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ABSTRACT
Information complexity is the extension of classical information
theory to the interactive setting, where instead of one-way trans-
mission we are interested in back-and-forth communication. This
approach has been very influential in communication complexity,
where it enables us to prove powerful lower bounds by quantify-
ing the amount of information the participants in the computation
must reveal about their inputs. In this paper we study information
complexity in the classical broadcast model: k parties with pri-
vate inputs wish to compute some function of their inputs, and they
communicate by sending messages (one at a time) over a broadcast
channel. We measure how much information the players reveal
about their inputs to an external observer. This is called external
information cost.

Using this approach, we prove a tight lower bound of Ω(n log k+
k) on the communication complexity of set disjointness, a funda-
mental problem in communication complexity. We also give a de-
terministic matching upper bound.

Next we study compression, a central question in information
complexity: given a protocol with low information cost (but pos-
sibly high communication), can we compress the protocol so that
its communication cost matches its information cost? In the two-
player setting, it is known that every protocol can be compressed
to roughly its external information cost. We show that for the
multi-party case this is no longer true: there is a gap of at least
Ω(k/ log k) between external information and communication. How-
ever, if we wish to compress many independent instances of the
same protocol, then it is possible to do so with an amortized per-
copy cost that approaches the information cost as the number of
copies goes to infinity.
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1. INTRODUCTION
Classical information theory studies the cost of transmitting in-

formation from a sender to a receiver, over a channel which may be
subject to various types of noise. The traditional focus is on amor-
tized cost in the limit: the sender has many messages X1, . . . ,Xn

drawn independently from the same distribution, and we are inter-
ested in the amortized number of bits it must communicate per mes-
sage (that is, the total communication required to send all n mes-
sages, divided by n), in the limit as n grows to infinity. This ques-
tion was addressed by Shannon in his seminal work [27], where
he showed that in the noiseless case the amortized per-copy cost is
exactlyH(X), the entropy of the distribution from which the mes-
sages are drawn. Later, Huffman showed [20] that a single copy
of X can be sent in H(X) + 1 bits, so for (noiseless) one-way
transmission, the single-shot cost and the cost-in-the-limit are es-
sentially the same.

The emerging field of information complexity seeks to extend
the ideas of classical information theory to an interactive setting,
where the parties involved in the computation communicate back-
and-forth in order to achieve some shared goal. The basic two-party
setup has two players, Alice and Bob, who receive private inputs
X,Y respectively, and wish to compute some function f(X,Y )
(or more generally, perform some task that depends on the inputs).
We are interested in characterizing the amount of information the
players must reveal about their inputs in order to compute f ; this
is called the information cost of f . In this paper we work with
external information cost [7], which measures the amount of infor-
mation revealed to an external observer who initially does not know
the inputs to the protocol. (See [7] for alternative ways to measure
information cost.)

Information cost turns out to be a natural lower bound on com-
munication cost, the number of bits that the players need to send to
compute f , so a lower bound on information cost translates imme-
diately to a lower bound on communication. In addition, informa-
tion cost has some nice properties, such as additivity, that can make
it easier to work with than communication. Consequently, informa-
tion lower bounds have been very useful in proving communication
lower bounds (e.g., [2, 17, 5, 29]).

One can also ask whether, as is true for one-way transmission,
any protocol can be compressed to its information cost. This ques-
tion has not been fully resolved yet, but the answer will have deep
implications in theoretical computer science [7, 3, 15]. Both single-
shot compression [3] and amortized cost in the limit [7] are of great
interest, and they appear to have very different costs [15]. In the
two-party setting it is known that any protocol can be compressed
almost all the way down to its external information cost, with a
logarithmic dependence on the communication complexity of the
original, uncompressed protocol [3].
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The broadcast model. In this paper we study the classical
broadcast model of communication (also called the shared black-
board model in communication complexity literature [22]). We
have k players, each with a private input Xi ∈ {0, 1}n, and the
players wish to compute a joint function f(X1, . . . , Xk) of their
inputs. The players communicate by “writing messages on a black-
board” that all players can read for free (i.e., they communicate
by broadcasting messages to each other). We allow the players to
use randomization when deciding what to write on the board. This
model is widely studied in theoretical computer science, in areas
ranging from streaming [1, 2, 17] to cryptography [16] and mech-
anism design [13]. Beyond being a fundamental model of com-
munication complexity, the broadcast model can also be viewed as
an abstract model of single-hop wireless networks, which abstracts
away the details of contention management.

We study two fundamental questions in the broadcast model: the
communication complexity of set disjointness, and the question of
whether interactive protocols can be compressed.

Set disjointness in the broadcast model. Set disjointness is
one of the most fundamental problems in communication complex-
ity; it has been studied in the classical two-player model [21, 25],
in the number-on-forehead model (e.g., [28]), and in many other
settings (see [11] for a survey); it has applications in various areas
ranging from streaming [1] to data structures [23], distributed com-
puting [26], circuit lower bounds [10] and many other examples. In
multi-party (number-in-hand) set disjointness, each of the k play-
ers receives a subset Xi ⊆ [n], and the players need to determine
whether

⋂n
i=1 Xi = ∅; formally, we shall denote

DISJn,k(X1, . . . , Xk) = ¬
n∨
j=1

k∧
i=1

Xj
i ,

where Xj
i is coordinate j of player i’s input. Set disjointness re-

duces to many natural problems, so a lower bound on its commu-
nication complexity implies lower bounds on many other problems
as well.

It is known that for two players, set disjointness requires Ω(n)
bits of communication [21, 25], and a trivial reduction shows that
Ω(n) is also a lower bound for k players. It is not difficult to see
that Ω(k) is also a lower bound, as intuitively, each player must
speak at least once to solve the problem. As for upper bounds, there
is a simple protocol with communication complexity O(n logn +
k): the players go in order, with each player i writing on the board
the coordinates j where Xj

i = 0, unless they already appear on
the board. A player that has no new zero coordinates to contribute
writes a single bit to indicate this. After all players have taken their
turn, if there is some coordinate that does not appear on the board,
then this coordinate is in the intersection; otherwise the intersection
is empty.

A-priori, it is not obvious whether the “right answer” is Θ(n+k),
Θ(n logn+k), or somewhere in between. After all, in some cases
where one might naively expect a logarithmic factor to arise, it does
not: a famous example is the randomized protocol of Håstad and
Wigderson [19], which solves two-player set disjointness under the
promise that |X| = |Y | = s in O(s) bits, instead of the naive
O(s logn). (In fact, two players can even compute the exact inter-
section of their sets X,Y using O(s) bits when |X| = |Y | = s [6,
8].)

In this paper we show that the randomized communication com-
plexity of set disjointness with k players is actually Θ(n log k+k).
Intuitively, the factor log k arises because the protocol must “find”,
for each j ∈ [n], some player i with Xj

i = 0, before it can declare

that
⋂k
i=1 Xi = 0. The index of such a player is “worth” log k

bits of information, as this is how many bits we require to encode
it. We are able to formalize this intuition using notions from infor-
mation theory and prove a lower bound of Ω(n log k + k) on the
information cost of set disjointness

To our knowledge, ours is the first communication lower bound
on a decision problem in the broadcast model that grows with the
number of players. This serves as evidence that while reductions
from two-party communication complexity are incredibly useful [12,
24], additional benefit can be derived from directly considering
multi-party models. Although an additional factor of log k in the
lower bound may not seem large, communication complexity lower
bounds are often applied in distributed computing to prove lower
bounds on the number of rounds required to solve some task, and
in that context one divides by the number of bits that can be sent per
round, which can end up being linear in the number of participants
(see, e.g., [14]). So for instance, when k = Θ(n), the difference
between a lower bound of Ω(n log k) and a lower bound of Ω(n)
on the total communication complexity can end up being the differ-
ence between a logarithmic round lower bound and a constant (i.e.,
trivial) bound.

We remark that a promise version of set disjointness has received
significant attention in the broadcast model ([2, 17] and others), due
to its connections to streaming lower bounds [1]. Set disjointness
and other problems have also recently been investigated in a point-
to-point model of multi-party communication ( [5, 29] and others).
And finally, in [24], a technique called symmetrization is introduced
to obtain multi-party lower bounds on several pointwise-Boolean
functions, such as pointwise-OR, where the output is a vector Y
such that Yi =

∨
j X

j
i for each i ∈ [n]. Although symmetrization

can prove a lower bound of Ω(n log k) on pointwise-OR, this tech-
nique seems too weak to prove a lower bound of Ω(n log k) on set
disjointness.

Compressing multi-party broadcast protocols. For two
players, it is known that any interactive protocol can be compressed
to roughly its external information cost [3], which is the amount of
information revealed to an external observer about the players’ in-
puts. We observe that for multiple parties this no longer holds: for
the function

∧k
i=1 Xi, the information cost under any distribution

is bounded byO(log k), but we show that there is a distribution un-
der which the communication cost is Ω(k). This shows that there
is a gap of at least Ω(k/ log k) between external information and
communication in the k-player broadcast model. However, while
a single instance cannot be compressed, we do show that for many
instances we can achieve compression: the amortized cost per-copy
as the number of copies tends to infinity is bounded by the exter-
nal information cost, generalizing the result of [7] for two players.
We note that while [7] deals with internal information, which mea-
sures what the players learn about each others’ inputs, here are we
concerned with external information, which measures what an ex-
ternal observer learns. External information is generally an easier
quantity to work with, and consequently we are able to simplify the
protocol from [7].

Organization. The remainder of the paper is organized as fol-
lows. Before diving into the technical details, we give an infor-
mal overview of the set disjointness lower bound in Section 2. In
Section 3 we review some basic notions from communication com-
plexity and information theory, and in Section 4 we prove the two
lower bounds on set disjointness, of Ω(n log k) and Ω(k) respec-
tively. A matching deterministic upper bound, with communica-
tion complexity O(n log k + k), is presented in Section 5. In Sec-
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tion 6 we discuss the issue of compression, prove that there is a
gap of Ω(k/ log k) between information and communication, and
show that computation involving many independent instances of
the same problem can be compressed such that in the limit as the
number of instances goes to infinity, the per-instance cost tends to
the information cost of the problem.

2. HIGH-LEVEL OVERVIEW OF THE SET
DISJOINTNESS LOWER BOUND

Our lower bound follows the information-theoretic approach [9,
2]: in order to prove a lower bound on the communication complex-
ity of set disjointness, we will show that any protocol that solves it
with small (constant) error must reveal a lot of information about
the players’ inputs, in the information-theoretic sense: the entropy
of the inputs (i.e., our uncertainty about them) is significantly re-
duced once the transcript of the protocol is observed. Each bit the
protocol communicates can reveal at most one bit of information
about the inputs, so we immediately obtain a lower bound on com-
munication as well.

The precise notion of information cost we use in this paper was
introduced in [2], and is called conditional information cost. We
will work with a distribution (X,D) ∼ µ on two variables: the
input the players, X = X1, . . . ,Xk, and an auxiliary variable D.
The essential property of the distribution is that conditioned on D,
the inputs X1, . . . ,Xk are independent, and this will be crucial to
our proof. Conditional information cost measures the information
an external observer learns about the inputs, conditioned on D.

One of the advantages of the information-based approach is that
it allows us to decompose the problem into many small problems,
prove that each small problem is “a little bit hard”, and obtain a
lower bound for the overall problem that is equal to the sum of the
bounds on the smaller problems. This is called direct sum [2]. In
our case, as in [2], since DISJn,k = ¬

∨n
j=1

∧k
i=1 X

j
i , we will

break the problem up into n instances of one-bit AND. We prove
a lower bound of Ω(log k) on AND, and obtain a lower bound of
Ω(n log k) for disjointness.

In order to show that any protocol computing AND must reveal
Ω(log k) bits of information about the input, we argue that when-
ever the output of the protocol is 0, the protocol’s transcript must
“point” to some player i whose input is zero. The notion of “point-
ing to a player” is formalized using the posterior probability that
Xi = 0 after the transcript is observed. Under our input distribu-
tion, the prior probability that Xi = 0 is only O(1/k), but we will
show that for “most” transcripts, there is a player i with a constant
posterior probability of Xi = 0 given the transcript. Intuitively,
since a-priori we had Xi = 0 with probability only O(1/k), we
are “very surprised” to learn that Xi = 0 with constant probability,
and this “surprise” is worth Ω(log k) bits of information. Viewed
another way: a-priori, since each player receives 0 with probabil-
ity roughly 1/k, we expect a small (constant) number of players to
receive 0, but we have no idea who they are. Once the transcript is
revealed, we can “point” to a player that probably received 0, so our
uncertainty about the input is greatly reduced. Since the identify of
the player requires Ω(log k) bits to write down, this is the amount
of information we have learned about the input.

We proceed to review the definitions and notions required to
make this outline formal.

3. PRELIMINARIES

Notation. We use bold-face letters to denote random variables.
For variables A1, . . . ,A` with joint distribution µ, we let µ(Ai)

denote the marginal distribution of Ai, and µ(Ai|Aj = aj) denote
the distribution of Ai conditioned on Aj = aj (and similarly for
more variables). For a string S, we let |S| denote the length of S.

The broadcast model. In the broadcast model, also called the
shared blackboard model [22], we have k players. Each player
i receives a private input Xi, and the players wish to compute a
joint function f(X1, . . . , Xn) of their inputs. Communication is
via a shared blackboard (or broadcast channel) that all players can
read for free. At each point in the protocol, the current contents
of the blackboard determine whose turn it is to speak next, and
that player generates a message using its input, private and public
randomness, and the contents of the blackboard, and writes it on
the board. Then the next player speaks, and so on, until eventually
the protocol halts and the players output some values (for which
they are not charged).

Communication complexity. For a protocol Π, we define the
communication complexity of Π, denoted CC(Π), as the worst-case
number of bits that are written on the board in any execution of
Π. The communication complexity of a problem f with error ε,
denoted CCε(f), is the minimum communication complexity of
any protocol Π that solves f on any input with error probability at
most ε over the protocol’s randomness.

In Section 6 we shall also study distributional (or average-case)
communication complexity. Given an input distribution µ, we de-
fine the distributional complexity of f with error ε, denoted Dµ

ε (f),
to be the minimum communication complexity of a protocol that
solves f with error probability at most ε when inputs are drawn
from µ (i.e., the probability is over both the input and the proto-
col’s randomness).

Information theory. We require the following notions from clas-
sical information theory.

The entropy of a random variable measures how much uncer-
tainty we have about it, and corresponds to the number of bits re-
quired to encode the variable (in a lossless encoding).

Definition 1. The entropy of a random variable X ∼ µ with
support X is given by

H(X) =
∑
x∈X

Pr
µ

[X = x] log
1

Prµ [X = x]
.

We also define conditional entropy, which measure the average un-
certainty that remains about a random variable X , after we observe
the value of another random variable Y .

Definition 2. For two random variables X,Y with joint distri-
bution µ, the conditional entropy of X given Y is

H(X | Y ) = E
y∼µ(Y )

H(X | Y = y),

whereH(X |Y = a) denotes the entropy of X with respect to the
distribution µ(X | Y = a).

To quantify the amount of information we have learned about a
random variable X from observing another variable Y , we use mu-
tual information, which measures the “loss of uncertainty” about
X when given Y (or, symmetrically, Y when given X):

Definition 3. The mutual information between two random vari-
ables X,Y is given by

I(X;Y ) = H(X)−H(X | Y ) = H(Y )−H(Y |X).
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The conditional mutual information between X and Y given Z is

I(X;Y |Z) = H(X |Z)−H(X | Y ,Z)

= H(Y ,Z)−H(Y |X,Z).

For clarity, the distribution on the variables may sometimes be in-
cluded as a subscript (“Iµ(X;Y )”), but we generally omit it when
clear from the context.

Intuitively, the mutual information between two variables A,B
should also correspond to how much the distribution of A is dis-
torted from its prior distribution when the value of B is revealed.
This relationship is captured using Kullback-Leibler divergence (also
known as relative entropy) to measure the distance (or difference)
between two distributions.

Definition 4. Given two distributions µ1, µ2 with supportX , the
KL divergence of µ1 from µ2 is

D

(
µ1

µ2

)
=
∑
x∈X

µ1(x) log
µ1(x)

µ2(x)
.

KL divergence is not a metric: it is non-negative and it equals zero
only when µ1 = µ2, but it is not symmetric. It is helpful to think
of µ1 as the “true” or posterior distribution, and of µ2 as our prior
belief.

Mutual information and KL divergence are related as follows:

I(X;Y ) = E
y∼µ(Y )

D

(
µ(X | Y = y)

µ(X)

)
= E

x∼µ(X)
D

(
µ(Y |X = x)

µ(Y )

)
, (1)

and similarly for conditional mutual information. In words: the in-
formation Y conveys about X is the expected divergence between
the posterior distribution of X when the value of Y is revealed, and
the prior distribution of X when Y is not known (or vice-versa).

External information cost. Given a protocol Π, we use Π to
denote the random variable representing the transcript of Π. (The
randomness arises both from the input distribution and the proto-
col’s own private and public randomness.) External information
cost is defined, by extension of the two-party case [9, 2], as fol-
lows:

Definition 5. Given a protocol Π and distribution µ, we define
the external information cost of Π under µ by

IC
µ

(Π) := I(Π;X),

where X ∼ µ is the joint input to the protocol.
For a problem f , distribution µ and error parameter ε ∈ (0, 1),

the external information cost of f under µ with error ε is defined
to be

IC
µ

(f, ε) := inf
Π

IC
µ

(Π),

where the infimum is taken over all protocols that solve f with
worst-case error probability at most ε (for any input, over the pro-
tocol’s randomness).

Observe that ICµ(Π) := I(Π;X) ≤ H(Π) ≤ |Π|, so any lower
bound on the information cost immediately translates to a commu-
nication lower bound.

For our lower bound we use the notion of conditional informa-
tion cost, introduced in [2]. It generalizes the usual information
cost by introducing conditioning on an auxiliary variable.

Definition 6. Let Π be a randomized protocol, and let µ be a
distribution onX ×D for someX ,D. The conditional information
cost of Π with respect to µ is given by

CIC
µ

(Π) = I
(X,D)∼µ

(Π;X |D).

For a problem f and an error parameter ε ∈ (0, 1), we define

CIC
µ

(f, ε) = inf
Π

CIC
µ

(Π),

where the infimum is taken over all protocols that solve P with
worst-case error ε on any input.

As with external information, conditional information is a lower
bound on communication complexity.

Now we are ready to prove our main lower bound.

4. SET DISJOINTNESS LOWER BOUND
Following the approach of [2], in order to prove a lower bound of

Ω(n log k) on the communication complexity of DISJn,k, we de-
compose the disjointness problem into n copies of k-player ANDk
on a single bit, and argue that the cost adds up linearly.

LEMMA 1 ([2]). Let µ be a distribution on {0, 1}k×D, such
that

(1) For any (X,D) in the support of µ,
∧k
i=1 Xi = 0,1 and

(2) For any d ∈ D, when we draw (X,D) ∼ µ conditioned on
D = d, the variables X1, . . . ,Xk are independent.

Then CICµn(DISJn,k, ε) ≥ n · CICµ(ANDk, ε).

Therefore, to obtain a lower bound of Ω(n log k) on DISJn,k, it is
sufficient to prove a lower bound of Ω(log k) on ANDk, and this is
is what we shall do next. We will separately show that Ω(k) is also
a lower bound on the communication complexity of ANDk, but this
is an easy argument that does not require information theory.

4.1 Lower Bound for Single-Bit AND
For this lower bound we must exhibit a “hard distribution” µ on

inputs {0, 1}k, which satisfies the conditions of Lemma 1, and on
which ANDk has information cost Ω(log k). Our considerations in
choosing the distribution µ are as follows:

• To satisfy condition (1) of Lemma 1, the distribution must
always assign zero to at least one player. We ensure this by
choosing one uniformly random player Z ∈ [k] and assign-
ing it zero. We will satisfy condition (2) by designing our
distribution such that conditioned on the value of Z, the play-
ers’ inputs will be independent. Our analysis will be condi-
tioned on Z (that is, Z will serve as our “auxiliary variable”
previously denoted by D).

• For the remaining players, intuitively we wish to have as few
zeroes as possible, to make it hard for the protocol to find
a player that received zero. One might even be tempted to
assign one to all players other than Z, but since CIC(Π) =
I(Π;X | Z) ≤ H(X|Z), we cannot do this—we must en-
sure that the input has residual entropy at least Ω(log k) even
conditioned on Z. (If all players other than Z receive 1, the
residual entropy would be 0.)

1This requirement may seem odd: if we fix the output of ANDk to
zero, how can the distribution be hard for the protocol? The answer
is that the protocol must be correct w.h.p. on any input, even inputs
that are not in the support. The distribution is used only to analyze
the information cost of the protocol, not its correctness.
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• Ideally, then, one would choose a single player other than Z,
assign it zero, and assign everyone else one. But this would
not be a product distribution, even conditioned on Z.

• We can come close to the ideal above by assigning each
player other than Z a zero with probability 1/k, independent
of the other players.

Formally, the distribution µ is defined as follows: first we select
a uniformly random player Z ∈ [k]; we set XZ = 0. For each
i 6= Z we have Pr [Xi = 0 |Z] = 1/k independent of all the
other inputs.

Under the distribution µ described above, it is somewhat likely
(constant probability) that besides the special player Z, exactly one
other player receives zero. In our analysis we condition on this
event, which makes the distribution symmetric: a uniformly ran-
dom pair of players receive zero, and the others receive one. No-
tice that conditioned on exactly two players receiving zero and on
Z, the identity of the other player that received zero is uniform in
[k] \ {Z}, so it is worth roughly log k bits of information. Our
proof argues that the protocol must find some player that received
zero, and since, due to the symmetry, it cannot tell which is the
special player Z, it finds the other player that got zero with proba-
bility 1/2. This will show that the conditional information cost of
the protocol is Ω(log k).

Posterior probabilities. What does it mean for the protocol
to “find a player that received zero”? We formalize this in terms
of the posterior probability distribution of the input X given the
transcript and Z. “Finding a zero” will mean that for some i ∈ [k],
the posterior probability of Xi = 0 given the transcript is constant
(whereas the prior was only O(1/k)).

Recall that the conditional information cost can be re-phrased in
terms of the KL-divergence between the posterior and prior of X:

I(Π;X |Z) = È
,z
D

(
µ(X |Π = `,Z = z)

µ(X |Z = z)

)
.

It is more convenient to work with the distributions of the individual
inputs Xi rather than the distribution of the entire input X . And
this will be sufficient to prove the lower bound:

LEMMA 2.

I(Π;X |Z) ≥
k∑
i=1

È
,z
D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)
.

In other words, it is enough to show that for “many” transcripts `
there is some player i whose posterior distribution given Π = ` is
very different from his prior distribution (all conditioned on Z). In
general, when i = Z, the divergence is zero: we know in advance
that Xi = 0, so the posterior and the prior are the same. So in fact
we are interested in bounding

I(Π;X|Z) ≥ 1

k

k∑
i=1

∑
z 6=i

E
`∼π|Z=z

D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)
.

(2)
As we said, we will show that for many transcript `, some player

has “shown his hand” and revealed that its input was probably 0:
for some i 6= z, the posterior probability of Xi = 0 given Π =
`,Z = z is constant. Since the prior is only O(1/k), this gives us
a divergence of Ω(log k): specifically, if the posterior probability

of 0 is p, then

D

(
µ(Xi |Π = `,Z = z)

µ(Xi |Z = z)

)
(3)

=
∑
b=0,1

(
Pr [Xi = b |Π = `,Z = z] ·

· log
Pr [Xi = b |Π = `,Z = z]

Pr [Xi = b |Z = z]

)

= p log
p
1
k

+ (1− p) log
1− p
1− 1

k

≥ p log k −H(p)

≥ p log(k)− 1. (4)

(As usual, we assume the convention that 0 log 0 = 0.) Plug-
ging (4) into (2), with constant p, yields the lower bound. But first
we must show that indeed many transcripts “point” to a player that
received zero.

Finding zeroes. In order to analyze the posterior probabilities,
we examine the structure of the protocol. As usual for this kind
of proof, we use the fact that for any transcript, the probability of
getting this transcript can be broken up into the product of functions
that each depend only on the input to a single player:

LEMMA 3 ([2]). For any transcript `, there exist functions{
q`i,b
}
i∈[k],b∈{0,1} s.t. Pr [Π(X) = `] =

∏k
i=1 q

`
i,Xi

.

This is proven by an easy induction on rounds: at each point in the
protocol, some player i is next to speak. If the transcript so far is
`, the probability of getting a particular extension `m depends only
on player i’s random choices and its input Xi. Therefore we set
q`mi,Xi

= q`i,Xi
· Pr [player i sends m on inputs Xi after seeing `],

and for each j 6= i we set q`mj,Xj
= q`j,Xj

.
The probability that a particular transcript ` is generated when

Xi = b is proportional to q`i,b. Therefore, the posterior probability
that Xi = 0 given transcript ` is related to the ratio between q`i,0
and q`i,1: intuitively, the larger q`i,0 is with respect to q`i,1, the more
we are inclined to believe that Xi = 0 if we observe transcript `.
Indeed, using Bayes’ rule we can show:

LEMMA 4. Suppose that qi,1 6= 0, and let α`i := q`i,0/q
`
i,1. For

any transcript ` we have

Pr [Xi = 0 |Π = `,Z 6= i] =
q`i,0

q`i,0 + (k − 1)qi,1

=
α`i

α`i + k − 1
≥ α`i
α`i + k

. (5)

When qi,1 = 0, the posterior is of course 1.

Notice that when α`i = Ω(k) this posterior probability becomes
constant. The factor of Ω(k) is needed to overcome the prior prob-
ability that Xi = 0, which is only 1/k.

“Good transcripts”. Our task now is to show that for “many”
transcripts ` we indeed have α`i = Ω(k) for some i ∈ [k]. Not all
transcripts satisfy this property: for example, the protocol can de-
cide with probability ε to throw its hands up and do nothing. How-
ever, we will show that transcripts that do not point to a player that
received zero contribute to the error of the protocol, and therefore
the total probability of getting such a transcript cannot be large.

We focus our attention on inputs that have exactly two zeroes,
and our “good transcripts” will also be chosen with respect to their
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behavior on these inputs. Let Xc denote the set of inputs with c
zeroes for c ∈ [k]. Note that the correct answer for ANDk is 1 on
inputs in X0 (there is only one such input, 1k) and 0 on inputs in
Xc for c ≥ 1.

Let π2 be the distribution of transcripts conditioned on the input
being in X2:

π2(`) =
∑
X∈X2

[
µ(X|X2)

k∏
i=1

q`i,Xi

]
.

Let L be the set of transcripts satisfying the following constraints:
for each ` ∈ L, the output of the protocol is 0, and also

π2(`) ≥ C ·
k∏
i=1

q`i,1,

where C is some large constant whose value will be chosen later.
In other words, L is the set of transcripts with output 0 which
“strongly prefer” inputs with two zeroes over 1k. (In particular,
these transcripts do not contribute much to the error of the proto-
col.)

To show that L has large mass under π2, let us partition the com-
plement of L into two sets B0, B1 based on the output value on
each transcript. Neither set can be large:

• The transcripts in B1 cannot have large mass under π2 be-
cause they yield the wrong output (1) on all inputs in X2:

π2 (B1) =
∑
`∈B1

∑
X∈X2

µ(X|X2) Pr [Π = ` |X = X]

=
1

µ(X2)

∑
X∈X2

µ(X)
∑
`∈B1

Pr [Π = ` |X = X]

≤ 1

µ(X2)

∑
X∈X≥1

µ(X)
∑
`∈B1

Pr [Π = ` |X = X]

≤ 1

µ(X2)
Pr
µ

[Π outputs 1] ≤ δ

µ(X2)
.

• B0 contains transcripts on which the output is 0, but

π2(`) < C ·
k∏
i=1

q`i,1.

These transcripts contribute to the error of the protocol on 1k

at least in proportion to their mass under π2, and therefore
they also cannot have large mass:

Pr
[
Π(1k) outputs 0

]
≥
∑
`∈B0

Pr
[
Π(1k) = `

]

=
∑
`∈B0

k∏
i=1

q`i,1

>
∑
`∈B0

π2(`)/C = π2(B0)/C,

and therefore π2(B0) < C · δ.

Together we have that assuming C · δ < 1/200 and δ/µ(X2) <
1/200 (both constant requirements), π2(B0 ∪B1) < 1/100. Note
that we can choose C arbitrarily large, and compensate by assum-
ing a smaller error probability δ.

For any transcript ` ∈ L, we have

π2(`) =
∑
X∈X2

µ(X|X2)

k∏
i=1

q`i,Xi
≥ C

k∏
i=1

q`i,1.

Given membership in X2, all two-zero inputs are equally likely, so
µ(X|X2) = 1

(k2)
for any X ∈ X2. Note that for each X ∈ X2

we can write
∏k
i=1 q

`
i,Xi

= q`j1,0q
`
j2,0 ·

∏
i6=j1,j2 q

`
i,1, where j1 6=

j2 are the two indices where X has zero. Dividing both sides by∏k
i=1 q

`
i,1 (and renaming the indices for convenience), we obtain

1(
k
2

) ∑
i<j

α`iα
`
j ≥ C.

Because
∑
i<j aiai ≤ (

∑
i ai)

2 for any sequence a1, . . . , aN , we
get that ∑

i

α`i ≥
√
k(k − 1)

2
· C ≥

√
k2

4
· C =

√
C

2
k. (6)

That is, the sum of the coefficients is linear for each ` ∈ L. How-
ever, we need to show that for many transcripts the maximum coeffi-
cient is linear, and this does not necessarily hold for all of L; for ex-
ample, it could be that for half the values of i we have α`i = Ω(1),
instead of having one value of i for which α`i = Ω(k). To eliminate
such transcripts, we further restrict our attention to transcripts that
are somewhat likely to appear when there are exactly two zeroes in
the input, not more. For such transcripts, there are only two players
that can be “pointed to”, so only two coefficients can be large.

Formally, we focus our attention on the subset L′ ⊆ L of tran-
scripts ` satisfying

Pr [Π = ` |X ∈ X2] ≥ 1

2
Pr [Π = ` |X ∈ X3] ,

that is, transcripts that “like” inputs with two zeroes not much less
than inputs with three zeroes. We have π2(L′) ≥ π2(L) − 1/2,
because

π2(L \ L′) =
∑

`∈L\L′
Pr [Π = ` |X ∈ X2]

≤ 1

2

∑
`∈L\L′

Pr [Π = ` |X ∈ X3] ≤ 1

2
.

Now fix ` ∈ L′, and let us show that for some i ∈ [k], the
posterior probability of Xi = 0 given ` is Ω(k) times the posterior
probability of 1. If there is some i for which q`i,1 = 0, then we are
done, so assume that this is not the case. Because ` ∈ L′,

∑
X∈X2

µ(X|X2)

k∏
i=1

q`i,Xi
≥ 1

2

∑
X∈X3

µ(X|X3)

k∏
i=1

q`i,Xi
,

that is,

1(
k
2

) ∑
i<j

α`iα
`
j ≥

1

2
(
k
3

) ∑
i<j<m

α`iα
`
jα

`
m. (7)

Now assume for the sake of contradiction that for a constant C′

whose value will be fixed later, we have α`i < C′k for each i ∈ [k].
Then

6
∑

i<j<m

α`iα
`
jα

`
m =

(∑
i

α`i

)3

− 3
∑
i6=j

(
α`i

)2

α`j −
∑
i

α3
i

>

(∑
i

α`i

)3

− 3C′k
∑
i6=j

α`iα
`
j − (C′)2k2

∑
i

αi

≥

(∑
i

α`i

)3

− 3C′k

(∑
i

α`i

)2

− (C′)2k2
∑
i

αi.
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From (6) we know that k ≤ 2
∑
i α

`
i/(
√
C), so

6
∑

i<j<m

α`iα
`
jα

`
m ≥

(∑
i

α`i

)3

−

− 6
C′√
C

(∑
i

α`i

)3

− 4
(C′)2

C

(∑
i

αi

)3

.

If we choose, e.g., C′ <
√
C/100, we get that

6
∑

i<j<m

α`iα
`
jα

`
m ≥

1

2

(∑
i

α`i

)3
(6)
≥ 1

4

√
Ck

(∑
i

α`i

)2

,

and therefore

1

2
(
k
3

) ∑
i<j<m

α`iα
`
jα

`
m ≥

√
C

16k2

(∑
i

α`i

)2

.

This gives us a lower bound on the right-hand side in (7). The
left-hand side is bounded from above by

1(
k
2

) ∑
i<j

α`iα
`
j ≤

4

k2

(∑
i

α`i

)2

.

If we choose C sufficiently large we obtain a contradiction to (7).
Note that the value of C′ is constrained only by the value of C,
so by increasing C (which requires only assuming a smaller error
probability δ for the protocol) we can obtain an arbitrarily large
lower bound maxi α

`
i ≥ C′k.

All together, we have now shown the following:

LEMMA 5. Fix a constant probability p ∈ (0, 1), and let c > 0
be a constant such that c/(c + 1) ≥ p. Then there exist constants
δ, p ∈ (0, 1) such that for any k, any protocol that solves ANDk
with error at most δ has a set L of transcripts such that π2(L) ≥ p,
and for each ` ∈ L there is a player i = i(`) with α`i ≥ ck.

Notice that by (5), for the player i(`) from the lemma we have
Pr
[
Xi(`) = 0 |Π = `,Z 6= i

]
≥ α`i(`)/(α`i(`)+k) ≥ (ck)/(ck+

k) ≥ p, i.e., the posterior is constant. From (4), assuming k ≥
22/p, for any z 6= i(`),

D

(
µ(Xi(`) |Π = `,Z = z)

µ(Xi(`) |Z = z)

)
≥ p log k − 1 ≥ (p/2) log k,

(8)
so we are “very surprised” by the posterior distribution of Xi(`)

given Π. Now recall that this is lower bound on the divergence is
what we needed to show: by Lemma 2, together with some tech-
nical details that are omitted here, we obtain Iµ(Π;X | Z) ≥
Ω(log k), completing the proof.

THEOREM 1. For the distribution µ we described and a suffi-
ciently small δ, CICµ(ANDk, δ) ≥ Ω(log k).

COROLLARY 1. By Lemma 1 we have CICµn(DISJn,k, δ) ≥
Ω(n log k), and hence CCδ(DISJn,k) ≥ Ω(n log k).

We now show that computing ANDk requires Ω(k) bits of com-
munication, which also implies a lower bound of Ω(k) on DISJn,k.
This is an easy argument which does not require information com-
plexity.

LEMMA 6. For any constant error parameter ε ∈ (0, 1/3) we
have CCε(ANDk) = Ω(k).

PROOF. By the easy direction of Yao’s minimax principle [30],
it is sufficient to show that for some input distribution µ we have
Dµ
ε (ANDk) = Ω(k), that is, any deterministic protocol that errs

with probability at most ε on inputs drawn from µ uses Ω(k) bits
of communication.

Fix ε′ > ε such that ε/(1 − ε′) < 1/2. Consider the following
input distribution µ: with probability ε′ > ε, all players receive 1,
and with probability 1 − ε′, one random player receives 0 and the
other players receive 1.

Fix a deterministic protocol Π for ANDk. Let p1, . . . , p` be the
order in which players speak when the input is 1k, and assume for
the sake of contradiction that ` < (1− ε/(1− ε′)) · k.

If Π(1k) = 0, then Π’s error under µ is ε′ > ε, so we can assume
that Π(1k) = 1. Let E be the event that the input is not 1k, but all
of the players p1, . . . , p` receive 1. We have Prµ [E ] = (1 − ε′) ·
(1− `/k) > ε. But when E occurs, the transcript of Π is identical
to its transcript on 1k, as Π is deterministic and all players that
speak when the input is 1k still receive 1 (in particular, the order of
players that speak also remains the same under E). Therefore with
probability > ε the protocol outputs the wrong answer.

5. MATCHING UPPER BOUND FOR SET
DISJOINTNESS

We now describe a deterministic protocol for DISJn,k with com-
munication complexityO(n log k+k), which, in light of the lower
bounds above, is optimal even for randomized algorithms. The pro-
tocol improves upon the naive version described in the introduc-
tion: the players attempt to convince themselves that

⋂k
i=1 Xi = ∅

by writing on the board the indices of coordinates i ∈ [n] where
their input is zero; these coordinates cannot be in the intersection.
To reduce the amount of communication, players never write on
the board a coordinate that already appears on the board, and we
also “pack together” coordinates: instead of writing them one-by-
one, which requires Θ(logn) bits per coordinate, we write batches
of many coordinates simultaneously, encoding them as a set. This
reduces the amortized cost per coordinate to Θ(log k).

The protocol runs in cycles, where in each cycle some prefix
of the players 1, . . . , k each speak exactly once, in order, and the
remaining players do not speak. Let Zi be the set of coordinates
that do not appear on the board at the beginning of cycle i, and let
zi := |Zi|. Notice that if the input sets are indeed disjoint, then by
the pigeonhole principle, at least one player has at least zi/k zero
coordinates that do not appear on the board (“new zeroes”).

Suppose that at the beginning of cycle i we still have zi ≥ k2.
When it is the turn of player j to speak, if player j has at least
zi/k new zeroes, then it chooses zi/k of them and writes them
on the board, encoded as a subset of Zi. The number of possible
subsets is

(
zi
zi/k

)
≤ ((zie)/(zi/k))zi/k = (ek)zi/k, so encoding

one subset requires (zi/k) log(ek) bits (i.e., the amortized cost per
coordinate written is log(ek)). If player j does not have zi/k new
zeroes to contribute, it writes a single bit on the board indicating
this (“pass”), and we move on to the next player.

When at the beginning of some cycle i we have zi < k2, each
player simply writes all its new zeroes on the board in the naive
encoding (as elements of Zi). This requires O(log k) bits per co-
ordinate.

The protocol ends when one of the following occurs: if at any
point all coordinates appear on the board, then the players halt and
output “disjoint”. Otherwise, if a complete cycle goes by in which
all players pass, then the players halt and output “non-disjoint”.
Also, if we reach a cycle i with zi < k2, and at the end of the cycle
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not all coordinates appear on the board, then the players output
“non-disjoint”.

THEOREM 2. The protocol describes above solves DISJn,k in
O(n log k + k) bits of communication.

6. ON INTERACTIVE COMPRESSION FOR
THE BROADCAST MODEL

The issue of compression is at the heart of information theory:
can we condense messages (or, in the interactive case, protocols)
to their information content? For the case of one-way transmission
we know that the answer is yes, both for the amortized per-message
cost in the limit as the number of messages (called the block size)
goes to infinity [27] and also for just a single message [20].

In the interactive setting, it is known that a single instance of
any protocol can be compressed to nearly its external information
cost [3], while for amortized compression with an infinite block
size (i.e., as the number of copies goes to infinity) we can achieve
even better compression, to a measure called the internal informa-
tion cost [7].2 Let us discuss each of these goals in the k-party
broadcast model.

Single-shot compression. In [3] it is shown that a two-party
protocol Π with communication complexity C and external infor-
mation cost I can be simulated (compressed) by a protocol with
communication O(I · logC). (External information for two play-
ers is given by Definition 6 for k = 2.) However, we observe
that we cannot achieve such compression for the general multi-
party case in the blackboard model: we already noted that the func-
tion ANDk requires Ω(k) bits of communication under some dis-
tribution. We now observe that ICµ(ANDk) ≤ O(log k) for any
distribution µ: we can solve ANDk by a protocol Π, where the
players go in order and write their input on the board, until we
find a player whose input was 0 (in which case we halt), or have
seen that all players had 1. The entropy of the transcript of Π is
O(log k), because we can encode it by writing the index of the
first player that wrote 0, or ⊥ if there is no such player. Therefore
ICµ(ANDk) ≤ I(Π;X) ≤ H(Π) ≤ O(log k).

This demonstrates that the ANDk function cannot be compressed
to its external information cost: there is a gap of Ω(k/ log(k)) be-
tween its communication and information complexity. It is not
clear whether or not this gap is the largest possible, but it seems
reasonable that any function can be compressed to no more than k
times its external information cost, with a possible polylogarithmic
dependence on the communication complexity (as in [3]).

Amortized compression. Let T (fn, ε) be the task of comput-
ing f on n independent inputs with marginal error ε on each in-
stance. It is not difficult to extend the compression protocol from [7]
(which is designed for a different notion of information cost, inter-
nal information [4]) to the external information of protocols in the
k-party broadcast model, obtaining the following result:

2Compressing a protocol Π to some cost T means constructing an-
other protocol Θ, whose communication complexity is T , such that
given inputs X,Y , the players can use Θ to sample from a distri-
bution close to the distribution of Π’s transcript Π(X,Y ). The
players are not charged for writing out the transcript of Π that they
sampled, only for the communication they exchange in order to
agree on the sample. This is generalized to multiple players in the
natural way.

THEOREM 3. For any function f , error parameter ε ∈ (0, 1)
and distribution µ,

lim
n→∞

Dµn(T (fn, ε))

n
≤ ICµ(f, ε).

(For two players, external information is bounded from below by
internal information, the notion used in [7], so our result does not
improve on theirs for the two-party case. However, the notion used
in [7] does not extend to the multiparty broadcast model for k > 2.)

We give a high-level overview of the compression scheme. This
is a simplified version of the protocol from [7]. A similar but some-
what less explicit construction is given in [18].

Fix a protocol Π, and assume for simplicity that it has a fixed
number of rounds and the players speak in an order that is fixed
in advance (our result does not require these assumptions). Let
M1, . . . ,Mr be random messages representing the messages of
the protocol, where each message Mj is sent by player ij . The
randomness is over both the input distribution and the private and
public randomness of the protocol.

Using the chain rule for mutual information, the information cost
of Π can be seen to accumulate over rounds as follows:

IC(Π) = I(Π;X) =

r∑
j=1

I(Mj ;X |M<j),

in other words, the information we learn from observing Π is the
information we learn from the first message, plus the information
we learn from the second message given what we already learned
from the first, and so on. Moreover, since message Mj is sent by
player ij and depends only on ij’s input and the transcript so far,
Mj conveys no information about the other players’ inputs given
M<j , so in fact

IC(Π) =

r∑
j=1

I(Mj ;Xij |M<j)

(1)
=

r∑
j=1

E
m<j ,xij

D

(
µ(Mj |Xij = xij ,M<j = m<j)

µ(Mj |M<j = m<j)

)
.

We can interpret this as follows: in each round j, player ij gener-
ates message Mj from a distribution η that depends on the tran-
script so far, M<j , and on its input Xij . An external observer who
has seen M<j but does not know X can try to predict the next
message Mj ; let ν be the distribution representing the external ob-
server’s prediction.3 The information revealed about Xij in round
j corresponds to the observer’s ability to predict Mj : the closer ν
is to η, the less “surprised” the observer is when it sees Mj , and
the less information it learns. Therefore, in protocols that do not
reveal a lot of information, the observer knows a prior distribution
ν that is already fairly close to the true distribution η of the next
message, and we can use this fact to compress the next message.
Note that all players are able to compute the prior ν of the external
observer (it depends only on Mij ). However, only player ij knows
the true distribution η.

Before proceeding it will be useful to review an elementary form
of rejection sampling. Suppose we have a distribution η over some
domain U , and we wish to sample from η, but we are only able
to sample uniform random variables. One way to sample from
η is to generate an infinite sequence of two-dimensional points
(x1,p1), (x2,p2), . . . uniformly distributed in U × [0, 1], select
3Formally, to sample from ν, one samples Xij from its distribution
given M<j and then computes Mj .
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the first point i that falls under the curve of η — that is, satisfies
η(xi) > pi — and output xi. It is not difficult to see that this gen-
erates the correct distribution η, since given xi = x, the probability
that point i falls under the curve of η is exactly η(x). Moreover, the
probability for any given point to fall under the curve is 1/|U |, so
the expected number of points we need before finding a good point
is U .

In the compressed protocol we simulate round j as follows. We
let U be the set of possible next messages (the domain of Mj), and
we publicly sample points (x1,p1), (x2,p2), . . . uniformly dis-
tributed in U × [0, 1] using public randomness. Player ij , who
knows the true distribution η of the next message, selects the first
point that falls under the curve of η. The other players do not know
η, but they do know some prior ν, which is also known to player ij .
If ν is close to η, then the other players already have some idea of
which points player ij might have selected. Instead of writing the
message on the board as it would in the original protocol, player
ij writes some information on the board to help the other players
learn exactly which point it selected, using its knowledge of both η
and ν. The closer ν is to the true distribution η, the less player ij
will need to write on the board.

Let a` = (x`, p`) be the point selected by player ij . First, player
ij writes on the board the value di/|U |e. This requires a small
number of bits, because i is a binomial random variable with ex-
pectation |U |. Let P be the set of points with indices i′ such that
di′/|U |e = di/|U |e; all players restrict their attention to points in
the set P , whose size is |U |.

Next player ij writes the log-ratio s = dlog(η(x`)/ν(x`))e.4
This requires roughly log log(η(x`)/ν(x`)) bits, using a variable-
length encoding. All other players now scale up their prior ν by 2s,
and eliminate all points that do not fall under the scaled curve 2s ·ν
from consideration, since we know that p` < η(x`) ≤ 2s · ν(x`).
Let P ′ ⊆ P be the remaining set (see Figure 1).

This is not sufficient to narrow the candidate pool down to a sin-
gle point; indeed, the expected number of points in P ′ is 2s, be-
cause there are |U | points in P and each one falls under the curve
2s ·ν with probability 2s/|U |. However, player ij knows the set P ′,
and it now simply writes the index of the point it selected inside the
set P ′ (that is, if P ′ = {at1 , . . . , atm} then player ij writes the
index c such that tc = `). Since we expect that |P ′| ≈ 2s, this
requires roughly s bits. Now all players know which point was
selected by player ij , and we can continue on to the next round.

More formally, the sampling procedure can be summarized as
follows:

LEMMA 7. Suppose that all players are given a distribution η
over some universe U , and in addition, player i is given a distribu-
tion ν over U . Fix ε ∈ (0, 1). Then there is a protocol Θ, at the
end of which player i outputs an element X ∼ η, and the other
players all output the same element Y , with the property that for
each x ∈ U , Pr [X = Y |X = x] ≥ 1− ε. The expected commu-
nication of Θ is D(ν ‖ η) +O(logD(ν ‖ η) + log(1/ε)).

As mentioned above, this result is proven slightly differently in [18].
Using this lemma repeatedly, we can sample an entire transcript

of Π using communication IC(Π)+O(log IC(Π))+O(r·log(1/ε)),
where r is the number of rounds in Π. (The cost is obtained by
summing over the costs of the individual rounds as bounded in
Lemma 7, using the log-sum inequality to move the sum inside
the log in the second term.)

Now suppose we are given n independent inputs drawn from µ,
and we solve T (fn, δ) by running n independent instances of Π

4It may happen that ν(x`) < η(x`) and the logarithm is negative,
but this will not be a problem.
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Figure 1: Illustration for the sampling procedure. The thick
curve is the true distribution η, the thin curve is the prior ν,
and the dashed curve is the scaled prior 2s · ν. In this ex-
ample, player ij will select point 3 to output, and the candi-
dates that will be considered by the other players are P ′ =
{1, 3, 4, 5, 8, 9}. Player ij will send ’2’ to indicate that the sec-
ond point in P ′, point 3, should be selected.

in parallel: first we execute the first round of Π on each of the
instances, then the next round, and so on. The resulting protocol
has the same number of rounds r that Π has, and since the copies
are independent, its information cost is n · IC(Π). (It is crucial
that when we execute Π in parallel on the different instances so
that the number of rounds does not increase.) We can compress
the n-fold protocol using the scheme outlined above, reducing its
communication complexity to

C := n · IC(Π) + r ·O(log(n · IC(Π)) + log(1/ε)),

andC/n→ IC(Π) as n tends to infinity, as desired. (This informal
presentation glosses over many details, including how to handle the
additional error incurred during compression. They will appear in
the full version of the paper.)

It is not clear whether the compression result of Theorem 3 is
tight in general, but it is tight for product distributions.

THEOREM 4. For any function f , error parameter ε ∈ (0, 1)
and product distribution µ,

lim
n→∞

Dµn(T (fn, ε))

n
= ICµ(f, ε).

PROOF SKETCH. Since Dη(g, ε) ≥ ICη(g, ε) for any task g
and distribution η, to prove the theorem it suffices to show that
ICµn(T (fn, ε)) ≥ n · ICµ(T (fn, ε)) when µ is a product distri-
bution. (The other direction is given by Theorem 3.) This is very
similar to the direct sum result from [2], given in Lemma 1: in-
deed, it is even simpler to show than the statement in Lemma 1,
because here we compare the information cost of actually solv-
ing n independent copies to the cost of solving one copy, whereas
in Lemma 1 we compared the cost of computing the disjunction
on n copies to the cost of solving a single copy. To show that
ICµn(T (fn, ε)) ≥ n · ICµ(T (fn, ε)) for a product distribution µ
we can apply the same proof used to show Lemma 1 in [2], using
an “empty variable” as our auxiliary variable D.
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Characterizing the exact cost of one-shot compression and of
compression with infinite block length in the broadcast model re-
main open questions.

7. REFERENCES
[1] Noga Alon, Yossi Matias, and Mario Szegedy. The space

complexity of approximating the frequency moments.
Journal of Computer and System Sciences, 58(1):137 – 147,
1999.

[2] Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and
D. Sivakumar. An information statistics approach to data
stream and communication complexity. J. Comput. Syst. Sci.,
68(4):702–732, 2004.

[3] Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How
to compress interactive communication. SIAM J. Comput.,
42(3):1327–1363, 2013.

[4] Mark Braverman. Interactive information complexity. In
Proceedings of the 44th Symposium on Theory of Computing
Conference, STOC 2012, New York, NY, USA, May 19 - 22,
2012, pages 505–524, 2012.

[5] Mark Braverman, Faith Ellen, Rotem Oshman, Toniann
Pitassi, and Vinod Vaikuntanathan. A tight bound for set
disjointness in the message-passing model. In 54th Annual
IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages
668–677, 2013.

[6] Mark Braverman, Ankit Garg, Denis Pankratov, and Omri
Weinstein. From information to exact communication. In
Proceedings of the forty-fifth annual ACM symposium on
Theory of computing, pages 151–160. ACM, 2013.

[7] Mark Braverman and Anup Rao. Information equals
amortized communication. In Proceedings of the 2011 IEEE
52nd Annual Symposium on Foundations of Computer
Science, FOCS ’11, pages 748–757, 2011.

[8] Joshua Brody, Amit Chakrabarti, Ranganath Kondapally,
David P. Woodruff, and Grigory Yaroslavtsev. Beyond set
disjointness: The communication complexity of finding the
intersection. In Proceedings of the 2014 ACM Symposium on
Principles of Distributed Computing, PODC ’14, pages
106–113, 2014.

[9] Amit Chakrabarti, Yaoyun Shi, Anthony Wirth, and Andrew
Chi-Chih Yao. Informational complexity and the direct sum
problem for simultaneous message complexity. In 42nd
Annual Symposium on Foundations of Computer Science,
FOCS 2001, pages 270–278, 2001.

[10] Ashok K. Chandra, Merrick L. Furst, and Richard J. Lipton.
Multi-party protocols. In Proceedings of the Fifteenth
Annual ACM Symposium on Theory of Computing, STOC
’83, pages 94–99, 1983.

[11] Arkadev Chattopadhyay and Toniann Pitassi. The story of set
disjointness. SIGACT News, 41(3):59–85, 2010.

[12] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman,
Danupon Nanongkai, Gopal Pandurangan, David Peleg, and
Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. In Proceedings of the Forty-third
Annual ACM Symposium on Theory of Computing, pages
363–372, 2011.

[13] Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic
efficiency requires interaction. In Proceedings of the 46th
Annual ACM Symposium on Theory of Computing, STOC
’14, pages 233–242, 2014.

[14] Andrew Drucker, Fabian Kuhn, and Rotem Oshman. On the
power of the congested clique model. In ACM Symposium on
Principles of Distributed Computing, PODC ’14, Paris,
France, July 15-18, 2014, pages 367–376, 2014.

[15] Anat Ganor, Gillat Kol, and Ran Raz. Exponential separation
of information and communication. In 55th IEEE Annual
Symposium on Foundations of Computer Science, FOCS
2014, Philadelphia, PA, USA, October 18-21, 2014, pages
176–185, 2014.

[16] Oded Goldreich and A Warning. Secure multi-party
computation. unpublished manuscript, 1998.

[17] André Gronemeier. Asymptotically optimal lower bounds on
the NIH-multi-party information complexity of the
AND-function and disjointness. In Proc. 26th Symp. on
Theor. Aspects of Comp. Sc. (STACS), pages 505–516, 2009.

[18] Prahladh Harsha, Rahul Jain, David McAllester, and
Jaikumar Radhakrishnan. The communication complexity of
correlation. In Computational Complexity, 2007. CCC’07.
Twenty-Second Annual IEEE Conference on, pages 10–23.
IEEE, 2007.

[19] Johan Håstad and Avi Wigderson. The randomized
communication complexity of set disjointness. Theory of
Computing, 3(11):211–219, 2007.

[20] D.A. Huffman. A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101, 1952.

[21] Bala Kalyanasundaram and Georg Schnitger. The
probabilistic communication complexity of set intersection.
SIAM J. Discrete Math., 5(4):545–557, 1992.

[22] Eyal Kushilevitz and Noam Nisan. Communication
complexity. Cambridge University Press, 1997.

[23] Mihai Patrascu. Unifying the landscape of cell-probe lower
bounds. SIAM J. Comput., 40(3):827–847, 2011.

[24] Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds
for number-in-hand multiparty communication complexity,
made easy. SODA ’12, pages 486–501, 2012.

[25] A. A. Razborov. On the distributional complexity of
disjointness. Theor. Comput. Sci., 106:385–390, 1992.

[26] Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman,
Danupon Nanongkai, Gopal Pandurangan, David Peleg, and
Roger Wattenhofer. Distributed verification and hardness of
distributed approximation. SIAM J. Comput.,
41(5):1235–1265, 2012.

[27] C. E. Shannon. A mathematical theory of communication.
Bell System Technical Journal, 27(3):379–423, 1948.

[28] Alexander A. Sherstov. Communication lower bounds using
directional derivatives. In Proc. 45th Symp. on Theory of
Comp. (STOC), pages 921–930, 2013.

[29] David P. Woodruff and Qin Zhang. An optimal lower bound
for distinct elements in the message passing model. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 718–733, 2014.

[30] Andrew Chi-Chin Yao. Probabilistic computations: Toward a
unified measure of complexity. SFCS ’77, pages 222–227,
1977.

364




