultaneous proto-

cols), we give a protocol that uses Õ(k
√
n) bits when d = O(

√
n),

and another protocol using Õ(k
3
√
nd) bits for the case d = Ω(

√
n).

We also combine these protocols into a single degree-oblivious pro-
tocol, which does not need to know the average degree in advance.

(This is not as simple as might sound, since we are working with

simultaneous protocols, where we cannot first estimate the degree

and then use the appropriate protocol for it.)

Lower bounds. Our lower bounds are mostly restricted to simulta-

neous protocols, although we first prove lower bounds for one-way

protocols for two or three players, and then then “lift” the results to

simultaneous protocols for k ≥ 3 players using the symmetrization

technique [30].

We show that for average degree d = O(1), Ω(k
√
n) bits are re-

quired to simultaneously test triangle-freeness, matching our upper

bound. For higher degrees, we are not able to give a lower bound

on testing triangle-freeness, but we give evidence that the problem

is hard: we show that it is hard to find an edge that participates

in a triangle, even in graphs that are ϵ-far from triangle free (for

constant ϵ), and where every edge participates in a triangle with

(small) constant marginal probability.

2 RELATEDWORK
Property testing is an important notion in many areas of theoretical

computer science; see the surveys [15, 19, 32] for more background.

Triangle-freeness, the problem we consider in this paper, is one

of the most extensively studied properties in the world of prop-

erty testing; many different graph densities and restrictions have

been investigated (e.g., [1, 2, 4, 21]). Of particular relevance to

us is triangle-freeness in the general model of property testing,

where the average degree of the graph is known in advance, but no

other restrictions are imposed. For this model, [3] showed an upper

bound of Õ(min{
√
nd,n

4

3 /d
2

3 }) on testing triangle-freeness, and a

lower bound of Ω(max{
√
n/d,min{d,n/d},min{

√
d,n2/3}n−o(1)}),

both for graphs with a average degree d ranging from Ω(1) up to

n1−o(1)
. For specific ranges of d , [31] and [23] improved these upper

and lower bounds, by showing aO(max{(nd)4/9,n2/3/d1/3}) upper

bound and a Ω(min{(nd)1/3,n/d),n/d}) lower bound.
Our simultaneous protocols use ideas, and in one case an entire

tester, from [3], but implementing them in our model presents

different challenges and opportunities. (Our unrestricted-round

protocol does not bear much similarity to existing testers.) As for

lower bounds, we cannot use the techniques from [3] or other

property-testing lower bounds, because they rely on the fact that

the tester only has query access to the graph. For example, [3]

uses the fact that a triangle-freeness tester with one-sided error

must find a triangle before it can announce that the graph is far

from triangle-free ([3] also gives a reduction lifting their results to

two-sided error). In the communication complexity setting this is

no longer true; there is no obvious reason why the players need to

find a triangle in order to learn that the graph is not triangle-free.

Property testing in other contexts. Recently, property testing ex-

plored in distributed computing [6, 9, 18]. Among their other re-

sults, Censor-Hillel et al. [9] showed that triangle-freeness can be

tested inO( 1

ϵ 2
) rounds in the CONGEST model; expanding this,[18]

showed that testingH -freeness for any 4 node graphH can be done

inO( 1

ϵ 2
) rounds, and showed that their BFS and DFS approach fails

for K5 and C5-freeness, respectively; [18] does not give a general

lower bound. There has also been work on property testing in the

streaming model [24]. The related problem of computing the ex-

act or approximate number of triangles has also been studied in

many contexts, including distributed computing [10, 12, 13, 27],

sublinear-time algorithms (see [14] and the references therein), and

streaming (e.g., [25]). Specifically, [25] shows a lower bound on

the space complexity of approximating the number of triangles in

the streaming model; we apply their reduction here to show the

hardness of testing triangle-freeness, by reducing from a different

variant of the problem they use.

Communication complexity. Multi-party number-in-hand com-

munication complexity has received significant attention recently.

In [35] it is shown that several graph problems, including exact

triangle-detection, are hard in this model. Many other exact and

approximation problems have also been studied, including [5, 7, 8,
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28, 34, 36] and others. Unfortunately, it seems that canonical lower

bounds and techniques in communication complexity cannot be

leveraged to obtain property-testing lower bounds.

3 PRELIMINARIES
Multi-player number-in-hand communication models. In number-

in-hand multi-party communication protocols, we have k player-

swith private inputs X1, . . . ,Xk . The players communicate with

each other to accomplish some shared goal.

There are three popular models for how the players communi-

cate: the blackboard model, where communication is by broadcast,

and a message by any player is seen by everyone; the message-
passing model, where every two players have a private commu-

nication channel and each message has a specific recipient; and

the coordinator model, where we have a special player called the

coordinator, and players can communicate back-and-forth with the

coordinator but not directly with each other. More formally, a proto-

col for the coordinator model is divided into communication rounds:

in each such round, the coordinator sends a message of arbitrary

size to one of the players, who then responds back with a message.

Eventually the coordinator outputs the answer.

The communication complexity of a protocolΠ, denotedCC(Π), is
the maximum over inputs of the expected number of bits exchanged

between the players and the coordinator in the protocol’s run.

For a problem P , we let CCk,δ (P) denote the best communication

complexity of any protocol that solves P with worst-case error

probability δ on any input.

In terms of communication complexity, the coordinator model

is roughly equivalent to the message-passing model: any protocol

for one model can be simulated in the other with a multiplicative

overhead of O(logk) in the total communication cost.

For convenience, we assume that the players and the coordinator

have access to shared randomness instead of private randomness;

our protocols use shared randomness to simplify tasks like sampling

a uniformly random vertex from the graph. For protocols that use

more than one round, it is possible to get rid of this assumption and

use private randomness instead, via Newman’s Theorem [29], ex-

tended to multiple players. This costs at most additional O(k logn)
bits.

Simultaneous communication. Of particular interest to us in this

work are simultaneous protocols, which are, in a sense, the analog

of oblivious property testers. This is the second primary model

we investigate in addition to unrestricted communication. In a

simultaneous protocol, there is only one communication round,

where each player, after seeing its input, sends a single message
to the coordinator (usually called the referee in this context). The

coordinator then outputs the answer. Any oblivious graph property

tester which uses only edge queries (which test whether a given

edge is in the graph or not) can be implemented by a simultaneous

protocol, but the converse is not necessarily true.

Communication complexity of property testing in graphs. we are
given a graph G = (V ,E) on n vertices, which is divided between

the k players, with each player j receiving some subset Ej ⊆ E of

edges. More concretely, each player, j, receives the characteristic
vector of Ej , where each entry corresponds to a single edge, such

that if the bit is 1 then that edge exists in E, and if the bit is 0 it

is unknown to the player whether it exists or not, as this entry

might be 1 in the input of a different player. The logical OR of all

inputs results in the characteristic vector of the graph edges, E.
Note that there is no guarantee for any vertex for a single player

to have all its adjacent edges in its input, as is the case in models

like CONGEST. To make our results as broad as possible we follow

the general model of property testing in graphs (see, e.g., [3]): we

do not assume that the graph is regular or that there is an upper

bound on the degree of individual nodes. As in [35], edges may be

duplicated, that is, the sets E1, . . . ,Ek are not necessarily disjoint.

The goal of a property tester for property P is to distinguish

the case where G satisfies P from the case where G is ϵ-far from
satisfying P , that is, at least ϵ |E | edges would need to be added

or removed from G to obtain a graph satisfying P . An important

parameter in our algorithms is the average degree, d , of the graph
(also referred to as density); for our upper bounds, we do not assume

thatd is known, but our lower bounds can assume that it is known to

the protocol up to a tight multiplicative factor of (1±o(1)). Moreover,

as in [3], we focus on d = Ω(1) and d ≤ n1−ν (n)
, where ν (n) = o(1),

since for graphs of average degree d = Θ(n) there is a known

solution whose complexity is independent on n in the property-

testing query model and consequently in our model as well. The

case of d = o(1), although not principally different, is ignored for

simplicity, as its extreme sparsity makes it of less interest than any

degree which is Ω(1).

Graph definitions and notation. We let deg(v) denote the degree
of a vertex v in the input graph, and for a player j ∈ [k], we denote
by d j (v) the degree of v in player j’s input (the subgraph (V ,Ej )).
We also let degS (v) denote the degree of vertex v with respect to a

subset S ⊆ E of the graph edges.

We say that a pair of edges {{u,v} , {v,w}} ⊆ E is a triangle-vee
if {u,w} ∈ E, and in this case we callv the source of the triangle-vee.
We say that an edge e ∈ E is a triangle edge if it participates in some

triangle in the graph.

4 UPPER BOUNDS
4.1 Unrestricted Communication
The first protocol we present requires interaction between the

players, and exploits the following advantage we have over the

query model: suppose that the players have managed to find a set

S ⊆ E of edges that contains a “triangle-vee” — a pair of edges

{u,v} , {v,w} ∈ S such that {u,w} ∈ E (but {u,w} is not necessar-
ily in S). Then even if S is very large, the players can easily conclude
that the graph contains a triangle: each player examines its own

input and checks if it has an edge that closes a triangle together

with some vee in S , and in the next round informs the other play-

ers. Thus, in our model, finding a triangle boils down to finding

a triangle-vee. (In contrast, in the query model we would need to

query {u,w} for every 2-path {u,v} , {v,w} ∈ S , and this could be

expensive if S is large.) Notice that if G is ϵ-far from triangle-free,

then it must contain at least (ϵnd/3) pairwise disjoint triangles, each
contributing three unique triangle-vees, hence the graph contains

at least ϵnd different triangle-vees.
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Let us say that a vertex v is full if it is the source of at least

Ω(ϵ deg(v)/logn) different triangle-vees. (Throughout this section,
asymptotic notation is used for clarity, see full paper for concrete

constants. [16]) If we can find a full vertex v , then we can use it to

find a triangle-vee:

Lemma 4.1. If v is a full vertex, then sampling each of its edges
with probability pd (v) = Θ(

√
logn/d(v)) will reveal a triangle-vee

with constant probability.

(This follows from the birthday paradox.) Note that deg(v) may

be significantly higher than the average degree d in the graph,

so we cannot necessarily afford to sample each of v’s edges with
probability pd (v); we need to find a low-degree vertex which is full.

However, because there cannot be many nodes with “very high

degree” (Ω(
√
nd)), this is not a major concern.

How can the players find a full vertex? A uniformly random

vertex is not always likely to be full — there might be a small

dense subgraph of relatively high-degree nodes which contains

all the triangles. In order to target such dense subgraphs, we use

bucketing: we partition the vertices into buckets, with each bucket

Bi containing the vertices with degrees in the range [2i , 2i+1)1. By

a pigeonhole argument, there is some bucket Bi whose nodes are
the sources of at least ϵnd/logn different triangle-vees. The size of

Bi cannot exceed nd/2
i
, as each node in Bi contributes at least 2

i

edges, and the graph contains a total of nd edges. Therefore, the

average vertex in Bi is the source of Ω(ϵ2
i/logn) different triangle-

vees, and since the degree in Bi is bounded by 2
i+1

, this means

the average vertex in Bi is full. So if we sample a uniform vertex

v ∈ Bi , and sample sufficiently many neighbors of v , according to
Lemma 4.1 we stand a good chance of uncovering a triangle-vee,

and the protocol will then identify a triangle in the next round. Of

course, we cannot know in advance which bucket is full; we must

try all the buckets.

It remains to describe, given Bi is a full bucket, how we can

sample a random vertex from it, that is, a random vertex with

degree in the range [2i , 2i+1). We cannot do that, precisely, but we

can come close. Because the edges are divided between the players,

no single player initially knows the degree of any given vertex.

However, by the pigeonhole principle, for each vertex v there is

some player that has at least deg(v)/k of v’s edges, and of course

no player has more than deg(v) edges for v .

Let B̃
j
i B

{
v ∈ V | 2i/k ≤ d j (v) ≤ 2

i+1
}
be the set of vertices

that player j can “reasonably suspect” belong to bucket i , where d j

denotes the degree of vertex v in the input of player j , and let B̃i B⋃
j B̃j . By the argument above, Bi ⊆ B̃i . Also, B̃i ⊆

⋃i+logk
i′=i−logk Bi

′ ,

since the total degree of any vertex selected cannot exceed k · 2i+1

or be smaller than 2
i/k . Therefore, sampling uniformly from B̃i

is a good proxy for sampling from Bi , although we may also hit

adjacent buckets. Nevertheless, since those adjacent buckets are

roughly comparable to Bi in size (up to a factor of k), a uniformly

random sample will yield a vertex from Bi with probability at least

Ω̃(1/k), and Θ̃(k) samples yield a vertex from Bi w.h.p.
To implement the sampling procedure we need two components:

first, we need to be able to sample uniformly from B̃i . The difficulty

1
We use in the appendix [3i , 3

i+1) for technical reasons, although both are correct

here is that each vertex v ∈ B̃i can be known to a different number

of players — possibly only one player j has v ∈ B̃
j
i , possibly all

players do. If we try a naive approach, such as having each player j

post a random sample from B̃
j
i , then our sample will be biased in

favor of vertices that belong to B̃
j
i for many players j . Our solution is

to impose a random order on the nodes in B̃i by publicly sampling a

permutation π onV (this is done by interpreting the shared random

bits as a random permutation), and we then choose the smallest
node in B̃i with respect to π . This yields a uniformly random sample,

unbiased by the number of players that know of a given node. We

call this procedure TrySampleFromBucket(i) (the code appears in
full paper [16] ).

The second component verifies that a sampled node indeed be-

longs to Bi . We approximate the degree of the sampled node to

within a constant, and discard vertices whose degree does not match

bucket Bi (we might falsely keep vertices from its two adjacent

buckets, but this increases the sampled set by at most a small con-

stant). We call this procedure ApproxDegree(v).
The protocol for player j is sketched in Algorithm 1. Here N =

Θ̃(k) is the number of samples from B̃i required to produce a sample

from Bi with good probability. After the procedure described in

Algorithm 1, the coordinator sends all the edges he received to

all the players, and the players then check their own inputs for

an edge that closes a triangle with some triangle-vee sent by the

coordinator. With high probability, a triangle-vee is discovered, and
the protocol ends in the next round.

Algorithm 1 Code for player j

For each i = 0, . . . , logn:
ℓ ← 0

Repeat until ℓ ≥ N :

v ← TrySampleFromBucket(i)
¯d(v) ← ApproxDegree(v)

If d−(Bi )/
√

3 ≤ ¯d(v) ≤
√

3d+(Bi ):
ℓ ← ℓ + 1

Jointly generate a public random set S ⊆ V , where
each u ∈ S with iid probability p ¯d (v)

Send Ej ∩ ({v} × S) to the coordinator

Theorem 4.2. The communication complexity in the model of
unrestricted communication of triangle detection in graphs of average
degree d , that are ϵ-far from being triangle free, is Õ(k · 4

√
nd + k2).

4.2 Simultaneous Protocols
In the simultaneous model, the players cannot interact with each

other — they send only one message to the referee, and the referee

then outputs the answer. This rules out our previous approach,

as exposing a triangle-vee does not help us if the players cannot

then check their inputs for an edge that completes the triangle.

Indeed, the simultaneous model is closer to the query model in

spirit. Accordingly, we will use the triangle-freeness testers of [3],

but show that we can implement them more efficiently in our

model. Moreover, we achieve roughly the same complexity without

knowing the average degree in advance.
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We begin by describing how to adapt the testers of [3] to our

model when the average degree is known. We then sketch the main

ideas for dealing with an unknown degree; the details appear in

the appendix.

High-degree graphs. For graphs with average degree Ω(
√
n), the

tester from [3] samples a uniformly random set S ⊆ V of Θ( 3

√
n2/d)

vertices, queries all edges in S2
, and checks if the subgraph exposed

contains a triangle. It is shown in [3] that if the graph is ϵ-far from
triangle-free, then the subgraph induced by S will contain Θ(1)
triangles in expectation, and the variance is small enough to ensure

small error.

We can implement this tester easily, and in our model it is less

expensive: instead of querying all pairs in S2
, the players simply

send all the edges from S2
in their input, paying only for edges

that exist and not for edges that do not exist in the graph. The set

S is large enough that the number of edges in the subgraph does

not deviate significantly from its expected value, Θ
(
(nd)1/3

)
. In

Section 5 we show that for average degree Θ(
√
n) this is tight for 3

players.

Low-degree graphs. For density d = o(
√
n), the approach above

no longer works, as the variance is too large. To illustrate this,

consider a graph with d vertices of degree Θ(n), which are the

sources of Θ(nd) triangle-vees, and the remaining nodes are all of

constant degree. If we sample vertices uniformly at random, we

need to sample Θ(n/d) vertices in order to find one of the d sources,

hence we need at least Ω(n/d) to find a triangle. However, whereas
in the query model we would need to make Θ(n2/d2) queries to

learn the entire subgraph induced by the set we sampled, in our

model we proceed as follows (using ideas from [3], which require

adaptivity there, and deploying them in a different way): let S be the
set of Θ(n/d) uniformly-random vertices. We sample another set,

R, of Θ(
√
n) vertices, and we send all edges in R × (S ∪ R). If indeed

there is a small set of high-degree vertices participating in most of

the triangles, then with good probability we will have one of them

in S , and by the birthday paradox, one of its triangles will have

its other two vertices in R. On the other hand, if the triangles are

spread out “evenly”, then the subgraph R × R will probably contain

one. The expected size of R × (S ∪ R) is O(
√
n), and we show that

w.h.p. the total communication is Õ(k
√
n).

Note that both our solutions work for d = Θ(
√
n), and for this

density they are essentially the same: both sets, S and R, are of

size Θ(n/d) = Θ(d) = Θ
(
(nd)1/3

)
, so for d = Θ(

√
n) the second

protocol is not very different from the first. We can also show that

if edge duplication is not allowed, a factor of k is saved in the

communication complexity with high probability.

A degree-oblivious protocol.
Finally, let us give a high-level overview of how we combine the

protocols above and modify them so that they can be used without

advance knowledge of the degree. The challenge here is that no

single player can get a good estimate of the degree from their input,

and since the protocol is simultaneous, the playersmust decidewhat

to do without consulting each other. The natural approach is to use

logn exponentially-increasing “guesses” for the density, covering

the range [1,n], and try them all; however, if we do this we will

incur a high cost for guesses that imply examining a larger sample

than needed. We therefore take a more fine-grained approach.

Our first observation is that some players can make a reasonable

estimate of the global density, although they do not know that they

can. Let
¯di denote the average degree in player i’s input Ei , and

let us say that player i is relevant if ¯di ≥ (ϵ/(4k))d . If we eliminate

all the irrelevant players and their inputs, the graph still remains

(ϵ/2)-far from triangle-free, so we can afford to ignore the irrelevant

players in our analysis — except for making sure that their messages

are not too large.

Since players cannot know if they are relevant, all players as-

sume that they are. Based on the degree
¯di that player i observes,

it knows that if it is relevant, then the average degree in the graph

is in the range Di = [ ¯d
i ,Θ(k ¯di )]. We fix in advance an exponential

scale

{
2
j }logn

j=0
of guesses for the density, and execute in parallel

logn instances of triangle-freeness protocols, one for each degree 2
j
.

However, each player i only participates in instances corresponding
to density guesses that fall in Di , and sends nothing for the other

instances. For relevant players, we know that the true density falls

in their range Di , so they will participate in the “correct” instance.

For irrelevant players, we do not care, and their message size is

also not an issue: their density estimate is too low, and the commu-

nication complexity of each instance increases with the density it

corresponds to.

If we are not careful, we may still incur a blow-up of k1/3
in

communication, as relevant players may use guesses lower than

the true density by a factor of k , which increases the size of the

sample beyond what is necessary. However, by carefully assigning

each player i a communication budget depending on
¯di , we can

eliminate the blow-up, and match the degree-aware protocol up to

polylogarithmic factors.

Theorem 4.3. The simultaneous communication complexity of
testing triangle-freeness in graphs of average degree d is

Õ(k max

{√
n, (nd)1/3)

}
), even if d is not known to the players.

5 LOWER BOUNDS
5.1 Testing Triangle-Freeness with d = Θ(1)
For graphs of average degree Θ(1), we show that for a sufficiently

small constant ϵ , one-sided two-player protocols require Ω(
√
n)

communication to distinguish triangle-free graphs from graphs that

are ϵ-far from triangle-free. We use the same reduction used in [25]

to show the hardness of approximating the number of triangles in

the streaming model, but we reduce from a different variant of the

Boolean Hypermatching problem [26, 33]. Using symmetrization,

we then lift the bound to a lower bound of Ω(k
√
n) for k-player

simultaneous protocols. The details appear in the full version of

the paper [16].

5.2 Finding a Triangle Edge in ϵ-far from
Triangle-Free Graphs

Our main result in this section is the following:

Theorem 5.1. For any d = O(
√
n), let T ϵn,d be the task of finding

a triangle edge in graphs of size n and average degree d which are
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ϵ-far from triangle-free. Then for sufficiently small constant error
probability δ we have:

(1) For k > 3 players: CCsimk,δ (T
ϵ
n,d ) = Ω

(
k(nd)1/6

)
.

(2) For 3 players: CCsim
3,δ (T

ϵ
n,d ) = Ω

(
(nd)1/3

)
.

To show both results, we first prove them for average degree

d = Θ(
√
n), and then easily obtain the result for lower degrees by

embedding a dense subgraph of degree Θ(
√
n) in a larger graph

with lower overall average degree and many isolated nodes. For

lack of space, we describe here the lower bounds for graphs of

average degree Θ(
√
n), and defer the embedding into lower degree

graphs to the full version of the paper.

To prove (1), we begin by proving that for graphs of average

degree Θ(
√
n), three players require Ω(n1/4) bits of communication

to solve T ϵ
n,
√
n
in the one-way communication model, where Alice

and Bob send messages to Charlie, and then Charlie outputs the

answer. In fact, our lower bound is more general, and allows Al-

ice and Bob to communicate back-and-forth for as many rounds

as they like, with Charlie observing the transcript. We then “lift”

the result to k > 3 players communicating simultaneously, using

symmetrization [30].

To prove (2), we show directly that in the simultaneous commu-

nication model, three players require Ω(
√
n) bits to solve T ϵn,d in

graphs of average degree Θ(
√
n).

Our lower bounds actually bound the distributional hardness
of the problems: we show an input distribution µ on which any

protocol that has a small probability of error on inputs drawn from
µ requires high communication. This is stronger than worst-case

hardness, which would only assert that any protocol that has small

error probability on all inputs requires high communication.

The hard distribution. We use a simple distribution µ to generate

graphs that with high probability have average degree Θ(
√
n) and

are ϵ-far from triangle-free: we letG = (U ∪V1∪V2,E) be a tripartite
graph, where |U | = |V1 | = |V2 | = n, and each edge of the tripartite

graph is included in the edge set E iid with probability γ/
√
n, for

a small constant γ ∈ (0, 1). We give each player the edges on one

side of the graph: Alice receives E1 = E ∩ (U ×V1), Bob receives

E2 = E ∩ (U ×V2), and Charlie receives E3 = E ∩ (V1 ×V2).

Clearly the distribution µ is not guaranteed to produce graphs

with average degree Θ(
√
n), or graphs that are ϵ-far from triangle-

free, but we show that it does so with constant probability:

Lemma 5.2. When γ is sufficiently small, a graph sampled from µ
is O(1)-far from triangle-free with probability at least 1/2.

Therefore, any protocol that succeeds with constant probabil-

ity on graphs that have average degree Θ(
√
n) and are ϵ-far from

triangle-free, must also succeed with (smaller) constant probability

on µ.

5.3 Information theory
Our lower bounds use information theory to argue that using a

small number of communication bits, the players cannot convey

much information about their inputs. For lack of space, we give

here only the essential definitions and properties we need.

Let (X,Y) ∼ µ be random variables. (For clarity, from now on

we denote random variables with bold-face letters.) To measure the

information we learned about X after observing Y, we examine the

difference between the prior distribution of X, denoted µ(X), and
the posterior distribution of X after seeing Y = y, which we denote

µ(X|Y = y). We use KL divergence to quantify this difference:

Definition 5.3 (KL Divergence). For distributions µ,η : X → [0, 1],

the KL divergence between µ and η is

D (µ ∥ η) B
∑
x ∈X

µ(x) log (µ(x)/η(x)) .

We require the following property, which follows from the su-

peradditivity of information [11]: if (X1, . . . ,Xn ,Y) ∼ µ are such

that X1, . . . ,Xn are independent, and Y can be represented using

m bits (that is, its entropy is at mostm), then

E

y∼µ(Y)

[ n∑
i=1

D (µ(Xi |Y = y) ∥ µ(Xi ))

]
≤ m.

We use superadditivity as follows: let {Xe } be a collection of

indicators for the presence of edge e in the input. In the input

distribution µ defined above, the edges appear independently, so we
can use superadditivity to argue that after observing the transcript

Π of the protocol, the sum of what we learn about each edge is

at most CC(Π), the communication complexity of the protocol. In

particular, if CC(Π) is small, then the average edge in the input has

a posterior probability given the transcript that is close to its prior
probability of appearing, γ/

√
n.

5.4 “Extended One-Way” 3-Player Protocols
Suppose we have a protocl Π for three players, where Alice and

Bob communicate back-and-forth for some number of rounds, and

eventually Charlie, having observed the conversation between Alice

and Bob, outputs an edge. If Charlie outputs an edge that is not in

E3, this is an error, so let us assume for simplicity that he never

does this (the full proof does not make this assumption).

Let π be the distribution of Π’s transcripts on inputs drawn from

µ, and let Π ∼ π be a random variable for Π’s transcript. Given a

transcript t , let µ |t denote the conditional distribution of the input

given Π = t .

Outline of the lower bound. Intuitively, when Charlie outputs an

edge e = {v1,v2} ∈ E3, he should believe that e is part of a triangle,
that is, he should “think” that there is a node u ∈ U such that

{u,v1} ∈ E1 and {u,v2} ∈ E2. We say that such an edge e ∈ V1 ×V2

is covered. Since Charlie cannot see E1 or E2, the set of covered

edges is a function of the messages sent by Alice and Bob; we

let C (t) ⊆ V1 × V2 denote the set of covered edges when t is the
transcript of Alice and Bob’s communication. The edge output by

Charlie should be an edge in C (t) ∩ E3, that is, an edge in Charlie’s

input that he believes is part of a triangle. The crux of our lower

bound consists of showing that if Alice and Bob use only O(n1/4)

bits of communication, then typically we have |C (t) | = O(
√
n);

and since each edge in C (t) appears in E3 independently with

probability γ/
√
n, the probability that C (t) ∩ E3 , ∅ is too small,

leaving Charlie with no good edge to output.
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Covered edges. Webegin by formalizingwhat it means for Charlie

to “believe” that edge {v1,v2} is part of a triangle.

Forv1 ∈ V1,v2 ∈ V2, let Vee({v1,v2}) denote the event that there

is a node u ∈ U such that {u,v1} ∈ E1 and {u,v2} ∈ E2. We call

{u,v1} , {u,v2} a vee supported on {v1,v2}. Also, let Tri(e) be the
event that e participates in a triangle; then Tri(e) = (e ∈ E3)∧Vee(e),
that is, e is in a triangle whenever it is in Charlie’s input and there

is a vee supported on it.

We formally capture Charlie’s “belief” using the posterior proba-
bility that a vee exists, given the transcript that Charlie observed.

Definition 5.4 (Covered edges). We say that e ∈ V1 ×V2 is covered
by transcript t if PrE∼µ |t [Vee(e)] ≥ 1/10, and let C (t) be the set of
edges covered by t .

(The constant 1/10 should, in general, depend on the error prob-

ability δ of the protocol, but here we use a specific value for clarity

and assume that γ and δ are small enough.)

Now let us show that with good probability Alice and Bob pro-

vide Charlie with Ω(
√
n) covered edges: we show that whenever

|C (t) | < α
√
n for an appropriately chosen constant α , the protocol

incurs a large probability of error.

Recall that that the inputs E1,E2 and E3 to the three players

are independent a-priori; by the properties of a communication

protocol, they remain independent conditioned on the transcript,

Π = t . Thus, each edge in C (t) appears in E3 iid with probability

γ/
√
n. By Markov, whenever |C (t) | < α

√
n, we have

Pr

E∼µ |t
[C (t) ∩ E3 , ∅] ≤ (γ/

√
n) · (α

√
n) = αγ .

This implies that

Pr

E∼µ

[
C (t) ∩ E3 = ∅

��� (|C (t) | < α
√
n)
]
≥ 1 − αγ .

Since we assumed that Charlie always outputs an edge from his

input, whenever C (t) ∩ E3 = ∅, Charlie outputs an edge that is not

covered, e < C (t). By definition, if e < C (t),

Pr

E∼µ |t
[Tri(e)] ≤ Pr

E∼µ |t
[Vee(e)] < 9/10,

and therefore,

δ ≥ Pr

π
[Π errs]

≥ Pr

t∼π
[Π errs | C (t) ∩ E3 = ∅] · Pr

t∼π
[C (t) ∩ E3 = ∅]

≥ (1/10) · Pr

t∼π
[C (t) ∩ E3 = ∅]

≥ (1/10) Pr

[
C (t) ∩ E3 = ∅

��� |C (t) | < α
√
n
]
· Pr

[
|C (t) | < α

√
n
]

≥ ((1 − αγ )/10) Pr

[
|C (t) | < α

√
n
]
.

Assuming that 1 − αγ ≥ 1/2, we see that with probability at least

1 − 20δ we have |C (t) | ≥ α
√
n. Next we show that this requires

Ω(n1/4) bits of communication from Alice and Bob.

The cost of covering Ω(
√
n) edges. Let us say that transcript t is

good if |C (t) | ≥ α
√
n. For simplicity, we assume that no transcript

covers more than ⌈α
√
n⌉ edges (if it does, we remove some covered

edges from C (t) arbitrarily; this does not affect the math above).

What do Alice and Bob need to do to raise the posterior probabil-

ity of Vee(e)? Since Π is a communication protocol, and E1,E2 are

independent a-priori, they remain independent given the transcript,

that is, given Π = t for any t . Therefore,

Pr

E∼µ |t
[Vee({v1,v2})] ≤

∑
u ∈U

Pr

E∼µ |t
[{u,v1} ∈ E1 ∧ {u,v2} ∈ E2]

≤
∑
u ∈U

(
Pr

E∼µ |t
[{u,v1} ∈ E] Pr

E∼µ |t
[{u,v2} ∈ E]

)
. (1)

Now, let

∆t ({w1,w2}) B Pr

E∼µ |t
[{w1,w2} ∈ E] − 2γ/

√
n

denote the increase from twice the prior probability that {w1,w2} ∈

E, which is γ/
√
n, to the posterior probability that {w1,w2} ∈ E

given Π = 1. (The reason we need to take twice the prior probability

will be revealed shortly.) We can re-write (1) as

Pr

E∼µ |t
[Vee({v1,v2})] ≤

≤
∑
u ∈U

[ (
∆t ({u,v1}) + 2γ/

√
n
)
·
(
∆t ({u,v2}) + 2γ/

√
n
) ]
.

Recall that if t is good, then α
√
n ≤ |C (t) | ≤ ⌈α

√
n⌉, and each edge

e ∈ C (t) has posterior probability of Vee(e) at least 1/10. Thus,

for a good transcript t , summing over the edges in C (t) and using

Cauchy-Schwarz yields(
1/10 − γ 2

)
α
√
n ≤

©«
∑

e ∈U×(V1∪V2)

∆t (e)
ª®¬

2

+ (2γ/
√
n) · ⌈α

√
n⌉

©«
∑

e ∈U×(V1∪V2)

∆t (e)
ª®¬

≤ 2

©«
∑

e ∈U×(V1∪V2)

∆t (e)
ª®¬

2

.

(On the right-hand side we simplified the expression and added

some edges that are not necessarily in C (t).)
We see that if t is a good transcript, then we must have∑

e ∈U×(V1∪V2)

∆t (e) ≥ Ω(n1/4). (2)

Using information theory, we can show that Ω(n1/4) bits of com-

munication are required to achieve this with constant probability.

Let Xe be an indicator for the event that edge e is in the input,

e ∈ E. Because the edges appear independently of each other, we

can use the superadditivity of information to get:

CC(Π) ≥
∑
e

E

t∼π
[D (µ |t(Xe ) ∥ µ(Xe )] . (3)

In order to relate the KL divergence to ∆t , we prove the following
lemma:

Lemma 5.5. Let p,q ∈ (0, 1), and let D (p ∥ q) denote the KL diver-
gence between Bernoulli(p) and Bernoulli(q). Then for any q < 1/2

we have D (p ∥ q) ≥ p − 2q.

(This relationship is, in general, quadratic: Pinsker’s inequality
asserts that D (p ∥ q) ≥ |p − q |, and this is known to be tight in

some cases. However, quadratic behavior occurs only when the
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prior p is close to 1/2; our lemma shows that for small priors the

relationship is roughly linear.)

Plugging Lemma 5.5 into (3) yields CC(Π) ≥
∑
e Et [∆t (e)]. To-

gether with (2) and the fact that the transcript must be good with

probability at least 1 − 20δ , we see that Ω(n1/4) bits of communica-

tion are required.

For this particular input distribution, the lower bound is tight:

suppose Alice and Bob choose in advance some vertex u ∈ U , and

each of them sends Charlie O(n1/4) nodes adjacent to u in their

input (with high probability, the degree of u is Θ(
√
n), so they have

enough edges to send). This has the effect of covering Θ(
√
n) edges

inV1×V2 — for every combinationv1,v2 of nodes sent by Alice and

Bob respectively, the edge {v1,v2} is covered.With good probability

Charlie will find one of the covered edges in his input and he can

then output it (and also the triangle containing it).

5.5 Simultaneous 3-Player Lower Bound
We now turn our attention to simultaneous protocols, where we
have a referee who does not see any of the input; Alice, Bob and

Charlie send messages to the referee, and the referee then outputs

the answer. We assume for simplicity that the edge output is always

from Charlie’s side of the graph (this is not essential).

In our one-way lower bound we argued that Alice and Bob must

provide Charlie with Ω(
√
n) edges that “look like” there is a vee

supported on them, so that w.h.p. Charlie will find one of those

edges in his input. For simultaneous protocols, this is not enough:

the referee does not see Charlie’s input, and cannot know if a given

edge is in E3 or not unless Charlie “tells him”. Accordingly, we

define the set Rep(t) of edges “reported by Charlie” to be the set of

edges inV1×V2 with good posterior probability of being in E3 given

Π = t . Moreover, because there is no interaction, the referee cannot

look at the set of covered edges and ask Charlie which of them is

in E3; Alice, Bob and Charlie need to provide the referee with sets

C (t) and Rep(t) such that with high probability C (t) ∩ Rep(t) , ∅,
and the referee can then output an edge that has good probability

of being in a triangle.

More formally, let t = (m1,m2,m3) be the transcript, where

m1,m2 andm3 are the messages of Alice, Bob and Charlie, respec-

tively. We define

Rep(t) =
{
e ∈ V1 ×V2 | Pr

E∼µ |t
[Xe = 1] ≥ 1/10

}
.

In a simultaneous protocol, the messages sent by the players are

independent of each other given the input. In our case, because

the inputs are also independent of each other, the messages are

independent even without conditioning on a particular input. We

therefore abuse notation slightly by omitting parts of the transcript

that are not relevant to the event at hand; we write Rep(m1) for

Rep(t) and C (m1,m2) for C (() t).
As we showed in the one-way case, whenever the edge output is

not in C (m1,m2) we incur a large contribution to the error of the

protocol. We can now show a similar claim for Rep(m3) as well: if

the referee outputs an edge with low posterior probability of being

in the input, then the error probability is high. Combining, we get:

Lemma 5.6. The probability that there exists an edge that is both
reported by Charlie and covered by Alice and Bob is at least 1 − 100δ .

That is,

Pr

(m1,m2,m3)∼π
[Rep(m3) ∩ C (m1,m2) , ∅] ≥ 1 − 100δ .

Because the inputs and messages are independent, for a fixed

messagem3 of Bob, we get by union bound that

Pr

m1,m2∼π
[Rep(m3) ∩ C (m1,m2) , ∅]

≤
∑

e ∈Rep(m3)

Pr

m1,m2∼π
[e ∈ C (m1,m2)] . (4)

Let us define

Cov (e) = Pr

m1,m2∼π
[e ∈ C (m1,m2)] .

Using this notation, the combination of Lemma 5.6 and (4) gives:

Corollary 5.7. Em3∼π

[∑
e ∈Rep(m3)

Cov (e)
]
≥ 1 − 100δ .

We show that if CC(Π) ≤ α
√
n where α is a sufficiently small

constant, then this cannot be achieved, that is, the protocol cannot

focus enough “cover probability” on the edges reported by Bob.

Bob’s “best strategy”. By definition, Cov (e) is a score measuring

how likely Alice and Bob are to cover edge e . It depends on the

protocol, but not on the specific input to Alice, Bob or Charlie.When

Bob examines his input, he knows the score Cov (e) for each edge

e ∈ E3. He cannot afford to report all the edges in E3, as this would

require too much communication, so he must choose some subset

to report. Intuitively, Bob’s “best strategy” is to report those edges

in E3 that have the highest Cov (e), as this maximizes the sum in

Corollary 5.7 (i.e., it increases the probability that C (t)∩Rep(t) , ∅,
giving the referee a good edge to output).

Let us make this intuition a little more formal. LetT ⊆ V1×V2 be

the set of |T | = Θ(n) edges with the highestCov (e) scores inV1×V2.

Bob can typically afford to report only O(
√
n) edges; this follows

from the superadditivity of information and Lemma 5.5. In addition,

each edge in T only appears in Bob’s input with probability γ/
√
n.

Thus, if Bob reports all the edges in T that appear in his input

(the set T ∩ E3), this consumes his entire communication budget.

If Bob follows this strategy then each edge in T is reported with

probability nearly γ/
√
n: if it appears in Bob’s input, it is reported

— unlessT ∩E3 is very large and Bob cannot afford to report all the

edges in it, but this happens with very small probability. In the full

version, we show that indeed reporting the edges inT ∩ E3 is Bob’s

“best strategy”, in the sense that

E


∑

e ∈Rep(E3)

Cov (e)

 ≤ Θ(1/
√
n) ·

∑
e ∈T

Cov (e) . (5)

Therefore, it suffices to show that the protocol for Alice and Bob
can achieve

∑
e ∈T Cov (e) = Ω(

√
n) for a fixed set T ⊆ V1 ×V2 of

Θ(n). If we can show this, then Corollary 5.7 does not hold, which

is a contradiction.

Bounding the cover scores. Our goal now is to show that for any

set T of Θ(n) edges from V1 ×V2, we have

∑
e ∈T Cov (e) = O(

√
n).

Fix a set T ⊆ V1 × V2 of |T | = ξn edges, where ξ is constant.

We first partition T into subsets T1,T2, where, for some constant

ξ ∈ (0, 1), the setT1 contains only edges (u,v) such that degT1

(u) ≤
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ξ
√
n and T2 contains only edges (u,v) such that degT2

(v) ≤ ξ
√
n.

(Recall that degs (w) denotes the number of edges adjacent tow in

edge set S .)
To do this, we partition the nodes of V1,V2 into “low degree

nodes”, with degree at most

√
n inT , and “high degree nodes”, with

degree more than

√
n in T . All edges of T that are adjacent to “low

degree nodes” fromV1 go intoT1, and any remaining edges that are

adjacent to “low degree nodes” from V2 go into V2. This leaves us

with edges where both endpoints have high degree inT , more than
√
n. But since |T | = O(n), there can be onlyO(

√
n) nodes with such

high degree, so any such edge can go into eitherT1 orT2 arbitrarily.

We separately bound

∑
e ∈T1

Cov (e) and
∑
e ∈T2

Cov (e), and show
that neither exceeds O(

√
n). This implies

∑
e ∈T Cov (e) = O(

√
n) as

well. The proof is symmetric for the two sets, so we show here ony

the lower bound for T1.

To show that

∑
e ∈T1

Cov (e) = O(
√
n) we need to rule out the

“quadratic effect” that we saw in the one-way protocol, where Alice

and Bob each tell us about some number t of edges in their input,

and yet the sum of the cover probabilities reaches t2
. This would

be catastrophic for us, because now Alice and Bob can afford to tell

us about Θ̃(
√
n) edges each, so if we use a naive analysis we might

conclude that the sum of the cover probabilities can go as high as

O(n); to bound the sum at O(
√
n) we need to show that this cannot

happen, and the key lies in the fact that we consider nodes with

degree at most

√
n in T1. (The difference from the one-way case is

that there we did not have a fixed set T of O(n) edges over which
Alice and Bob tried to maximize the sum of the cover probabilities;

and indeed, the optimal strategy for the one-way case produces a

uniformly random set of edges with high cover probabilities, not a

fixed set.)

Intuitively, suppose that v1 ∈ V1 has degree O(
√
n) in T1, and

let S ∈ V2 be the neighbors of v1 with respect to the edges in T1.

Because |S | = degT1

(v1) = O(
√
n), in expectation only (γ/

√
n) ·

O(
√
n) = O(1) edges connect U and S . Thus, whatever effort Alice

spends to tell the referree about edges in U × {v1} is “multiplied”

only by O(1), even if Bob was able to tell us about all the edges in
U × S . We get that the sum of the cover probabilities is linear in
Alice’s communication budget, not quadratic.

We now make this intuition formal. Let Ce be an indicator for

the event that e ∈ C (m1,m2). Then Cov (e) = Prµ [Ce ].

For fixed messages m1,m2 of Alice and Bob, if e = (v1,v2) ∈

C (m1,m2), then by definition of C (m1,m2) and by union bound,

1/10 ≤ Pr

E∼µ |m1,m2

[∃u : (u,v1) ∈ E1 ∧ (u,v2) ∈ E2]

≤
∑
u ∈U

Pr

E∼µ |m1,m2

[(u,v1) ∈ E1 ∧ (u,v2) ∈ E2] .

Because E1 and E2 remain independent given m1 =m1,m2 =m2,

we can re-write this as

1/10 ≤
∑
u ∈U

(
Pr

E∼µ |m1

[(u,v1) ∈ E1] · Pr

E∼µ |m2

[(u,v2) ∈ E2]

)
≤

∑
u ∈U

( (
∆m1
(u,v1) + 2γ/

√
n
)

Pr

E∼µ |m2

[(u,v2) ∈ E2]

)
,

where here, as in the previous section, we let

∆m1
(u,v1) = Pr

E∼µ |m1

[(u,v1) ∈ E1] − 2γ/
√
n.

Consider first the edges in T1. Let M2 be the set of Bob’s mes-

sagesm2 such that (v1,v2) ∈ C (m1,m2) (keepingm1 fixed), and

let π2(m2) be the probability that Bob sends a specific messagem2.

Multiplying both sides by π2(m2) and summing over allm2 ∈ M2,

we get∑
m2∈M2

∑
u ∈U

(
π2(m2) Pr

E∼µ |m2

[(u,v2) ∈ E2]
(
∆m1
(u,v1) + 2γ/

√
n
) )

≥ (1/10)
∑

m2∈M2

π2(m2) = (1/10) Pr

µ |m1

[
C(v1,v2)

]
. (6)

Notice that for any u ∈ U andm1,∑
m2∈M2

(
π2(m2) Pr

E∼µ |m2

[(u,v2) ∈ E2]

)
= Pr

E∼µ |m1

[
(u,v2) ∈ E2 ∧ C(u,v2)

]
≤ Pr

E∼µ
[(u,v2) ∈ E2] = γ/

√
n.

Plugging this into (6) yields

(γ/
√
n)

∑
u ∈U

(
∆m1
(u,v1) + 2γ/

√
n
)
≥ (1/10) Pr

µ |m1

[
C(v1,v2)

]
.

Now, taking the expectation over allm1, and summing across all

v2 such that (v1,v2) ∈ T1 (while keeping v1 fixed),

degT1

(v1)(γ/
√
n) E

m1

[∑
u ∈U
(∆m1
(u,v1) + 2γ/

√
n)

]
≥ (1/10)

∑
v2:(v1,v2)∈T1

E

m1

[
Pr

µ |m1

[
C(v1,v2)

] ]
≥ (1/10)

∑
v2:(v1,v2)∈T1

Cov (v1,v2) .

Finally, summing over allv1 ∈ V1, and plugging in degT1

(v1) ≤ ξ
√
n,

we get

ξγ
∑
v1∈V1

E

m1


∑
v1∈V1

∑
u ∈U

∆m1
(u,v1) + 2γ/

√
n


= ξγ

©« E

m1


∑
v1∈V1

∑
u ∈U

∆m1
(u,v1)

 + 2γ
√
n
ª®¬

≥ (1/10)
∑

(v1,v2)∈T1)

Cov (v1,v2) .

As we saw previously, using Lemma 5.5 and the subadditivity of in-

formation we get that Em1

[∑
v1∈V1

∑
u ∈U ∆m1

(u,v1)
]
≤ CC(Π) =

O(
√
n), so the left-hand side is bounded by O(

√
n), as desired: the

sum of the cover scores of edges in T1 cannot exceed O(
√
n).

5.6 Lifting 3-Player Lower Bounds to k Players
To lift our lower bounds to k > 3 players we use symmetriza-
tion, a technique developed in [30] for embedding hard two-player

problems in a multi-player model. Here, we have a hard 3-player
problem, andwe also workwith a restricted communication pattern,

either simultaneous or one-way; we adapt the technique from [30]

to these changes, obtaining the following:
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Theorem 5.8 (Informal). Let µ be a 3-player input distribution,
where each of the three players has the same marginal input distri-
bution. Let C be the one-way, δ -error communication complexity of
problem P under µ. Then there is a k-player input distribution η such
that the simultaneous δ -error communication complexity of P under
η is Ω(k ·C).

Notice that we assumed that the problem was hard for 3-player

one-way protocols, but the k-player lower bound we obtained was

for simultaneous protocols. This behavior is inherent for a large
number of players, k = Ω(n): a simultaneous k-player protocol
can emulate a one-way protocol by having each of the k players

send their entire input to the referee with probability Θ(1/k), and
otherwise send the message it would send under the one-way pro-

tocol. With good probability, the referee receives the input of at

least one player, and it can then compute the output of the one-way

protocol. When k = Ω(n), the overall cost of simulating a one-way

protocol with communication cost C is O(n2/k + k ·C) = O(k ·C),
so Theorem 5.8 is tight in this sense. (For smaller k , it is possible
that the result can be tightened.)

For deterministic and symmetric protocols we can do a little

better: we show that if P is hard for deterministic 3-player simulta-

neous protocols, then it is k times harder for deterministic k-player
simultaneous protocols.

6 CONCLUSIONS
We showed that in the setting of communication complexity, prop-

erty testing can be significantly easier than exactly testing if the

input satisfies the property: exactly determining if the input graph

is triangle-free requires Ω(knd) bits in [35], but we showed that

weakening the requirement to property-testing improves the com-

plexity, and in fact even simultaneous communication protocols

can do better than the best exact algorithm with unrestricted com-

munication. Nevertheless, the problem does not appear to become

completely trivial, as shown by our lower bounds for simultaneous

and restricted one-way protocols.
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